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Abstract. Moving around in the world is naturally a multisensory ex-
perience, but today’s embodied agents are deaf—restricted to solely their
visual perception of the environment. We introduce audio-visual naviga-
tion for complex, acoustically and visually realistic 3D environments.
By both seeing and hearing, the agent must learn to navigate to a
sounding object. We propose a multi-modal deep reinforcement learn-
ing approach to train navigation policies end-to-end from a stream of
egocentric audio-visual observations, allowing the agent to (1) discover
elements of the geometry of the physical space indicated by the rever-
berating audio and (2) detect and follow sound-emitting targets. We
further introduce SoundSpaces: a first-of-its-kind dataset of audio ren-
derings based on geometrical acoustic simulations for two sets of pub-
licly available 3D environments (Matterport3D and Replica), and we
instrument Habitat to support the new sensor, making it possible to
insert arbitrary sound sources in an array of real-world scanned envi-
ronments. Our results show that audio greatly benefits embodied vi-
sual navigation in 3D spaces, and our work lays groundwork for new
research in embodied AI with audio-visual perception. Project: http:

//vision.cs.utexas.edu/projects/audio_visual_navigation.

1 Introduction

Embodied agents perceive and act in the world around them, with a constant
loop between their sensed surroundings and their selected movements. Both
sights and sounds constantly drive our activity: the laundry machine buzzes
to indicate it is done, a crying child draws our attention, the sound of breaking
glass may require urgent help.

In embodied AI, the navigation task is of particular importance, with appli-
cations in search and rescue or service robotics, among many others. Navigation
has a long history in robotics, where a premium is placed on rigorous geomet-
ric maps [81, 41]. More recently, researchers in computer vision are exploring
models that loosen the metricity of maps in favor of end-to-end policy learn-
ing and learned spatial memories that can generalize to visual cues in novel
environments [105, 39, 38, 74, 4, 60, 55].
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Fig. 1: Audio source in an unmapped 3D environment, where an autonomous
agent must navigate to the goal. The top-down map is overlaid with the acoustic
pressure field heatmap. Our audio-enabled agent gets rich directional information about
the goal, since the audio intensity variation is correlated with the shortest path distance.
The acoustics also reveal the room’s geometry, major structures, and materials. Notice
the gradient of the field along the geodesic path an agent must use to reach the goal
(different from the shortest Euclidean path, which would cut through the inner wall).
As a result, the proposed agent enjoys the synergy of both modalities: audio reveals
the door as a good intermediate goal, while vision reveals the physical obstacles along
the path, such as the furniture in the lefthand room.

However, while current navigation models tightly integrate seeing and mov-
ing, they are deaf to the world around them. This poses a significant sensory
hardship: sound is key to (1) understanding a physical space and (2) localizing
sound-emitting targets. As leveraged by blind people and animals who perform
sonic navigation, acoustic feedback partially reveals the geometry of a space, the
presence of occluding objects, and the materials of major surfaces [69, 26]—all of
which can complement the visual stream. Meanwhile, targets currently outside
the visual range may be detectable only by their sound (e.g., a person calling
from upstairs, the ringing phone occluded by the sofa, footsteps approaching
from behind). Finally, aural cues become critical when visual cues are unreliable
(e.g., the lights flicker off) or orthogonal to the agent’s task (e.g., a rescue site
with rubble that breaks prior visual context).

Motivated by these factors, we introduce audio-visual navigation for complex,
visually realistic 3D environments. The autonomous agent can both see and hear
while attempting to reach its target. We consider two variants of the navigation
task: (1) AudioGoal, where the target is indicated by the sound it emits, and
(2) AudioPointGoal, where the agent is additionally directed towards the goal
location at the onset. The former captures scenarios where a target initially out
of view makes itself known aurally (e.g., phone ringing). The latter augments the
popular PointGoal navigation task [4] and captures scenarios where the agent
has a GPS pointer towards the target, but should leverage audio-visual cues to
navigate the unfamiliar environment and reach it faster.
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We propose a multi-modal deep reinforcement learning (RL) approach to
train navigation policies end-to-end from a stream of audio-visual observations.
Importantly, audio observations must be generated with respect to both the
agent’s current position and orientation as well as the physical properties of
the 3D environment. To do so, we introduce pre-computed audio renderings
SoundSpaces for Matterport3D [13] and Replica [77], two public datasets of
scanned real-world 3D environments, and we integrate them with the open source
Habitat platform [55] for fast 3D simulation (essential for scalable RL). The pro-
posed embodied AI agent learns a policy to choose motions in a novel, unmapped
environment that will bring it efficiently to the target while discovering relevant
aspects of the latent environment map. See Figure 1.

Our results show the powerful synergy between audio and vision for naviga-
tion. The agent learns to blend both modalities to map novel environments, and
doing so yields faster learning at training time and faster, more accurate navi-
gation at inference time. Furthermore—in one of our most exciting results—we
demonstrate that for an audio goal, the audio stream competes well with the goal
displacement vectors upon which current navigation methods often depend [4,
55, 35, 50, 14], while having the advantage of not assuming perfect GPS odom-
etry. Finally, we explore the agent’s ability to generalize to not only unseen
environments, but also unheard sounds. Our main contributions are:

1. We introduce the task of audio-visual navigation by autonomous agents in
complex, visually and acoustically realistic 3D environments.

2. We generalize a state-of-the-art deep RL visual navigation framework to
accommodate audio observations and demonstrate its impact on navigation.

3. We introduce SoundSpaces, a first-of-its-kind audio-visual platform for em-
bodied AI. We instrument the 103 environments from Matterport3D [13] and
Replica [77] on the Habitat platform [55] with acoustically realistic sound
renderings. This allows insertion of an arbitrary sound source and proper
sensing of it from arbitrary agent receiver positions. By sharing this new
resource publicly, our work can enable other new ideas in this area.

4. We create a benchmark suite of tasks for audio-visual navigation to facilitate
future work in this direction.

2 Related Work

Audio-visual learning. The recent surge of research in audio-visual (AV)
learning focuses on video rather than embodied perception. This includes in-
teresting directions for synthesizing sounds for video [67, 16, 104], spatializing
sound [61, 31], sound source separation [103, 30, 66, 25, 32], cross-modal feature
learning [100, 101, 68, 29], AV tracking [33, 8, 9, 2], and learning material proper-
ties [67]. Unlike prior work that localizes pixels in video frames associated with
sounds [82, 76, 6, 43], our goal is to learn navigation policies for agents to actively
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locate an audio target in a 3D environment. Unlike any of the above, our work
addresses embodied navigation, not learning from human-captured video.

Vision-based navigation. The role of vision for cognitive mapping in human
navigation is well studied in neuroscience [24, 83]. Recent AI agents also aggre-
gate egocentric visual inputs [106, 105, 59, 80, 44], often with a spatio-temporal
memory [38, 74, 42, 95]. Visual navigation can be tied to other tasks to attain
intelligent behavior, such as question answering [34, 21, 22], active visual recog-
nition [46], and instruction following [5, 15]. Our work goes beyond visual per-
ception to incorporate hearing, offering a novel perspective on navigation.

Audio-based navigation. Cognitive science also confirms that audio is a strong
navigational signal [79, 58]. Blind and sighted people show comparable skill on
spatial navigation [27] and sound localization [36, 54, 72, 87] tasks. Consequently,
audio-based AR/VR equipment has been devised for auditory sensory substitu-
tion for human users for obstacle avoidance and navigation [56, 37]. Additionally,
cartoon-like virtual 2D and 3D AV environments can help evaluate human learn-
ing of audio cues [19, 91, 57]. Unlike our proposed platform, these environments
are non-photorealistic and they are for human navigators; they do not support AI
agents or training. Prior studies with autonomous agents in simulated environ-
ments are restricted to human-constructed game boards, do not use acoustically
correct sound models, and train and test on the same environment [88, 93].

Sound localization in robotics. In robotics, microphone arrays are often
used for sound source localization [64, 71, 63, 65]. Past studies fuse AV cues for
surveillance [94, 70], speech recognition [99], human robot interaction [1, 86], and
robotic manipulation tasks [73]. None attempt audio-visual navigation in un-
mapped environments. Concurrent work explores AV-navigation in computer
graphics environments [28]. In contrast to our end-to-end RL agent, their model
decouples the task into predicting the goal location from audio and then planning
a path to it. Our simulation platform is more realistic for both visuals (real world
images in ours vs. computer graphics in [28]) and acoustics (ray tracing/sound
penetration/full occlusion model in ours vs. low-cost game audio in [28]), and it
offers 5,000× more audio data and 15× more environments. To our knowledge,
ours is the first work to demonstrate improved navigation by an AV agent in a
visually and acoustically realistic 3D environment, and the first to introduce an
end-to-end approach for the problem.

3D environments. Recent research in embodied perception is greatly facil-
itated by new 3D environments and simulation platforms. Compared to artifi-
cial environments like video games [48, 53, 47, 96, 78], photorealistic environments
portray 3D scenes in which real people and mobile robots would interact. Their
realistic meshes can be rendered from agent-selected viewpoints to train and test
RL policies for navigation in a reproducible manner [3, 13, 98, 51, 7, 77, 10, 97, 55].
Many are captured with 3D scanners and real 360 photos, meaning that the views
are indeed the perceptual inputs a robot would receive in the real world [13, 77,
3]. None of the commonly used environments and simulators provide audio ren-
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Fig. 2: Acoustic simulation. We capture room impulse responses between each loca-
tion pair within the illustrated grid (here for the ‘frl apartment 0’ scene in Replica).
In our platform, agents can experience binaural audio at densely sampled locations L
marked with black dots—hearing the sound’s intensity, direction, and frequency tex-
ture. Heatmaps display audio pressure fields, decreasing from red to blue. Left: When
a sound source in S is placed in the center. Right: When a source is placed on the
stairs. Notice how the sound received by the agent at different positions changes when
the sound source moves, and how 3D structures influence the sound propagation.

dering. We present the first audio-visual simulator for AI agent training and the
first study of audio-visual embodied agents in realistic 3D environments.

3 SoundSpaces: Enabling Audio in Habitat
Our audio platform augments the Habitat simulator [55], particularly the Mat-
terport3D [13] and Replica [77] datasets hosted within it. Habitat is an open-
source 3D simulator with a user-friendly API that supports RGB, depth, and
semantic rendering. The API offers fast (over 10K fps) rendering and support
for multiple datasets [77, 98, 12, 62, 20]. This has incentivized many embodied AI
works to embrace it as the 3D simulator for training navigation and question
answering agents [55, 14, 50, 35, 89].

We use 85 Matterport3D [13] environments, which are real-world homes and
other indoor environments with 3D meshes and image scans. The environments
are large, with on average 517 m2 of floorspace. Replica [77] is a dataset of 18
apartment, hotel, office, and room scenes with 3D meshes. By extending these
Habitat-compatible 3D assets with our audio simulator, we enable users to take
advantage of the efficient Habitat API and easily adopt the audio modality for
AI agent training. Our audio platform and data is shared publicly.

Our high-fidelity audio simulator SoundSpaces takes into account important
factors for a realistic sound rendering in a 3D environment. We use a state-
of-the-art algorithm for room acoustics modeling [11] and a bidirectional path
tracing algorithm to model sound reflections in the room geometry [85]. Since
materials also influence the sounds received in an environment (e.g., walking
across marble floors versus a shaggy carpet), we set the acoustic material prop-
erties of major surfaces by mapping the meshes’ semantic labels to materials
in an existing database [23]. Each material has different absorption, scattering,
and transmission coefficients that affect our sound propagation (see Supp). This
enables our simulator to model fine-grained acoustic properties like sound prop-
agation through walls.
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For each scene, we simulate the acoustics of the environment by pre-computing
room impulse responses (RIR). The RIR is the transfer function between a sound
source and microphone, which varies as a function of the room geometry, mate-
rials, and the sound source location [52].

Let S = {(xsi , ysi , zsi )}Ni=1 denote the set of N possible sound source positions,
and let L = {(xri , yri , zri )}Ni=1 denote the set of possible listener positions (i.e.,
agent microphones). We densely sample a grid of N locations with spatial reso-
lution of 0.5m (Replica) or 1m (Matterport). The Replica scenes range in area
from 9.5 to 141.5 m2 and thus yield N ∈ [38, 566]; for Matterport the range is
53.1 to 2921.3 m2, with N ∈ [20, 2103]. Points are placed at a vertical height of
1.5m, reflecting the fixed height of a robotic agent. Then we simulate the RIR
for each possible source and listener placement at these locations, S ×L. Having
done so, we can look up any source-listener pair on-the-fly and render the sound,
by convolving the desired waveform with the selected RIR. See Figure 2.

Given our simulations, for any audio source placed in a location Si we can
generate the ambisonic audio (roughly speaking, the audio equivalent of a 360◦

image) heard at a particular listener location Lj . We convert the ambisonics to
binaural audio [102] in order to represent an agent with two human-like ears, for
whom perceived sound depends on the body’s relative orientation in the scene.∗

Our platform also permits rendering multiple simultaneous sounds.
Since an agent might not be able to stand at each location in L due to em-

bodiment constraints (e.g., no climbing on the sofa), we create a graph capturing
the reachability and connectivity of these locations. First we remove nodes that
are non-navigable, then for each node pair (i, j), we consider the edge e(i, j) as
valid if and only if the Euclidean distance between i and j is 0.5m for Replica or
1m for Matterport (i.e., nodes i and j are immediate neighbors) and the geodesic
and Euclidean distances between them are equal (i.e., no obstacle in between).

All details of our audio simulation are in the Supp. The fidelity of the sound
renderings can be experienced in our project page videos.

4 Task Definitions: Audio-Visual Navigation

We propose two novel navigation tasks: AudioGoal Navigation and AudioPoint-
Goal Navigation. In AudioGoal, the agent hears an audio source located at the
goal—such as a phone ringing—but receives no direct position information about
the goal. AudioPointGoal is an audio extension of the PointGoal task studied
often in the literature [4, 55, 35, 97, 50, 14] where the agent hears the source and
is told its displacement from the starting position. In all three tasks, to navigate
and avoid obstacles, the agent needs to reach the target using sensory inputs
alone. That is, no map of the scene is provided to the agent.

Task definitions. For PointGoal [4, 55, 90], a randomly initialized agent is tasked
with navigating to a point goal defined by a displacement vector (∆0

x, ∆
0
y) rel-

ative to the starting position of the agent. For AudioGoal, the agent instead

∗While algorithms could also run with ambisonic inputs, using binaural sound has the advantage
of allowing human listeners to interpret our video results (see Supp video).
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receives audio from the sounding target; the AudioGoal agent does not receive a
displacement vector pointing to the target. The observed audio is updated as a
function of the location of the agent, the location of the goal, and the structure
and materials of the room. In AudioPointGoal, the agent receives the union of
information received in the PointGoal and AudioGoal tasks, i.e., audio as well
as a point vector. Note that physical obstacles (walls, furniture) typically exist
along the displacement vector, which the agent must sense while navigating.

Agent and goal embodiment. We adopt the standard cylinder embodiment used
in Habitat. A target has diameter 0.2m and height 1.5m, and, consistent with
prior PointGoal work, has no visual presence. While the goal itself does not have
a visible embodiment (currently unsupported in Habitat), vision—particularly
in the abstraction of depth—is essential to detect and avoid obstacles to move
towards the target. Hence, all the tasks have a crucial vision component.

Action space. The action space is: MoveForward, TurnLeft, TurnRight, and Stop.
The last three actions are always valid. The MoveForward action is invalid when
the agent attempts to traverse from one node to another without an edge con-
necting them (as per the graph defined in Sec. 2). If valid, MoveForward takes
the agent forward by 0.5m (Replica) or 1m (Matterport). For all models, there
is no actuation noise, i.e., a step executes perfectly or does not execute at all.

Sensors. The sensory inputs are binaural sound (absent in PointGoal), GPS
(absent in AudioGoal), RGB, and depth. To capture binaural spatial sound, the
agent emulates two microphones placed at human height. We assume an idealized
GPS sensor, following prior work [55, 14, 35, 50]. However, as we will demonstrate
in results, our audio-based learning provides a steady navigation signal that
makes it feasible to disable the GPS sensor for the proposed AudioGoal task.

Episode specification. An episode of PointGoal is defined by an arbitrary 1)
scene, 2) agent start location, 3) agent start rotation, and 4) goal location.
In each episode the agent can reach the target if it navigates successfully. An
episode for AudioGoal and AudioPointGoal additionally includes a source audio
waveform. The waveform is convolved with the RIR corresponding to the specific
scene, goal, agent location and orientation to generate dynamic audio for the
agent. We consider a variety of audio sources, both familiar and unfamiliar to
the agent (detailed below). An episode is successful if the agent executes the
Stop action while being exactly at the location of the goal. Agents are allowed
a time horizon of 500 actions for all tasks, similar to [55, 45, 14, 35, 50].

5 Navigation Network and Training

To navigate autonomously, the agent must be able to enter a new yet-unmapped
space, accumulate partial observations of the environment over time, and effi-
ciently transport itself to a goal location. Building on recent embodied visual
navigation work [105, 39, 38, 4, 60, 55], we take a deep reinforcement learning ap-
proach, and we introduce audio to the observation. During training, the agent
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Fig. 3: Audio-visual navigation network. Our model uses both acoustic and visual
cues from the 3D environment for effective navigation of complex scenes.

is rewarded for correctly and efficiently navigating to the target. This yields a
policy that maps new multisensory egocentric observations to agent actions.

Sensory inputs. The audio inputs are spectrograms, following literature in audio
learning [68, 103, 31]. Specifically, to represent the agent’s binaural audio input
(corresponding to the left and right ear), we first compute the Short-Time Fourier
Transform (STFT) with a hop length of 160 samples and a windowed signal
length of 512 samples, which corresponds to a physical duration of 12 and 32
milliseconds at a sample rate of 44100Hz (Replica) and 16000Hz (Matterport).
By using the first 1000 milliseconds of audio as input, STFT gives a 257 × 257
and a 257×101 complex-valued matrix, respectively; we take its magnitude and
downsample both axes by a factor of 4. For better contrast we take its logarithm.
Finally, we stack the left and right audio channel matrices to obtain a 65×65×2
and a 65 × 26 × 2 tensor, denoted A. The visual input V is the RGB and/or
depth image, 128× 128× 3 and 128× 128× 1 tensors, respectively, where 128 is
the image resolution for the agent’s 90◦ field of view. The relative displacement
vector ∆ = (∆x, ∆y) points from the agent to the goal in the 2D ground plane
of the scene.

Which specific subset of these three inputs (audio, visual, vector) the agent re-
ceives depends on the the agent’s sensors and the goal’s characterization (cf. Sec. 4).
The sensory inputs are transformed to a probability distribution over the action
space by the policy network, as we describe next.

Network architecture. Next we define the parameterization of the agent’s policy
πθ(at|ot, ht−1), which selects action at given the current observation ot and ag-
gregated past states ht−1, and the value function Vθ(ot, ht−1), which scores how
good the current state is. Here θ refers to all trainable weights of the network.

Our network architecture is inspired by current RL models in the visual navi-
gation literature [55, 92, 20, 45]. We expand the traditional vision-only navigation
model to enable acoustic perception for audio-visual navigation. As highlighted
in Fig. 3, we transform A and V by corresponding CNNs fA(·) and fV (·). The
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CNNs have separate weights but the same architecture of conv 8×8, conv 4×4,
conv 3 × 3 and a linear layer, with ReLU activations between each layer. The
outputs of the CNNs are vectors fA(A) and fV (V ) of length LA and LV , respec-
tively. These are concatenated to the relative displacement vector ∆ and trans-
formed by a gated recurrent unit (GRU) [18]. The GRU operates on the current
step’s input as well as the accumulated history of states ht−1. The GRU updates
the history to ht and outputs the representation of the agent’s state ot. Finally,
the value of the state Vθ(ot, ht−1) and the policy distribution πθ(at|ot, ht−1) are
estimated using the critic and actor heads of the model. Both are linear layers.

Training. We train the network with Proximal Policy Optimization (PPO) [75].
The agent is rewarded for reaching the goal quickly. Specifically, it receives a
reward of +10 for executing Stop at the goal location, a negative reward of
−0.01 per time step, +1 for reducing the geodesic distance to the goal, and the
equivalent penalty for increasing it. We add an entropy maximization term to
the cumulative reward optimization, for better action space exploration [40, 75].

Synergy of audio for navigation. Because our agent can both hear and see, it has
the potential to not only better localize the target (which emits sound), but also
better plan its movements in the environment (whose major structures, walls,
furniture, etc. all affect how the sound is perceived). See Figure 1. The optimal
policy would trace a path P∗ corresponding to monotonically decreasing geodesic
distance to the goal. Notably, the displacement ∆ does not specify the optimal
policy: moving along P∗ decreases the geodesic distance but may decrease or
increase the Euclidean distance to the goal at each time step. For example, if
the goal is behind the sofa, the agent must move around the sofa to reach it.
Importantly, the audio stream A has complementary and potentially stronger
information than ∆ in this regard. Not only does the intensity of the audio
source reflect the Euclidean distance to the target, but also the geometry of the
room captured in the acoustics reveals geodesic distances. As we show in results,
the visual and aural inputs are synergistic; neither fares as well on its own.

Implementation details. The lengths of audio, visual, point vector, and final
state, i.e., LA, LV , L∆, and LS are 512, 512, 2, and 1026, respectively. We use
a single bidirectional GRU with input size 512, hidden size 512, and we use one
recurrent layer. We optimize the model using Adam [49] with PyTorch defaults
for coefficients for momentum and a learning rate of 2.5e−4. We discount rewards
with a decay of 0.99. We train the network for 30M agent steps on Replica and
60M on Matterport3D, which amounts to 105 and 210 GPU hours respectively.

6 Experiments

Our main objectives are to show:

O.1 Tackling navigation with both sight and sound (i.e., the proposed Audio-
PointGoal) leads to better navigation and faster learning. This demonstrates
that audio has complementary information beyond merely goal coordinates
that facilitates navigation.
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O.2 Listening for an audio target in a 3D environment serves as a viable al-
ternative to GPS-based cues. Not only does the proposed AudioGoal agent
navigate better than the PointGoal agent, it does so without PointGoal’s as-
sumption of perfect odometry and even with noisy audio sensors. The Audio-
Goal task has the important advantage of realism: the agent autonomously
senses the target in AudioGoal, whereas the target is directly given to the
agent via ∆ in PointGoal—a rare scenario in real applications.

O.3 Audio-visual navigation can generalize to both new environments and new
sound sources. In particular, audio-visual agents can navigate better with
audio even when the sound sources are unfamiliar.

Datasets. Table 1 summarizes SoundSpaces, which includes audio renderings for
the Replica and Matterport3D datasets. Each episode consists of a tuple: 〈scene,
agent start location, agent start rotation, goal location, audio waveform〉. We
generate episodes by choosing a scene and a random start and goal location. To
eliminate easier episodes, we prune those that are either too short (geodesic dis-
tance less than 4) or can be completed by moving mostly in a straight line (ratio
of geodesic to Euclidean distance less than 1.1). We ensure that at the onset of
each episode the agent can hear the sound, since in some large environments the
audio might be inaudible when the agent is very far from the sound source.

Sound sources. Recall that the RIRs can be convolved with an arbitrary in-
put waveform, which allows us to vary the sounds across episodes. We use
102 copyright-free natural sounds of telephones, music, fans, and others (http:
//www.freesound.org). See Supp video for examples. Unless otherwise speci-
fied, the sound source is the telephone ringing. We stress that in all experiments,
the environment (scene) at test time is unmapped and has never been seen pre-
viously in training. It is valid for sounds heard in training to also be heard at
test time, e.g., a phone ringing in multiple environments will sound different
depending on both the 3D space and the goal and agent positions. Experiments
for O.3 examine the impact of varied train/test sounds.

Metrics. We use the success rate normalized by inverse path length (SPL), the
standard metric for navigation [4]. We consider an episode successful only if the
agent reaches the goal and executes the Stop action.

Baselines. We consider three non-learning baselines adapted from previous work
[55, 17]: Random chooses an action randomly among {MoveForward, TurnLeft,
TurnRight}. Forward always calls MoveForward and if it hits an obstacle,
it calls TurnRight then resumes going forward and repeats. Goal follower
always first orients itself towards the goal and then calls MoveForward. All three
issue the Stop action upon reaching the goal.

Table 1: Summary of SoundSpaces dataset properties
Dataset # Scenes Resolution Sampling Rate Avg. # Node Avg. Area # Training Episodes # Test Episodes

Replica 18 0.5m 44100Hz 97 47.24 m2 0.1M 1000
Matterport3D 85 1m 16000Hz 243 517.34 m2 2M 1000
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PointGoal AudioGoal AudioPointGoal

Agent Start Goal Shortest path Agent path Seen/Unseen area Occupied area

Fig. 4: Navigation trajectories on top-down maps. Agent path color fades from
dark blue to light blue as time goes by. Green path indicates the shortest geodesic path.
Top: Replica - The PointGoal agent bumps into the wall several times trying to move
towards the target, unable to figure out the target is actually located in another froom.
In contrast, the AudioGoal and AudioPointGoal agents better sense the target: the
sound travels through the door and the agent leaves the starting room immediately.
Bottom: Matterport - the AudioGoal agent best avoids backtracking to efficiently
reach the target in a large multi-room home.

O.1: Does audio help navigation? First we evaluate the impact of adding
audio sensing to visual navigation by comparing PointGoal and AudioPointGoal
agents. Table 2 compares the navigation performance (in SPL) for both agents
and the baselines on the test environments. We consider three visual sensing
capabilities: no visual input (Blind), raw RGB images, or depth images. (We
found RGB+D was no better than depth alone.)

Audio improves accuracy significantly, showing the clear value in multi-modal
perception for navigation. Both learned agents do better with stronger visual
inputs (depth being the strongest), though the margin between RGB and depth
is a bit smaller for AudioPointGoal. This is interesting because it suggests that
audio-visual learning captures geometric structure (like depth) from the raw
RGB images more easily than a model equipped with vision alone. As expected,
the simple baselines perform poorly because they do not utilize any sensory
inputs (and hence perform the same on both tasks).

To see how audio influences navigation behavior, Fig. 4 shows example tra-
jectories. See the Supp video for more.
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Table 2: Adding sound to sight and GPS sensing improves navigation performance
significantly. Values are success rate normalized by path length (SPL); higher is better.

Replica Matterport3D
PointGoal AudioPointGoal PointGoal AudioPointGoal

Baselines
Random 0.044 0.044 0.021 0.021
Forward 0.063 0.063 0.025 0.025

Goal follower 0.124 0.124 0.197 0.197

Varying visual sensor
Blind 0.480 0.681 0.426 0.473
RGB 0.521 0.632 0.466 0.521
Depth 0.601 0.709 0.541 0.581

(a) From perfect to noisy GPS
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(b) t-SNE of AudioGoal audio features

Fig. 5: Audio as a learned spatial sensor. (a) Navigation accuracy with increasing
GPS noise. Unlike existing PointGoal agents, our AudioGoal agent does not rely on
GPS, and hence is immune to GPS noise. (b) t-SNE projection of audio features, color
coded to reveal their correlation with the goal location (left) and direction (right), i.e.,
source is far (red) or near (violet), and to the left (blue) or right (red) of the agent.

O.2: Can audio supplant GPS for an audio target? Next we explore the
extent to which audio supplies the spatial cues available from GPS sensing during
(audio-)visual navigation. This test requires comparing PointGoal to AudioGoal.
Recall that unlike (Audio)PointGoal, AudioGoal receives no displacement vector
pointing to the goal; it can only hear and see.

Fig. 5(a) reports the navigation accuracy as a function of GPS quality. The
leftmost point uses perfect GPS that tells the PointGoal agents (but not the
AudioGoal agent) the exact direction of the goal; for subsequent points, Gaus-
sian noise of increasing variance is added, up to σ = 1.5m. All agents use depth.
While AudioGoal’s accuracy is by definition independent of GPS failures, the
others suffer noticeably.† Furthermore, AudioPointGoal (APG) degrades much
more gracefully than PointGoal (PG) in the face of GPS noise. This is evidence
that the audio signal gives similar or even better spatial cues than the PointGoal
displacements—which are likely overly optimistic given the unreliability of GPS
in practice and especially indoors. T-SNE [84] visualizations (Fig. 5(b)) reinforce
this finding: our learned audio features for AudioGoal naturally encode the dis-
tance and angle to the goal. Note that these findings stand even with microphone

†Replica has more multi-room trajectories, where audio gives clear cues of room entrances/exits
(vs. open floor plans in Matterport). This may be why AG is better than PG and APG on Replica.
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Turn Left Turn Right Stop

Turn RightMove ForwardTurn Left
Fig. 6: Impact of each modality on action selection for two AudioGoal episodes.
We show one episode per row, and three sampled timesteps each. See Fig. 4 for legend.
Blue and green bars display the importance of vision and audio, respectively. Top:
Initially, the agent relies on audio to tell that the goal is on its left and decides to turn
left. Later, it uses vision to recognize obstacles in front of it and decides to turn right.
Finally, the agent decides to stop because the sound intensity has peaked. Bottom:
Initially, the agent decides to turn left, following the audio source. Then the agent uses
vision to identify the free space and decides to move forward. Later, the agent relies
more on audio to decide to turn right as it hears the target from the right.

noise: with 40dB SNR (bad microphone), SPL only drops marginally from 0.756
to 0.753 and from 0.552 to 0.550 on Replica and Matterport, respectively.

Next we explore whether our AudioGoal agent learned more than a pointer
to the goal based on the sound intensity. We run a variant of our model in which
the audio input consists of only the intensity of the left and right waveforms;
the audio CNN is removed, and the rest of the network in Fig 3 remains the
same. This simplified audio input allows the agent to readily learn to follow
the intensity gradient. The performance of the AudioGoal-Depth agent drops
to an SPL of 0.291 and 0.014 showing that our model (SPL of 0.756 and 0.552
in Fig 5(a)) does indeed learn additional environment information from the full
spectrograms to navigate more accurately. See Supp.

We expect that the audio and visual input vary in their relative impact on
the agent’s decision making at any given time point, based on the environment
context and goal placement. To compute their impact, we ablate each modality
in turn by replacing it with its average training sample value, and compare the
resulting action probability under our model to that of the action chosen with
both modalities. We calculate the importance of each input modality using the
absolute difference of logarithmic action probability, normalized by the sum of
the two ablations. The greater the change in the selected action, the more impact
that modality had on the learned agent’s actual choice. Fig. 6 and the Supp
video show examples of the AV impact scores alongside the egocentric view of the
agent at different stages in the trajectory. We see the agent draws dynamically
on either or both modalities to inform its motions in the environment.

O.3: What is the effect of different sound sources? Next, we analyze the
impact of the sound source. First, we explore generalization to novel sounds. We
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Table 3: Navigation performance (SPL) when generalizing to unheard sounds. Higher
is better. Results are averaged over 7 test runs; all standard deviations are ≤ 0.01.

Same sound Varied heard sounds Varied unheard sounds
Dataset PG AG APG AG APG AG APG

Replica
Blind 0.480 0.673 0.681 0.449 0.633 0.277 0.649
RGB 0.521 0.626 0.632 0.624 0.606 0.339 0.562
Depth 0.601 0.756 0.709 0.645 0.724 0.454 0.707

Matterport3D
Blind 0.426 0.438 0.473 0.352 0.500 0.278 0.497
RGB 0.466 0.479 0.521 0.422 0.480 0.314 0.448
Depth 0.541 0.552 0.581 0.448 0.570 0.338 0.538

divide the 102 sound clips into 73/11/18 splits for train/val/test, respectively.
We train for AudioGoal (AG) and AudioPointGoal (APG), then validate and
test on disjoint val and test sounds. In all cases, the test environments are unseen.

Table 3 shows the results. As we move left to right in the table, the sound
generalization task gets harder: from a single heard sound, to variable heard
sounds, to variable unheard sounds (see Supp for details on these three test
settings). Note, the non-learning baselines are unaffected by changes to the audio
and hence are omitted here. Our APG agents almost always outperform the
PointGoal agent, even for unheard test sounds, strengthening the conclusions
from Table 2. APG performs fairly similarly on heard and unheard sounds,
showing it has learned to balance all three modalities. On the other hand, AG’s
accuracy declines with varied heard sounds and unheard sounds. While it makes
sense that the task of following an unfamiliar sound is harder, we also expect
that larger training repositories of more sounds will resolve much of this decline.

7 Conclusion

We introduced the task of audio-visual navigation in complex 3D environments.
Generalizing a state-of-the-art deep RL navigation engine for this task, we pre-
sented encouraging results for audio’s role in the visual navigation task. The
results show that when linked tightly to the egocentric visual observations, au-
dio enriches not only the directional cues for a sound source, but also the spa-
tial information about the environment—both of which our model successfully
leverages for better navigation. Another important contribution of our work is
to enable audio rendering for Habitat with the publicly available Replica and
Matterport3D environments, which can facilitate future work in the field. Next
we are interested in considering multi-agent scenarios, sim2real transfer, moving
sound-emitting targets, and navigating in the context of dynamic audio events.
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54. Lessard, N., Paré, M., Lepore, F., Lassonde, M.: Early-blind human subjects

localize sound sources better than sighted subjects. Nature (1998)
55. Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Zhao, Y., Wijmans,

E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.:
Habitat: A Platform for Embodied AI Research. In: ICCV (2019)

56. Massiceti, D., Hicks, S.L., van Rheede, J.J.: Stereosonic vision: Exploring visual-
to-auditory sensory substitution mappings in an immersive virtual reality navi-
gation paradigm. PloS one (2018)

57. Merabet, L., Sanchez, J.: Audio-based navigation using virtual environments:
combining technology and neuroscience. AER Journal: Research and Practice in
Visual Impairment and Blindness (2009)

58. Merabet, L.B., Pascual-Leone, A.: Neural reorganization following sensory loss:
the opportunity of change. Nature Reviews Neuroscience (2010)

59. Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., et al.: Learning to navigate in complex
environments. In: ICLR (2017)

60. Mishkin, D., Dosovitskiy, A., Koltun, V.: Benchmarking classic and learned nav-
igation in complex 3d environments. arXiv preprint arXiv:1901.10915 (2019)

61. Morgado, P., Nvasconcelos, N., Langlois, T., Wang, O.: Self-supervised generation
of spatial audio for 360 video. In: NeurIPS (2018)

62. Murali, A., Chen, T., Alwala, K.V., Gandhi, D., Pinto, L., Gupta, S., Gupta,
A.: Pyrobot: An open-source robotics framework for research and benchmarking.
arXiv preprint arXiv:1906.08236 (2019)



18 C. Chen & U. Jain et al.

63. Nakadai, K., Lourens, T., Okuno, H.G., Kitano, H.: Active audition for humanoid.
In: AAAI (2000)

64. Nakadai, K., Nakamura, K.: Sound source localization and separation. Wiley En-
cyclopedia of Electrical and Electronics Engineering (1999)

65. Nakadai, K., Okuno, H.G., Kitano, H.: Epipolar geometry based sound localiza-
tion and extraction for humanoid audition. In: IROS Workshops. IEEE (2001)

66. Owens, A., Efros, A.A.: Audio-visual scene analysis with self-supervised multi-
sensory features. In: ECCV (2018)

67. Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T.:
Visually indicated sounds. In: CVPR (2016)

68. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Ambient
sound provides supervision for visual learning. In: ECCV (2016)

69. Picinali, L., Afonso, A., Denis, M., Katz, B.: Exploration of architectural spaces
by blind people using auditory virtual reality for the construction of spatial knowl-
edge. International Journal of Human-Computer Studies 72(4), 393–407 (2014)

70. Qin, J., Cheng, J., Wu, X., Xu, Y.: A learning based approach to audio surveil-
lance in household environment. International Journal of Information Acquisition
(2006)

71. Rascon, C., Meza, I.: Localization of sound sources in robotics: A review. Robotics
and Autonomous Systems (2017)
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102. Zaunschirm, M., Schörkhuber, C., Höldrich, R.: Binaural rendering of ambisonic
signals by head-related impulse response time alignment and a diffuseness con-
straint. The Journal of the Acoustical Society of America (2018)

103. Zhao, H., Gan, C., Rouditchenko, A., Vondrick, C., McDermott, J., Torralba, A.:
The sound of pixels. In: ECCV (2018)

104. Zhou, Y., Wang, Z., Fang, C., Bui, T., Berg, T.L.: Visual to sound: Generating
natural sound for videos in the wild. In: CVPR (2018)

105. Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R.,
Farhadi, A.: Visual Semantic Planning using Deep Successor Representations. In:
ICCV (2017)

106. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi,
A.: Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement
Learning. In: ICRA (2017)


