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Fig. 1. Our approach for video retargeting used for faces and flowers. The top row
shows translation from John Oliver to Stephen Colbert. The bottom row shows how a
synthesized flower follows the blooming process with the input flower. The corresponding
videos are available on the project webpage.

Abstract. We introduce a data-driven approach for unsupervised video
retargeting that translates content from one domain to another while
preserving the style native to a domain, i.e., if contents of John Oliver’s
speech were to be transferred to Stephen Colbert, then the generated con-
tent/speech should be in Stephen Colbert’s style. Our approach combines
both spatial and temporal information along with adversarial losses for
content translation and style preservation. In this work, we first study the
advantages of using spatiotemporal constraints over spatial constraints
for effective retargeting. We then demonstrate the proposed approach
for the problems where information in both space and time matters such
as face-to-face translation, flower-to-flower, wind and cloud synthesis,
sunrise and sunset.

1 Introduction

We present an unsupervised data-driven approach for video retargeting that
enables the transfer of sequential content from one domain to another while
preserving the style of the target domain. Such a content translation and style
preservation task has numerous applications including human motion and face
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translation from one person to other, teaching robots from human demonstration,
or converting black-and-white videos to color. This work also finds application
in creating visual content that is hard to capture or label in real world settings,
e.g., aligning human motion and facial data of two individuals for virtual reality,
or labeling night data for a self-driving car. Above all, the notion of content
translation and style preservation transcends pixel-to-pixel operation to a more
semantic and abstract human intelligence, thereby paving way for advance
machines that can directly collaborate with humans.

The current approaches for retargeting can be broadly classified into three
categories. The first set of work is specifically designed for domains such as human
faces [1,2,3]. While these approaches work well when faces are fully visible, they
fail when applied to occluded faces (virtual reality) and lack generalization to
other domains. The work on paired image-to-image translation [4] attempted
for generalization across domain but requires manual supervision for labeling
and alignment. This requirement makes it hard for the use of such approaches as
manual alignment or labeling many (in-the-wild) domains is not possible. The
third category of work attempts unsupervised and unpaired image translation [5,6].
These work enforce a cyclic consistency [7] on unpaired 2D images and learn
transformation from one domain to another. However, the use of unpaired images
alone is not sufficient for video retargeting. Primarily, it is not able to pose
sufficient constraints on optimization and often leads to bad local minima or a
perceptual mode collapse making it hard to generate the required output in the
target domain. Secondly, the use of the spatial information alone in 2D images
makes it hard to learn the style of a particular domain as stylistic information
requires temporal knowledge as well.

In this work, we make two specific observations: (i) the use of temporal
information provides more constraints to the optimization for transforming one
domain to other and helps in learning a better local minima; (ii) the combined
influence of spatial and temporal constraints helps in learning the style charac-
teristic of an identity in a given domain. More importantly, we do not require
manual labels as temporal information is freely available in videos (available
in abundance on web). Shown in Figure 1 are the example of translation for
human faces and flowers. Without any manual supervision and domain-specific
knowledge, our approach learns this retargeting from one domain to the other
using publicly available video data on the web from both domains.

Our contributions : We introduce a new approach that incorporates spa-
tiotemporal cues along with conditional generative adversarial networks [8] for
video retargeting. We demonstrate the advantages of spatiotemporal constraints
over the spatial constraints alone for image-to-labels, and labels-to-image in
varying environmental settings. We then show the importance of proposed ap-
proach in learning better association between two domains, and its importance
for self-supervised content alignment of the visual data. Inspired by the ever-
existing nature of space-time, we qualitatively demonstrate the effectiveness
of our approach for various natural processes such as face-to-face translation,
flower-to-flower, synthesizing clouds and winds, aligning sunrise and sunset.
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(a)	Perceptual	Mode	Collapse	 (b)	Bad	Local	Minima	

(c)	Unique	Outputs	 (d)	Be;er	Local	Minima	

Fig. 2. Spatial cycle consistency is not sufficient: We show two examples illus-
trating why spatial cycle consistency alone is not sufficient for the optimization. (a)
shows an example of perceptual mode-collapse while using Cycle-GAN [6] for Donald
Trump to Barack Obama. First row shows the input of Donald Trump, and second row
shows the output generated. The third row shows the output of reconstruction that
takes the second row as input. The second row looks similar despite different inputs; and
the third row shows output similar to first row. On a very close observation, we found
that a few pixels in second row were different (but not perceptually significant) and
that was sufficient to get the different reconstruction; (b) shows another example for
image2labels and labels2image. While the generator is not able to generate the required
output for the given input in both the cases, it is still able to perfectly reconstruct the
input. Both the examples suggest that the spatial cyclic loss is not sufficient to ensure
the required output in another domain because the overall optimization is focussed on
reconstructing the input. However as shown in (c) and (d) , we get better outputs
with our approach combining the spatial and temporal constraints. Videos
for face comparison are available on project webpage.

2 Related Work

A variety of work dealing with image-to-image translation [4,6,9,10,11] and style
translation [12,13,14] exists. In fact a large body of work in computer vision and
computer graphics is about an image-to-image operation. While the primary
efforts were on inferencing semantic [15], geometric [16,17], or low-level cues [18],
there is a renewed interest in synthesizing images using data-driven approaches
by the introduction of generative adversarial networks [8]. This formulation have
been used to generate images from cues such as a low-resolution image [19,20],
class labels [4], and various other input priors [21,22,23]. These approaches,
however, require an input-output pair to train a model. While it is feasible to
label data for a few image-to-image operations, there are numerous tasks for
which it is non-trivial to generate input-output pairs for training supervision.
Recently, Zhu et al. [6] proposed to use the cycle-consistency constraint [7]
in adversarial learning framework to deal with this problem of unpaired data,
and demonstrate effective results for various tasks. The cycle-consistency [5,6]
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enabled many image-to-image translation tasks without any expensive manual
labeling. Similar ideas have also found application in learning depth cues in an
unsupervised manner [24], machine translation [25], shape correspondences [26],
point-wise correspondences [7,27], or domain adaptation [28].

The variants of Cycle-GAN [6] have been applied to various temporal do-
mains [24,28]. However, these work consider only the spatial information in 2D
images, and ignore the temporal information for optimization. We observe two
major limitations: (1). Perceptual Mode Collapse: there are no guarantees
that cycle consistency would produce perceptually unique data to the inputs. In
Figure 2, we show the outputs of a model trained for Donald Trump to Barack
Obama, and an example for image2labels and labels2image. We find that for
different inputs of Donald Trump, we get perceptually similar output of Barack
Obama. However, we observe that these outputs have some unique encoding
that enables to reconstruct image similar to input. We see similar behavior for
image2labels and labels2image in Figure 2-(b); (2). Tied Spatially to Input:
Due to the reconstruction loss on the input itself, the optimization is forced to
learn a solution that is closely tied to the input. While this is reasonable for
the problems where only spatial transformation matters (such as horse-to-zebra,
apples-to-oranges, or paintings etc.), it is important for the problems where tem-
poral and stylistic information is required for synthesis (prominently face-to-face
translation). In this work, we propose a new formulation that utilizes both spatial
and temporal constraints along with the adversarial loss to overcome these two
problems. Shown in Figure 2-(c, d) are the outputs of proposed approach over-
coming the above mentioned problems. We posit this is due to more constraints
available for an under-constrained optimization.

The use of GANs [8] and variational auto-encoder [29] have also found a
way for synthesizing videos and temporal information. Walker et al. [30] use
temporal information to predict future trajectories from a single image. Recent
work [31,32,33] used temporal models to predict long term future poses from a
single 2D image. MoCoGAN [34] decomposes motion and content to control video
generation. Similarly, Temporal GAN [35] employs a temporal generator and an
image generator that generates a set of latent variables and image sequences
respectively. While relevant, the prior work is mostly focused about predicting
the future intent from single images at test time or generating videos from a
random noise. Concurrently, MoCoGAN [34] shows example of image-to-video
translation using their formulation. However, our focus is on a general video-
to-video translation where the input video can control the output in a spirit
similar to image-to-image translation. To this end, we can generate hi-res videos
of arbitrary length from our approach whereas the prior work [34,35] has shown
to generate only 16 frames of 64× 64.

Spatial & Temporal Constraints : The spatial and temporal information is
known to be an integral sensory component that guides human action [36]. There
exists a wide literature utilizing these two constraints for various computer vision
tasks such as learning better object detectors [37], action recognition [38] etc. In
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Fig. 3. We contrast our work with two prominent directions in image-to-image trans-
lation. (a) Pix2Pix [4]: Paired data is available. A simple function (Eq. 1) can be
learnt via regression to map X → Y . (b) Cycle-GAN [6]: The data is not paired
in this setting. Zhu et al. [6] proposed to use cycle-consistency loss (Eq. 3) to deal
with the problem of unpaired data. (c) Recycle-GAN: The approaches so far have
considered independent 2D images only. Suppose we have access to unpaired but or-
dered streams (x1, x2, . . . , xt, . . .) and (y1, y2 . . . , ys, . . .). We present an approach that
combines spatiotemporal constraints (Eq. 5). See Section 3 for more details.

this work, we take a first step to exploit spatiotemporal constraints for video
retargeting and unpaired image-to-image translation.
Learning Association: Much of computer vision is about learning association,
be it learning high-level image classification [39], object relationships [40], or
point-wise correspondences [41,42,43,44]. However, there has been relatively little
work on learning association for aligning the content of different videos. In this
work, we use our model trained with spatiotemporal constraints to align the
semantical content of two videos in a self-supervised manner, and do automatic
alignment of the visual data without any additional supervision.

3 Method

Assume we wish to learn a mapping GY : X → Y . The classic approach tunes
GY to minimize reconstruction error on paired data samples {(xi, yi)} where
xi ∈ X and yi ∈ Y :

min
GY

∑
i

||yi −GY (xi)||2. (1)

Adversarial loss: Recent work [4,8] has shown that one can improve the learned
mapping by tuning it with a discriminator DY that is adversarially trained to
distinguish between real samples of y from generated samples GY (x):

min
GY

max
DY

Lg(GY , DY ) =
∑
s

logDY (ys) +
∑
t

log(1−DY (GY (xt))), (2)
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Importantly, we use a formulation that does not require paired data and only
requires access to individual samples {xt} and {ys}, where different subscripts
are used to emphasize the lack of pairing.
Cycle loss: Zhu et al. [6] use cycle consistency [7] to define a reconstruction
loss when the pairs are not available. Popularly known as Cycle-GAN (Fig. 3-b),
the objective can be written as:

Lc(GX , GY ) =
∑
t

||xt −GX(GY (xt))||2. (3)

Recurrent loss: We have so far considered the setting when static data is
available. Instead, assume that we have access to unpaired but ordered streams
(x1, x2, . . . , xt, . . .) and (y1, y2 . . . , ys, . . .). Our motivating application is learning
a mapping between two videos from different domains. One option is to ignore
the stream indices, and treat the data as an unpaired and unordered collection
of samples from X and Y (e.g., learn mappings between shuffled video frames).
We demonstrate that much better mapping can be learnt by taking advantage of
the temporal ordering. To describe our approach, we first introduce a recurrent
temporal predictor PX that is trained to predict future samples in a stream given
its past:

Lτ (PX) =
∑
t

||xt+1 − PX(x1:t)||2, (4)

where we write x1:t = (x1 . . . xt).
Recycle loss: We use this temporal prediction model to define a new cycle loss
across domains and time (Fig. 3-c) which we refer as a recycle loss:

Lr(GX , GY , PY ) =
∑
t

||xt+1 −GX(PY (GY (x1:t)))||2, (5)

where GY (x1:t) = (GY (x1), . . . , GY (xt)). Intuitively, the above loss requires
sequences of frames to map back to themselves. We demonstrate that this is a
much richer constraint when learning from unpaired data streams in Figure 4.
Recycle-GAN: We now combine the recurrent loss, recycle loss, and adversarial
loss into our final Recycle-GAN formulation:

min
G,P

max
D

Lrg(G,P,D) = Lg(GX , DX) + Lg(GY , DY )+

λrxLr(GX , GY , PY ) + λryLr(GY , GX , PX) + λτxLτ (PX) + λτyLτ (PY ).

Inference: At test time, given an input video with frames {xt}, we would like
to generate an output video. The simplest strategy would be directly using the
trained GY to generate a video frame-by-frame yt = GY (xt). Alternatively, one
could use the temporal predictor PY to smooth the output:

yt =
GY (xt) + PY (GY (x1:t−1))

2
,
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Fig. 4. We compare the performance of our approach for image2labels and labels2image
with Cycle-GAN [6] on a held out data of Viper dataset [46] for various environmental
conditions.

where the linear combination could be replaced with a nonlinear function, possibly
learned with the original objective function. However, for simplicity, we produce
an output video by simple single-frame generation. This allows our framework
to be applied to both videos and single images at test-time, and produces fairer
comparison to spatial approach.
Implementation Details: We adopt much of the training details from Cycle-
GAN [6] to train our spatial translation model, and Pix2Pix [4] for our temporal
prediction model. The generative network consists of two convolution (downsam-
pling with stride-2), six residual blocks, and finally two upsampling convolution
(each with a stride 0.5). We use the same network architecture for GX , and GY .
The resolution of the images for all the experiments is set to 256 × 256. The
discriminator network is a 70 × 70 PatchGAN [4,6] that is used to classify a
70× 70 image patch if it is real or fake. We set all λs = 10. To implement our
temporal predictors PX and PY , we concatenate the last two frames as input to
a network whose architecture is identical to U-Net architecture [4,45].

4 Experiments

We now study the influence of spatiotemporal constraints over spatial cyclic
constraints. Because our key technical contribution is the introduction of temporal
constraints in learning unpaired image mappings, the natural baseline is Cycle-
GAN [6], a widely adopted approach for exploiting spatial cyclic consistency
alone for an unpaired image translation. We first present quantitative results on
domains where ground-truth correspondence between input and output videos
are known (e.g., a video where each frame is paired with a semantic label map).
Importantly, this correspondence pairing is not available to either Cycle-GAN or
Recycle-GAN, but used only for evaluation. We then present qualitative results on
a diverse set of videos with unknown correspondence, including video translations
across different human faces and temporally-intricate events found in nature
(flowers blooming, sunrise/sunset, time-lapsed weather progressions).
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4.1 Quantitative Analysis

We use publicly available Viper [46] dataset for image2labels and labels2image to
evaluate our findings. This dataset is collected using computer game with varying
realistic content and provides densely annotated pixel-level labels. Out of the 77
different video sequences consisting of varying environmental conditions, we use
57 sequences for training our model and baselines. The held-out 20 sequences are
used for evaluation. The goal for this evaluation is not to achieve the state-of-the-
art performance but to compare and understand the advantage of spatiotemporal
cyclic consistency over the spatial cyclic consistency [6]. We selected the model
that correspond to minimum reconstruction loss for our approach.

While the prior work [4,6] has mostly used Cityscapes dataset [47], we could
not use it for our evaluation. Primarily the labelled images in Cityscapes are
not continuous video sequences, and the information in the consecutive frames
is drastically different from the initial frame. As such it is not trivial to use a
temporal predictor. We used Viper as a proxy for Cityscapes because the task
is similar and that dataset contains dense video annotations. Additionally, a
concurrent work [48] on unsupervised video-to-video translation also use Viper
dataset for evaluation. However, they restrict to a small subset of sequences
from daylight and walking only whereas we use all the varying environmental
conditions available in the dataset.

Criterion Approach day sunset rain snow night all

MP Cycle-GAN 35.8 38.9 51.2 31.8 27.4 35.5

Recycle-GAN (Ours) 48.7 71.0 60.9 57.1 45.2 56.0

AC Cycle-GAN 7.8 6.7 7.4 7.0 4.7 7.1

Recycle-GAN (Ours) 11.9 12.2 10.5 11.1 6.5 11.3

IoU Cycle-GAN 4.9 3.9 4.9 4.0 2.2 4.2

Recycle-GAN (Ours) 7.9 9.6 7.1 8.2 4.1 8.2

Table 1. Image2Labels (Semantic Segmentation): We use the Viper [46] dataset
to evaluate the performance improvement when using spatiotemporal constraints as
opposed to only spatial cyclic consistency [6]. We report results using three criteria:
(1). Mean Pixel Accuracy (MP); (2). Average Class Accuracy (AC); and (3). Inter-
section over union (IoU). We observe that our approach achieves significantly better
performance than prior work over all the criteria in all the conditions.

Image2Labels : In this setting, we use the real world image as input to generator
that output segmentation label maps. We compute three statistics to compare the
output of two approaches: (1). Mean Pixel Accuracy (MP); (2). Average Class
Accuracy (AC); (3). Intersection over Union (IoU. These statistics are computed
using the ground truth for the held-out sequences under varying environmental
conditions. Table 1 contrast the performance of our approach (Recycle-GAN)
with Cycle-GAN. We observe that Recycle-GAN achieves significantly better
performance than Cycle-GAN over all criteria and under all conditions.
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Labels2Image : In this setting, we use the segmentation label map as an input
to generator and output an image that is close to a real image. The goal of
this evaluation is to compare the quality of output images obtained from both
approaches. We follow Pix2Pix [4] for this evaluation. We use the generated
images from each of the algorithm with a pre-trained FCN-style segmentation
model [49]. We then compute the performance of synthesized images against
the real images to compute a normalized FCN-score. Higher performance on
this criterion suggest that generated image is closer to the real images. Table 2
compares the performance of our approach with Cycle-GAN. We observe that
our approach achieves overall better performance and sometimes competitive
in different conditions when compared with Cycle-GAN for this task. Figure 4
qualitatively compares our approach with Cycle-GAN.

Approach day sunset rain snow night all

Cycle-GAN 0.33 0.27 0.39 0.29 0.37 0.30

Recycle-GAN (Ours) 0.33 0.51 0.37 0.43 0.40 0.39

Table 2. Normalized FCN score for Labels2Image: We use a pre-trained FCN-
style model to evaluate the quality of synthesized images over real images using the
Viper [46] dataset. Higher performance on this criteria suggest that the output of a
particular approach produces images that look closer to the real images.

In these experiments, we make two observations: (i) Cycle-GAN learnt a good
translation model within a few initial iterations (seeing only a few examples)
but this model degraded as reconstruction loss started to decrease. We believe
that minimizing reconstruction loss alone on input lead it to a bad local minima,
and having a combined spatiotemporal constraint avoided this behavior; (ii)
Cycle-GAN learns better translation model for Cityscapes as opposed to Viper.
Cityscapes consists of images from mostly daylight and agreeable weather. This
is not the case with Viper as it is rendered, and therefore has a large and
varied distribution of different sunlight and weather conditions such as day,
night, snow, rain etc. This makes it harder to learn a good mapping because
for each labelled input, there are potentially many output images. We find that
standard conditional GANs suffer from mode collapse in such scenarios, producing
“average” outputs (as pointed by prior works [43]). Our experiments suggest that
spatiotemporal constraints help ameliorate such challenging translation problems.

4.2 Qualitative Analysis

Face to Face: We use the publicly available videos of various public figures
for the face-to-face translation task. The faces are extracted using the facial
keypoints generated using the OpenPose Library[50] and a minor manual efforts
are made to remove false positives. Figure 5 shows an example of face-to-face
translation between John Oliver and Stephen Colbert, Barack Obama to Donald
Trump, and Martin Luther King Jr. (MLK) to Barack Obama, John Oliver
to a cartoon character, Barack Obama to Bill Clinton, and Takeo Kanade to
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Fig. 5. Face to Face: The top row shows multiple examples of face-to-face between
John Oliver and Stephen Colbert using our approach. The second row shows example
of translation from John Oliver to a cartoon character, Barack Obama to Donald
Trump, and Martin Luther King Jr. (MLK) to Barack Obama. Finally, the last row
shows example of going from Barack Obama to Bill Clinton, and Takeo Kanade to
Barack Obama. Without any input alignment or manual supervision, our approach
could capture stylistic expressions for these public figures. As an example, John Oliver’s
dimple while smiling, the shape of mouth characteristic of Donald Trump, and the
facial mouth lines and smile of Stephen Colbert. Additionally note the subtle changes
(mouth opening and facial lines) in synthesized outputs of Barack Obama from Takeo
Kanade. More results and videos are available on our project webpage.

Barack Obama. Note that without any additional supervisory signal or manual
alignment, our approach can learn to do face-to-face translation and captures
stylistic expression for these personalities, such as the dimple on the face of John
Oliver while smiling, the characteristic shape of mouth of Donald Trump, facial
expression of Bill Clinton, and the mouth lines for Stephen Colbert.

Flower to Flower: Extending from faces and other traditional translations, we
demonstrate our approach for flowers. We use various flowers, and extracted their
time-lapse from publicly available videos. The time-lapses show the blooming of
different flowers but without any sync. We use our approach to align the content,
i.e. both flowers bloom or die together. Figure 6 shows how our video retargeting
approach can be viewed as an approach for learning association between the
events of different flowers life.
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Fig. 6. Flower to Flower: We shows two examples of flower-to-flower translation.
Note the smooth transition from Left to Right. This result can be best visualized in a
video on our project webpage.

4.3 Video Manipulation via Retargeting

Clouds & Wind Synthesis: Our approach can be used to synthesize a new
video that has the required environmental condition such as clouds and wind
without the need for physical efforts of recapturing. We use the given video
and video data from required environmental condition as two domains in our
experiment. The conditional video and trained translation model is then used to
generate a required output.

For this experiment, we collected the video data for various wind and cloud
conditions, such as calm day or windy day. Using our approach, we can convert a
calm-day to a windy-day, and a windy-day to a calm-day, without modifying the
aesthetics of the place. Shown in Figure 7 is an example of synthesizing clouds
and winds on a windy day at a place when the only information available was a
video captured at same place with a light breeze. More videos for these clouds
and wind synthesis are available on our project webpage.
Sunrise & Sunset: We show two specific applications here: (1) Video Manipu-
lation - given a video of sunset at a place, we want to convert it to sunrise; (2).
Content Alignment - aligning abstract concepts (e.g. a person might be seeing a
sunset in New York on the shores of Atlantic Ocean, and may start imagining
how a sunset would look like in California around Pacific).

We extracted the sunrise and sunset data from various web videos, and
show how our approach could be used for both video manipulation and content
alignment. This is similar to settings in our experiments on clouds and wind
synthesis. Figure 8 shows an example of synthesizing a sunrise video from an
original sunset video by conditioning it on a sunrise video. We also show examples
of alignment of various sunrise and sunset scenes.
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Fig. 7. Synthesizing Clouds & Winds: We use our approach to synthesize clouds
and winds. The top row shows example frames of a video captured on a day with light
breeze. We condition it on video data from a windy data (shown in second row) by
learning a transformation between two domains using our approach. The last row shows
the output synthesized video with the clouds and trees moving faster (giving a notion
of wind blowing). Refer to the videos on our project webpage for better visualization
and more examples.

Note: We refer the reader to our project webpage for different videos synthesized
using our approach, and extension of our work utilizing both 2D images and videos
by combining Cycle-loss and Recycle-loss in a generative adversarial formulation.

4.4 Human Studies

We performed human studies on the synthesized output, particularly faces and
flowers, following the protocol of MoCoGAN [34] who also evaluate videos.
However, our analysis consist of three parts: (1). In the first study, we showed
synthesized videos individually from both Cycle-GAN and ours to 15 sequestered
human subjects, and asked them if it is a real video or a generated video. The
subjects misclassified 28.3% times generated videos from our approach as real,
and 7.3% times for Cycle-GAN. (2). In the second study, we show the synthesized
videos from Cycle-GAN and our approach simultaneously, and asked them to
tell which one looks more natural and realistic. Human subjects chose the videos
synthesized from our approach 76% times, 8% times Cycle-GAN, and 16%
times they were confused. (3). In the final study, we showed the video-to-video
translation. This is an extension of (2), except now we also include input and
ask which looks like a more realistic and natural translation. We showed each
video to 15 human subjects. The human subjects selected our approach 74.7%
times, 13.3% times they selected Cycle-GAN, and 12% times they were confused.
From the human study, we can clearly see that combining spatial and temporal
constraints lead to better retargeting.
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Fig. 8. Sunrise & Sunset: We use our approach to manipulate and align the videos
of sunrise and sunset. The top row shows example frames from a sunset video. We
condition it on video data of sunrise (shown in second row) by learning a transformation
between two domains using our approach. The third row shows example frames of
new synthesized video of sunrise. Finally, the last row shows random examples of
input-output pair from different sunrise and sunset videos. Videos and more examples
are available on our project webpage.

4.5 Failure Example: Learning association beyond data distribution

We show an example of transformation from a real bird to a origami bird to
demonstrate a case where our approach failed to learn the association. The real
bird data was extracted using web videos, and we used the origami bird from the
synthesis of Kholgade et al. [51]. Shown in Figure 9 is the synthesis of origami
bird conditioned on the real bird. While the real bird is sitting, the origami bird
stays and attempts to imitate the actions of real bird. The problem comes when
the bird begins to fly. The initial frames when the bird starts to fly are fine.
After some time the origami bird reappears. From an association perspective,
the origami bird should not have reappeared. Looking back at the training data,
we found that the original origami bird data does not have a example of frame
without the origami bird, and therefore our approach is not able to associate an
example when the real bird is no more visible. Perhaps, our approach could only
learn to interpolate over a given data distribution and fails to capture anything
beyond it. One possible way to address this problem is by using a lot of training
data such that the data distribution encapsulates all possible scenarios and can
lead to an effective interpolation.
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Fig. 9. Failure Example: We present the failure in association/synthesis for our
approach using a transformation from a real bird to an origami bird. While the origami
bird (output) is trying to imitate the real bird (input) when it is sitting (Column 1 - 4),
and also flies away when the real bird flies (Column 5 - 6). We observe that it reappears
after sometime (red bounding box in Column 7) in a flying mode while the real bird
didn’t exist in the input. We posit that our algorithm is not able to make transition of
association when the real bird is completely invisible, and so it generated a random
flying origami.

5 Discussion & Future Work

In this work, we explore the influence of spatiotemporal constraints in learning
video retargeting and image translation. Unpaired video/image translation is a
challenging task because it is unsupervised, lacking any correspondences between
training samples from the input and output space. We point out that many
natural visual signals are inherently spatiotemporal in nature, which provides
strong temporal constraints for free to help learn such mappings. This results
in significantly better mappings. We also point that unpaired and unsupervised
video retargeting and image translation is an under-constrained problem, and so
more constraints using auxiliary tasks from the visual data itself (similar to ones
used for other vision tasks [52,53]) could help in learning better transformation
models.

Recycle-GANs learn both a mapping function and a recurrent temporal
predictor. Thus far, our results make use of only the mapping function, so as to
facilitate fair comparisons with previous work. But it is natural to synthesize
target videos by making use of both the single-image translation model and the
temporal predictor. Additionally, the notion of style in video retargeting can be
incorporated more precisely by using spatiotemporal generative models as this
would allow to even learn the speed of generated output. E.g. Two people may
have different ways of content delivery and that one person can take longer than
other to say the same thing. A true notion of style should be able to generate even
this variation in amount of time for delivering speech/content. We believe that
better spatiotemporal neural network architecture could attempt this problem in
near future. Finally, our work could also utilize the concurrent approach from
Huang et al. [54] to learn a one-to-many translation model.
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7. Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense
correspondence via 3d-guided cycle consistency. In: CVPR. (2016)

8. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A.C., Bengio, Y.: Generative adversarial networks. In: NIPS. (2014)

9. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies.
ACM Trans. Graph. (2001)

10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: CVPR. (2016)

11. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning
from simulated and unsupervised images through adversarial training. In: CVPR.
(2017)
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