
PyTorch: An Imperative Style, High-Performance
Deep Learning Library

Adam Paszke
University of Warsaw

adam.paszke@gmail.com

Sam Gross
Facebook AI Research

sgross@fb.com

Francisco Massa
Facebook AI Research

fmassa@fb.com

Adam Lerer
Facebook AI Research

alerer@fb.com

James Bradbury
Google

jekbradbury@gmail.com

Gregory Chanan
Facebook AI Research

gchanan@fb.com

Trevor Killeen
Self Employed

killeent@cs.washington.edu

Zeming Lin
Facebook AI Research

zlin@fb.com

Natalia Gimelshein
NVIDIA

ngimelshein@nvidia.com

Luca Antiga
Orobix

luca.antiga@orobix.com

Alban Desmaison
Oxford University

alban@robots.ox.ac.uk

Andreas Köpf
Xamla

andreas.koepf@xamla.com

Edward Yang
Facebook AI Research

ezyang@fb.com

Zach DeVito
Facebook AI Research

zdevito@cs.stanford.edu

Martin Raison
Nabla

martinraison@gmail.com

Alykhan Tejani
Twitter

atejani@twitter.com

Sasank Chilamkurthy
Qure.ai

sasankchilamkurthy@gmail.com

Benoit Steiner
Facebook AI Research
benoitsteiner@fb.com

Lu Fang
Facebook

lufang@fb.com

Junjie Bai
Facebook

jbai@fb.com

Soumith Chintala
Facebook AI Research
soumith@gmail.com

Abstract

Deep learning frameworks have often focused on either usability or speed, but
not both. PyTorch is a machine learning library that shows that these two goals
are in fact compatible: it provides an imperative and Pythonic programming style
that supports code as a model, makes debugging easy and is consistent with other
popular scientific computing libraries, while remaining efficient and supporting
hardware accelerators such as GPUs.
In this paper, we detail the principles that drove the implementation of PyTorch
and how they are reflected in its architecture. We emphasize that every aspect of
PyTorch is a regular Python program under the full control of its user. We also
explain how the careful and pragmatic implementation of the key components of
its runtime enables them to work together to achieve compelling performance.
We demonstrate the efficiency of individual subsystems, as well as the overall
speed of PyTorch on several common benchmarks.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1 Introduction

With the increased interest in deep learning in recent years, there has been an explosion of machine
learning tools. Many popular frameworks such as Caffe [1], CNTK [2], TensorFlow [3], and
Theano [4], construct a static dataflow graph that represents the computation and which can then be
applied repeatedly to batches of data. This approach provides visibility into the whole computation
ahead of time, and can theoretically be leveraged to improve performance and scalability. However, it
comes at the cost of ease of use, ease of debugging, and flexibility of the types of computation that
can be represented.

Prior work has recognized the value of dynamic eager execution for deep learning, and some recent
frameworks implement this define-by-run approach, but do so either at the cost of performance
(Chainer [5]) or using a less expressive, faster language (Torch [6], DyNet [7]), which limits their
applicability.

However, with careful implementation and design choices, dynamic eager execution can be achieved
largely without sacrificing performance. This paper introduces PyTorch, a Python library that
performs immediate execution of dynamic tensor computations with automatic differentiation and
GPU acceleration, and does so while maintaining performance comparable to the fastest current
libraries for deep learning. This combination has turned out to be very popular in the research
community with, for instance, 296 ICLR 2019 submissions mentioning PyTorch.

2 Background

Four major trends in scientific computing have become increasingly important for deep learning.

First, starting in the 1960s, the development of domain specific languages such as APL [8], MATLAB
[9], R [10] and Julia [11], turned multidimensional arrays (often referred to as tensors) into first-class
objects supported by a comprehensive set of mathematical primitives (or operators) to manipulate
them. Separately, libraries such as NumPy[12], Torch[6], Eigen[13] and Lush[14] made array-based
programming productive in general purpose languages such as Python, Lisp, C++ and Lua.

Second, the development of automatic differentiation [15] made it possible to fully automate
the daunting labor of computing derivatives. This made it significantly easier to experiment with
different machine learning approaches while still allowing for efficient gradient based optimization.
The autograd [16] package popularized the use of this technique for NumPy arrays, and similar
approaches are used in frameworks such as Chainer [5], DyNet [7], Lush [14], Torch [6], Jax [17]
and Flux.jl [18].

Third, with the advent of the free software movement, the scientific community moved away from
closed proprietary software such as Matlab[9], and towards the open-source Python ecosystem
with packages like NumPy [12], SciPy [19], and Pandas [20]. This fulfilled most of the numerical
analysis needs of researchers while allowing them to take advantage of a vast repository of libraries
to handle dataset preprocessing, statistical analysis, plotting, and more. Moreover, the openness,
interoperability, and flexibility of free software fostered the development of vibrant communities that
could quickly address new or changing needs by extending the existing functionality of a library or if
needed by developing and releasing brand new ones. While there is a rich offering of open-source
software for neural networks in languages other than Python, starting with Lush [14] in Lisp, Torch [6]
in C++, Objective-C and Lua, EBLearn [21] in C++, Caffe [1] in C++, the network effects of a large
ecosystem such as Python made it an essential skill to jumpstart one’s research. Hence, since 2014,
most deep learning frameworks converged on a Python interface as an essential feature.

Finally, the availability and commoditization of general-purpose massively parallel hardware such
as GPUs provided the computing power required by deep learning methods. Specialized libraries
such as cuDNN [22], along with a body of academic work (such as [23] and [24]), produced a
set of high-performance reusable deep learning kernels that enabled frameworks such as Caffe [1],
Torch7 [25], or TensorFlow [3] to take advantage of these hardware accelerators.

PyTorch builds on these trends by providing an array-based programming model accelerated by GPUs
and differentiable via automatic differentiation integrated in the Python ecosystem.

2

3 Design principles

PyTorch’s success stems from weaving previous ideas into a design that balances speed and ease of
use. There are four main principles behind our choices:

Be Pythonic Data scientists are familiar with the Python language, its programming model, and its
tools. PyTorch should be a first-class member of that ecosystem. It follows the commonly established
design goals of keeping interfaces simple and consistent, ideally with one idiomatic way of doing
things. It also integrates naturally with standard plotting, debugging, and data processing tools.

Put researchers first PyTorch strives to make writing models, data loaders, and optimizers as
easy and productive as possible. The complexity inherent to machine learning should be handled
internally by the PyTorch library and hidden behind intuitive APIs free of side-effects and unexpected
performance cliffs.

Provide pragmatic performance To be useful, PyTorch needs to deliver compelling performance,
although not at the expense of simplicity and ease of use. Trading 10% of speed for a significantly
simpler to use model is acceptable; 100% is not. Therefore, its implementation accepts added
complexity in order to deliver that performance. Additionally, providing tools that allow researchers
to manually control the execution of their code will empower them to find their own performance
improvements independent of those that the library provides automatically.

Worse is better [26] Given a fixed amount of engineering resources, and all else being equal, the
time saved by keeping the internal implementation of PyTorch simple can be used to implement
additional features, adapt to new situations, and keep up with the fast pace of progress in the field of
AI. Therefore it is better to have a simple but slightly incomplete solution than a comprehensive but
complex and hard to maintain design.

4 Usability centric design

4.1 Deep learning models are just Python programs

In a surprisingly short amount of time, machine learning grew from recognizing individual digits [27]
into autonomously playing StarCraft [28]. Consequently, the neural networks themselves evolved
rapidly from simple sequences of feed forward layers into incredibly varied numerical programs
often composed of many loops and recursive functions. To support this growing complexity, PyTorch
foregoes the potential benefits of a graph-metaprogramming based approach to preserve the imperative
programming model of Python. This design was pioneered for model authoring by Chainer[5] and
Dynet[7]. PyTorch extends this to all aspects of deep learning workflows. Defining layers, composing
models, loading data, running optimizers, and parallelizing the training process are all expressed
using the familiar concepts developed for general purpose programming.

This solution ensures that any new potential neural network architecture can be easily implemented
with PyTorch. For instance, layers (which in modern machine learning should really be understood
as stateful functions with implicit parameters) are typically expressed as Python classes whose
constructors create and initialize their parameters, and whose forward methods process an input
activation. Similarly, models are usually represented as classes that compose individual layers, but let
us state again that nothing forces the user to structure their code in that way. Listing 1 demonstrates
how an entire model can be created by composing functionality provided by PyTorch such as 2d
convolution, matrix multiplication, dropout, and softmax to classify gray-scale images. Note that
linear layers are of course part of the library, but we show an example implementation to highlight
how simple it is.

3

class LinearLayer(Module): class FullBasicModel(nn.Module):
def __init__(self, in_sz, out_sz): def __init__(self):

super().__init__() super().__init__()
t1 = torch.randn(in_sz, out_sz) self.conv = nn.Conv2d(1, 128, 3)
self.w = nn.Parameter(t1) self.fc = LinearLayer(128, 10)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2) def forward(self, x):

t1 = self.conv(x)
def forward(self, activations): t2 = nn.functional.relu(t1)

t = torch.mm(activations, self.w) t3 = self.fc(t1)
return t + self.b return nn.functional.softmax(t3)

Listing 1: A custom layer used as a building block for a simple but complete neural network.

This “everything is a just a program” philosophy is not limited to just the models, and applies to
optimizers and data loaders as well. This facilitates the experimentation of new training techniques.
For example, to implement the very popular generative adversarial networks, one needs to specify
two separate models (the generator and the discriminator), and two loss functions that depend on both
models at the same time. Rigid APIs would struggle with this setup, but the simple design employed
in PyTorch easily adapts to this setting as shown in Listing 2.

discriminator = create_discriminator()
generator = create_generator()
optimD = optim.Adam(discriminator.parameters())
optimG = optim.Adam(generator.parameters())

def step(real_sample):
(1) Update Discriminator
errD_real = loss(discriminator(real_sample), real_label)
errD_real.backward()
fake = generator(get_noise())
errD_fake = loss(discriminator(fake.detach(), fake_label)
errD_fake.backward()
optimD.step()
(2) Update Generator
errG = loss(discriminator(fake), real_label)
errG.backward()
optimG.step()

Listing 2: Simplified training of a generative adversarial networks.

Since PyTorch programs execute eagerly, all the features of Python are available throughout the
whole design process. Print statements, standard debuggers, and common visualization tools like
matplotlib all work as expected. Users do not have to wait for lengthy compilation before they can
start running their programs, and more importantly intermediate computations can be observed to
understand how a model works and whether its results are correct.

4.2 Interoperability and extensibility

Easy and efficient interoperability is one of the top priorities for PyTorch because it opens the
possibility to leverage the rich ecosystem of Python libraries as part of user programs. Hence,
PyTorch allows for bidirectional exchange of data with external libraries. For example, it provides
a mechanism to convert between NumPy arrays and PyTorch tensors using the torch.from_numpy()
function and .numpy() tensor method. Similar functionality is also available to exchange data stored
using the DLPack [29] format. Note that this exchange happens in both cases without any data
copying – objects on both sides only describe how to interpret a memory region which is shared
among them. Hence, those operations are actually extremely cheap, and take constant time no matter
how large the converted arrays are.

4

Moreover, many of the critical systems are designed specifically to be extensible. For instance, the
automatic differentiation system allows users to add support for custom differentiable functions.
To do that users can define a new subclass of torch.autograd.Function that implements forward()
and backward() methods, which specify the function and its derivative (or more formally the vector-
Jacobian product). Similarly new datasets can be added by subclassing torch.utils.data.Dataset
and implementing two methods: __getitem__ (the indexing operator) and __len__ (the length op-
erator), making datasets behave like (possibly lazy) lists. How these work is completely up to the
implementer, and many users leverage other Python packages for data loading. The DataLoader class
consumes objects conforming to this interface and provides an iterator over the data which takes
care of shuffling, batching, parallelization, and management of pinned CUDA memory to improve
throughput.

Most importantly, users are free to replace any component of PyTorch that does not meet the needs or
performance requirements of their project. They are all designed to be completely interchangeable,
and PyTorch takes great care not to impose any particular solution.

4.3 Automatic differentiation

Since gradient based optimization is vital to deep learning, PyTorch must be able to automatically
compute gradients of models specified by our users, and those can be arbitrary Python programs.
However, Python is a dynamic programming language that allows changing most behaviors at
runtime, making ahead of time source-to-source differentiation cumbersome. Instead, PyTorch uses
the operator overloading approach, which builds up a representation of the computed function every
time it is executed. In its current implementation [30], PyTorch performs reverse-mode automatic
differentiation, which computes the gradient of a scalar output with respect to a multivariate input.
Differentiating functions with more outputs than inputs is more efficiently executed using forward-
mode automatic differentiation, but this use case is less common for machine learning applications.
PyTorch can be easily extended to perform forward-mode differentiation using array-level dual
numbers [31, 32].

Another interesting and uncommon feature of our system is that it can differentiate through code
employing mutation on tensors, which is one of the basic building blocks of imperative programs.
To ensure safety, we have implemented a versioning system for tensors, which lets us track their
modifications and ensure that we always use the data we expect. One interesting tradeoff is that
while we could utilize techniques like copy-on-write to support arbitrary programs, we chose to not
go down this path, as performance-wise it is usually beneficial for the users to rewrite their code
to ensure that no copies have to be performed. Hence, while most mutations are benign and can
be handled automatically, the really complicated cases result in a user error, which lets them know
that they likely want to restructure the program. This allows us to avoid introducing subtle and
hard-to-find performance cliffs.

5 Performance focused implementation

Running deep learning algorithms efficiently from a Python interpreter is notoriously challenging: for
instance, the global interpreter lock [33] effectively ensures that only one of any number of concurrent
threads is running at any given time. Deep learning frameworks based on the construction of a static
data-flow graph sidestep this problem by deferring the evaluation of the computation to a custom
interpreter.

PyTorch solved the problem differently, by carefully optimizing every aspect of its execution while
simultaneously empowering its users to easily leverage additional optimization strategies.

5.1 An efficient C++ core

Despite being closely integrated in the Python ecosystem, most of PyTorch is written in C++ to
achieve high performance. This core libtorch library implements the tensor data structure, the GPU
and CPU operators, and basic parallel primitives. It also provides the automatic differentiation system,
including the gradient formulas for most built-in functions. This ensures that the computation of the
derivatives of functions composed of core PyTorch operators is executed entirely in a multithreaded
evaluator which does not require holding the Python global interpreter lock [33]. Python bindings

5

are generated using YAML meta-data files. An interesting side-effect of this approach is that it
allowed our community to quickly create bindings to multiple other languages resulting in projects
like NimTorch [34], hasktorch [35] and others.

This design also allowed us to create first-class C++ bindings and modeling libraries that can be
used in places where Python is inconvenient, such as the game engine for Starcraft [36] or on mobile
platforms. It is even possible to take the Python code describing a PyTorch model and run it without
Python using the TorchScript engine [37].

5.2 Separate control and data flow

PyTorch maintains a strict separation between its control (i.e. program branches, loops) and data flow
(i.e. tensors and the operations performed on them). The resolution of the control flow is handled
by Python and optimized C++ code executed on the host CPU, and result in a linear sequence of
operator invocations on the device. Operators can be run either on CPU or on GPU.

PyTorch is designed to execute operators asynchronously on GPU by leveraging the CUDA stream
mechanism [38] to queue CUDA kernel invocations to the GPUs hardware FIFO. This allows the
system to overlap the execution of Python code on CPU with tensor operators on GPU. Because
the tensor operations usually take a significant amount of time, this lets us saturate the GPU and
reach peak performance even in an interpreted language with fairly high overhead like Python. Note
that this mechanism is nearly invisible to the user. Unless they implement their own multi-stream
primitives all of the CPU-GPU synchronization is handled by the library.

PyTorch could leverage a similar mechanism to also execute operators asynchronously on the CPU.
However the costs of cross-thread communication and synchronization would negate the performance
benefit of such an optimization.

5.3 Custom caching tensor allocator

Almost every operator must dynamically allocate an output tensor to hold the result of its execution.
It is therefore critical to optimize the speed of the dynamic memory allocators. PyTorch can rely on
optimized libraries [39, 40, 41] to handle this task on CPU. However, on GPU the cudaFree routine
may block its caller until all previously queued work on all GPUs completes. To avoid this bottleneck,
PyTorch implements a custom allocator which incrementally builds up a cache of CUDA memory
and reassigns it to later allocations without further use of CUDA APIs. The incremental allocation
is also crucial for better interoperability, because taking up all GPU memory ahead of time would
prevent the user from utilizing other GPU-enabled Python packages.

To further improve its effectiveness, this allocator was tuned for the specific memory usage patterns of
deep learning. For example, it rounds up allocations to multiples of 512 bytes to avoid fragmentation
issues. Moreover, it maintains a distinct pool of memory for every CUDA stream (work queue).

The one-pool-per-stream design assumption simplifies the implementation and improves the perfor-
mance of the allocator: because the CPU runs ahead of the GPU, memory is freed on the CPU before
its last use on the GPU finishes. Since streams serialize execution, if the free precedes the reallocation
on the CPU, the same order will occur on the GPU. So the allocator can reallocate memory freed on
the CPU immediately as long as the new allocation is used on the same stream as the freed region.
However, if an allocation was last used on one stream and then allocated on another, additional
synchronization is needed.

The one-pool-per-stream design seems limiting since the allocations end up fragmented per stream, but
in practice PyTorch almost never uses multiple streams. It is notoriously hard to write CUDA kernels
in a way that would let them cooperatively share the GPU because exact scheduling is hardware
controlled. In practice, kernel writers usually resort to monolithic kernels that combine multiple tasks.
Data loading and distributed computing utilities are exceptions to the one stream design, and they
carefully insert additional synchronization to avoid bad interactions with the allocator.

While this design is susceptible to certain corner cases, it almost never exhibits unwanted behaviors
in practical code. Most of our users are not aware of its existence.

6

5.4 Multiprocessing

Due to the global interpreter lock (GIL) Python’s default implementation does not allow concurrent
threads to execute in parallel. To alleviate this problem, the Python community has established a
standard multiprocessing module, containing a number of utilities that allow users to easily spawn
child processes and implement basic inter-process communication primitives.

However, the implementation of the primitives uses the same form of serialization used for on-disk
persistence, which is inefficient when dealing with large arrays. Hence, PyTorch extends the Python
multiprocessing module into torch.multiprocessing, which is a drop-in replacement for the
built in package and automatically moves the data of tensors sent to other processes to shared memory
instead of sending it over the communication channel.

This design greatly improves performance and makes the process isolation weaker, resulting in a
programming model which more closely resembles regular threaded programs. Users can easily
implement heavily parallel programs that operate on independent GPUs but later synchronize gradients
using all-reduce style primitives.

Another unique feature of this system is that it transparently handles sharing of CUDA tensors,
making it easy to implement techniques like Hogwild [42].

5.5 Reference counting

Users often design their models to utilize all memory available during training, and increasing batch
sizes is a common technique of speeding up the process. Therefore, to deliver great performance,
PyTorch has to treat memory as a scarce resource that it needs to manage carefully.

Libraries with eager semantics have to manage tensor memory without knowing how it will be used
in the future. Garbage collection is the typical way to handle this automatically because it has good
amortized performance. In this approach, the runtime periodically investigates the state of the system,
enumerates used objects and frees everything else. However, by deferring the deallocation, it causes
the program to use more memory overall [43]. Given the scarcity of GPU memory, these overheads
are unacceptable. In fact, Torch7 utilized the garbage collector built into Lua, and a common anti-
pattern among the users was to sprinkle the program with explicit triggers to the garbage collector,
hoping that the memory errors go away.

PyTorch takes a different approach: it relies on a reference counting scheme to track the number of
uses of each tensor, and frees the underlying memory immediately once this count reaches zero. Note
that PyTorch tracks both references internal to the libtorch library and external references made by
users in their Python code by integrating with Python’s own reference counting mechanism. This
ensures that memory is released exactly when tensors become unneeded.

One notable caveat is that we can only guarantee the desired performance characteristics in implemen-
tations of languages that either already utilize reference counting (CPython, Swift, but not PyPy or
many scripting languages such as Lua), and those that allow for user-defined behavior for assignment,
copies, and moves (e.g. C++, Rust). Bindings to implementations that do not satisfy those criteria
will have to implement their own specialized memory management on top of PyTorch.

6 Evaluation

In this section we compare the performance of PyTorch with several other commonly-used deep
learning libraries, and find that it achieves competitive performance across a range of tasks. All
experiments were performed on a workstation with two Intel Xeon E5-2698 v4 CPUs and one
NVIDIA Quadro GP100 GPU.

6.1 Asynchronous dataflow

We start by quantifying the ability of PyTorch to asynchronously execute dataflow on GPU. We use
the built-in profiler [44] to instrument various benchmarks and record a timeline of the execution of a
single training step.

7

Figure 1 shows a representative timeline of execution for the first few operations of a ResNet-50
model. The host CPU which queues the work quickly outpaces the execution of the operators on
the GPU. This allows PyTorch to achieve almost perfect device utilization. In this example, GPU
execution takes around three times longer than CPU scheduling. The exact ratio depends on the
relative performance of the host CPU and the GPU, as well as the number of elements in each tensor
and the average arithmetic complexity of the floating point computations to be performed on the
GPU.

Figure 1: A trace of the first few operators of Resnet-50. The top row depicts the execution of the control
flow running on the host CPU. The gray areas are Python code executed by its interpreter. The colored areas
correspond to the work done on the host CPU to queue various operators (convolution, batch normalization, and
so on). The bottom row shows the corresponding execution of those operators on the GPU. The arrows pair the
two events in time.

6.2 Memory management

We used the NVIDIA profiler to trace the execution of the CUDA runtime as well as the execution
of the CUDA kernels launched during one training iteration of the ResNet-50 model. As shown in
Figure 2, the behavior of the first iteration differs significantly from that of subsequent ones. At
first, calls to the CUDA memory management functions (cudaMalloc and cudaFree) slow down the
execution quite dramatically by blocking the CPU thread for long periods of time, hence lowering
the utilization of the GPU. This effect disappears in subsequent iterations as the PyTorch caching
memory allocator starts reusing previously allocated regions.

Figure 2: Annotated traces of the execution of ResNet-50 on GPU.

6.3 Benchmarks

Finally, we can get an overall sense of single-machine eager mode performance of PyTorch by com-
paring it to three popular graph-based deep learning frameworks (CNTK, MXNet and TensorFlow), a
define-by-run framework (Chainer), and production oriented platform (PaddlePaddle). The Appendix
details all the steps needed to reproduce our setup.

Our results are summarized in Table 1. On all the benchmarks, the performance of PyTorch is within
17% of that of of the fastest framework. We attribute this result to the fact that these tools offload
most of the computation to the same version of the cuDNN and cuBLAS libraries.

Framework Throughput (higher is better)
AlexNet VGG-19 ResNet-50 MobileNet GNMTv2 NCF

Chainer 778± 15 N/A 219 ± 1 N/A N/A N/A
CNTK 845± 8 84± 3 210± 1 N/A N/A N/A
MXNet 1554 ± 22 113± 1 218± 2 444± 2 N/A N/A
PaddlePaddle 933± 123 112± 2 192± 4 557 ± 24 N/A N/A
TensorFlow 1422± 27 66± 2 200± 1 216± 15 9631± 1.3% 4.8e6± 2.9%
PyTorch 1547± 316 119 ± 1 212± 2 463± 17 15512 ± 4.8% 5.4e6 ± 3.4%

Table 1: Training speed for 6 models using 32bit floats. Throughput is measured in images per second for the
AlexNet, VGG-19, ResNet-50, and MobileNet models, in tokens per second for the GNMTv2 model, and in
samples per second for the NCF model. The fastest speed for each model is shown in bold.

8

6.4 Adoption

The validity of design decisions and their impact on ease-of-use is hard to measure. As a proxy,
we tried to quantify how well the machine learning community received PyTorch by counting how
often various machine learning tools (including Caffe, Chainer, CNTK, Keras, MXNet, PyTorch,
TensorFlow, and Theano) are mentioned on arXiv e-Prints since the initial release of PyTorch in
January 2017. In Figure 3 we report the monthly number of mentions of the word "PyTorch" as a
percentage of all mentions among these deep learning frameworks. We counted tools mentioned
multiple times in a given paper only once, and made the search case insensitive to account for various
spellings.

Figure 3: Among arXiv papers each month that mention common deep learning frameworks, percentage of
them that mention PyTorch.

7 Conclusion and future work

PyTorch has become a popular tool in the deep learning research community by combining a focus
on usability with careful performance considerations. In addition to continuing to support the latest
trends and advances in deep learning, in the future we plan to continue to improve the speed and
scalability of PyTorch. Most notably, we are working on the PyTorch JIT: a suite of tools that
allow PyTorch programs to be executed outside of the Python interpreter where they can be further
optimized. We also intend to improve support for distributed computation by providing efficient
primitives for data parallelism as well as a Pythonic library for model parallelism based around
remote procedure calls.

8 Acknowledgements

We are grateful to the PyTorch community for their feedback and contributions that greatly influenced
the design and implementation of PyTorch. We thank all the PyTorch core team members, contributors
and package maintainers including Ailing Zhang, Alex Suhan, Alfredo Mendoza, Alican Bozkurt,
Andrew Tulloch, Ansha Yu, Anthony Shoumikhin, Bram Wasti, Brian Vaughan, Christian Puhrsch,
David Reiss, David Riazati, Davide Libenzi, Dmytro Dzhulgakov, Dwaraj Rajagopal, Edward Yang,
Elias Ellison, Fritz Obermeyer, George Zhang, Hao Lu, Hong Xu, Hung Duong, Igor Fedan, Ilia
Cherniavskii, Iurii Zdebskyi, Ivan Kobzarev, James Reed, Jeff Smith, Jerry Chen, Jerry Zhang, Jiakai
Liu, Johannes M. Dieterich, Karl Ostmo, Lin Qiao, Martin Yuan, Michael Suo, Mike Ruberry, Mikhail
Zolothukhin, Mingzhe Li, Neeraj Pradhan, Nick Korovaiko, Owen Anderson, Pavel Belevich, Peter
Johnson, Pritam Damania, Raghuraman Krishnamoorthi, Richard Zou, Roy Li, Rui Zhu, Sebastian
Messmer, Shen Li, Simon Wang, Supriya Rao, Tao Xu, Thomas Viehmann, Vincent Quenneville-
Belair, Vishwak Srinivasan, Vitaly Fedyunin, Wanchao Liang, Wei Yang, Will Feng, Xiaomeng Yang,
Xiaoqiang Zheng, Xintao Chen, Yangqing Jia, Yanli Zhao, Yinghai Lu and Zafar Takhirov.

References
[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[2] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 2135–2135, New York, NY, USA, 2016. ACM.

9

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[4] Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016.

[5] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS), 2015.

[6] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning
software library. Technical report, Idiap, 2002.

[7] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anastasopoulos, M. Balles-
teros, D. Chiang, D. Clothiaux, T. Cohn, K. Duh, M. Faruqui, C. Gan, D. Garrette, Y. Ji,
L. Kong, A. Kuncoro, G. Kumar, C. Malaviya, P. Michel, Y. Oda, M. Richardson, N. Saphra,
S. Swayamdipta, and P. Yin. DyNet: The Dynamic Neural Network Toolkit. ArXiv e-prints,
January 2017.

[8] Philip S. Abrams. An APL Machine. PhD thesis, Stanford University, 1970.

[9] The MathWorks, Inc., Natick, Massachusetts, United States. MATLAB and Statistics Toolbox.

[10] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

[11] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[12] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006.
http://www.numpy.org/.

[13] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[14] Y LeCun and L Bottou. Lush reference manual. Technical report, code available at
http://lush.sourceforge.net, 2002.

[15] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res.,
18(1):5595–5637, January 2017.

[16] Dougal Maclaurin. Modeling, Inference and Optimization with Composable Differentiable
Procedures. PhD thesis, Harvard University, April 2016.

[17] Matthew Johnson et. al. Jax. https://github.com/google/jax, 2018.

[18] Mike Innes et. al. Flux.jl. https://github.com/FluxML/Flux.jl, 2018.

[19] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. http://www.scipy.org/.

[20] Wes McKinney. Data structures for statistical computing in python. In Proceedings of the 9th
Python in Science Conference, 51-56, 2010.

[21] Pierre Sermanet, Koray Kavukcuoglu, and Yann LeCun. Eblearn: Open-source energy-based
learning in c++. In 2009 21st IEEE International Conference on Tools with Artificial Intelligence,
pages 693–697. IEEE, 2009.

10

https://github.com/google/jax
https://github.com/FluxML/Flux.jl

[22] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan D. Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. CoRR,
abs/1410.0759, 2014.

[23] Andrew Lavin. maxdnn: An efficient convolution kernel for deep learning with maxwell gpus,
January 2015.

[24] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4013–4021, 2016.

[25] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment
for machine learning. In NIPS 2011, 2011.

[26] Richard Gabriel. The rise of worse is better. http://dreamsongs.com/RiseOfWorseIsBetter.html.

[27] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/.

[28] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. CoRR, abs/1708.04782, 2017.

[29] DMLC. Dlpack: Open in memory tensor structure. https://github.com/dmlc/dlpack.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS Workshop, 2017.

[31] Dan Piponi. Automatic differentiation, C++ templates, and photogrammetry. J. Graphics, GPU,
& Game Tools, 9(4):41–55, 2004.

[32] Holger Leuck and Hans-Hellmut Nagel. Automatic differentiation facilitates of-integration
into steering-angle-based road vehicle tracking. In 1999 Conference on Computer Vision and
Pattern Recognition (CVPR ’99), 23-25 June 1999, Ft. Collins, CO, USA, pages 2360–2365,
1999.

[33] The Python team. The cpython global interpreter lock.
https://wiki.python.org/moin/GlobalInterpreterLock.

[34] Giovanni Petrantoni and Jörg Wollenschläger. Nimtorch. https://github.com/fragcolor-
xyz/nimtorch.

[35] Austin Huang, Junji Hashimoto, and Sam Stites. Hasktorch.
https://github.com/hasktorch/hasktorch.

[36] G. Synnaeve, Z. Lin, J. Gehring, D. Gant, V. Mella, V. Khalidov, N. Carion, and N. Usunier.
Forward modeling for partial observation strategy games - a starcraft defogger. In Advances in
Neural Information Processing Systems, pages 10761–10771, 2018.

[37] The PyTorch team. Torch Script. https://pytorch.org/docs/stable/jit.html.

[38] Justin Luitjens. Cuda streams. GPU technology conference, 2014.

[39] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
A scalable memory allocator for multithreaded applications. In Proceedings of the Ninth
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 117–128, New York, NY, USA, 2000. ACM.

[40] J. Evans. A scalable concurrent malloc(3) implementation for freebsd. In In BSDCan — The
Technical BSD Conference, May 2006.

[41] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc.

11

[42] Benjamin Recht, Christopher Ré, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems
2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain., pages 693–701,
2011.

[43] Matthew Hertz and Emery D. Berger. Quantifying the performance of garbage collection vs.
explicit memory management. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
313–326, New York, NY, USA, 2005. ACM.

[44] The PyTorch team. Pytorch Autograd Profiler. https://pytorch.org/docs/1.0.1/autograd.html#profiler.

12

	Introduction
	Background
	Design principles
	Usability centric design
	Deep learning models are just Python programs
	Interoperability and extensibility
	Automatic differentiation

	Performance focused implementation
	An efficient C++ core
	Separate control and data flow
	Custom caching tensor allocator
	Multiprocessing
	Reference counting

	Evaluation
	Asynchronous dataflow
	Memory management
	Benchmarks
	Adoption

	Conclusion and future work
	Acknowledgements

