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Abstract

The goal of two-sample tests is to decide whether two probability
distributions, denoted by P and Q, are equal. One alternative to construct
flexible two-sample tests is to use binary classifiers. More specifically, pair
n random samples drawn from P with a positive label, and pair n random
samples drawn from Q with a negative label. Then, the test accuracy of
a binary classifier on these data should remain near chance-level if the
null hypothesis “P = Q” is true. Furthermore, such test accuracy is an
average of independent random variables, and thus approaches a Gaussian
null distribution. Furthermore, the prediction uncertainty of our binary
classifier can be used to interpret the particular differences between P
and Q. In particular, analyze which samples were correctly or incorrectly
labeled by the classifier, with the least or most confidence.

In this paper, we aim to revive interest in the use of binary classifiers for
two-sample testing. To this end, we review their fundamentals, previous
literature on their use, compare their performance against alternative
state-of-the-art two-sample tests, and propose them to evaluate generative
adversarial network models applied to image synthesis.

As a by-product of our research, we propose the application of condi-
tional generative adversarial networks, together with classifier two-sample
tests, as an alternative to achieve state-of-the-art causal discovery.

1 Introduction

Generative models are a fundamental component in a variety of important
machine learning tasks. These include feature compression, image synthesis
and completion, semi-supervised learning, un-supervised learning, and density
estimation, to name a few. Due to their many uses, evaluating and comparing
generative models is a problem-specific task (Theis et al., 2015).

In this paper, we are interested in evaluating the quality of the samples
synthesized by generative models with intractable likelihood, such as Generative
Adversarial Networks or GANs (Goodfellow et al., 2014). Formally, evaluat-
ing sample quality is a two-sample test, that is, measuring the dissimilarities
between the data distribution being modeled and the samples synthesized by
our generative model. This paper aims at reviving the interest in using binary
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classifiers as two-sample tests. In particular, since good generative models will
produce samples barely indistinguishable from real data, the test accuracy of a
binary classifier tasked with distinguishing real data from synthesized samples
should remain at chance level.

The rest of this article is organized as follows. Section 2 introduces the
fundamentals of two-sample tests, as well as their most common uses. Section 3
reviews classifier two-sample tests or, said differently, the use of binary classifers
as two sample tests. Section 4 provides a series of experiments to evaluate the
performance of classifier two-sample tests. In particular, we i) compare their
performance against alternative state-of-the-art two-sample tests, ii) propose and
describe their use to evaluate generative models with intractable likelihoods, such
as generative adversarial networks, and iii) propose their use, in conjuction with
conditional generative adversarial network, to achieve state-of-the-art cause-effect
discovery from observational data.

2 Two-sample testing

The goal of two-sample tests is to decide whether two probability distributions,
denoted by P and Q, are equal (Lehmann & Romano, 2006). To this end,
two-sample tests analyze the independently and identically distributed (iid)
samples

x1, . . . , xn ∼ P (X),

y1, . . . , xm ∼ Q(Y ), (1)

and summarize the differences between {xi}ni=1 and {yi}mi=1 into a statistic t̂ ∈ R.
Then, for small values of t̂, the two-sample test will accept the null hypothesis
H0, which stands for “P is equal to Q”. Conversely, for large values of t̂, the
two-sample test will reject H0 in favour of the alternative hypothesis H1, which
stands for “P is not equal to Q”.

Formally, the statistician performs a two-sample test in four steps. First,
the statistician chooses a significance level α ∈ [0, 1]. Second, the statistician
computes the two-sample test statistic t̂. Third, the statistician computes the p-
value p̂ = P (T ≥ t̂|H0), which is the probability of the two-sample test returning
an statistic larger or equal than t̂ when the null hypothesis H0 is true. Fourth,
the statistician accepts the null hypothesis H0 if the p̂ < α, and accepts the
alternative hypothesis H1 otherwise. As a mandatory cautionary note, we remind
that the p-values is not the probability of the null hypothesis being true, and
that the results of statistical testing depend on both the significance level and
the particular two-sample test under use (Johnson, 1999).

Inevitably, two-sample tests can fail in two different ways. First, to make a
Type I error is to reject the null hypothesis when it is true (a “false positive”).
Second, to make a Type II error is to accept the null hypothesis when it is false
(a “false negative”). The probability of making a Type II error is denoted by
β, and we refer to the quantity π = 1− β as the power of a test. Usually, the
statistician uses domain-specific knowledge to upper-bound the probability of
making a Type I error by the significance level α. Within the significance level
α, a statistician would prefer the two-sample test minimizing the probability of
making a Type II error, that is, maximizing power π.
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The literature has evolved a variety of two-sample tests to vast to enumerate
here. These include the t-test (Student, 1908) which tests for the difference
in means of two samples; the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945;
Mann & Whitney, 1947), which tests for the difference in rank means of two
samples; the the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1939),
which tests for the difference in the empirical cumulative distributions of two
samples; and the Maximum Mean Discrepancy or MMD (Gretton et al., 2012a),
which tests for the difference in the empirical kernel mean embeddings of two
samples. Notably, the MMD test is the only one from this list applicable to data
supported in arbitrary domains, thanks to the use of kernels.

Apart from their straightforward application, two-sample tests offer two
additional uses:

1. Two-sample tests can be used to test for independence, as pointed out
by (Gretton et al., 2012a). In particular, testing the independence null
hypothesis “the random variables X and Y are independent” translates into
testing the two-sample null hypothesis “P (X,Y ) is equal to P (X)P (Y )”.

2. Two-sample tests can be used to evaluate generative models with intractable
likelihoods but tractable sampling procedures. Intuitively, good generative
models should produce samples Ŝ = {x̂i}ni=1 indistinguishable from data

S = {xi}ni=1 that they model. Thus, two-sample tests between Ŝ and S can

be used as metrics to evaluate the fidelity of the samples Ŝ. Examples of
such use of two-sample tests include the pioneering work of Early examples
of such use of two-sample tests include (Box, 1980) or, more recently,
the use of the MMD two-sample test to evaluate the quality of complex
generative models Dziugaite et al. (2015); Lloyd & Ghahramani (2015), an
idea also mentioned in (Bengio et al., 2013).

3 Classifier two-sample tests

Next, we discuss a general and flexible way to build powerful two-sample test:
the simple use of binary classifiers. In particular, we assume access to the iid
samples (1) where xi, yj ∈ X , for all i = 1, . . . , n and j = 1, . . . ,m. To test
whether P = Q, we proceed in four steps. First, construct the dataset

D = {(xi, 0)}ni=1 ∪ {(yi, 1)}mi=1 := {(zi, li)}n+m
i=1 .

Second, shuffle D at random, and split it into the disjoint subsets Dtr and
Dte, such that D = Dtr ∪ Dte and nte := |Dte|. Third, train a binary classifier
f : X → [0, 1] on Dtr. In the sequel, we assume that f(zi) is an estimation of
the conditional probability distribution p(l = 1|zi). Fourth, return the binary
classifier classification accuracy on Dte:

t̂ =
1

nte

∑
(zi,li)∈Dte

I
[(
f(zi) >

1

2

)
= li

]
(2)

as our two-sample test statistic. The intuition here is that if P = Q, the test
accuracy (2) should remain near chance-level, that is, one half. In opposition,
if P 6= Q, the differences between the samples of the two distributions would
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be unveiled by the binary classifier, which will in turn translate into a test
classification accuracy (2) greater than one half. We call tests based on (2)
Classifier Two-Sample Tests (C2ST), and review some of their properties next.

3.1 Null distribution

Under the null hypothesis, the samples drawn from P and Q are indistinguishable
from each other, rendering an impossible binary classification problem. Thus, un-
der the null hypothesis and regardless of the shape of the binary classifier f , each
term I [(f(zi) > 1/2) = li] appearing in (2) is an independent random variable
following a Bernoulli(0.5) distribution. Therefore, the null distribution of ntet̂
will follow a Binomial(nte, 0.5) distribution. Alternatively, by applying the cen-

tral limit theorem, it follows that the null distribution of t̂
d−→ N (0.5, 0.25/nte),

as nte →∞.

3.2 Power

The power of a test is its probability of rejecting false null hypotheses. Since the
null distribution does not depend on the architecture of the classifier, maximizing
the power of neural two-sample tests is a trade-off between i) maximizing the
test accuracy of the classifier (bias), and ii) maximizing the size of the test set
nte (variance). This is of course a well known trade-off in machine learning. On
the one hand, simple (underfitting) classifiers will miss some nonlinear patterns,
leading to type-II errors and low power. However, simple classifiers call for
less tranining data, leading to larger test sets. On the other hand, flexible
(overfitting) classifiers may hallucinate patterns from noise, leading to type-I
errors. However, flexible classifiers will minimize type-II errors at the expense of
more data.

The power of classifier two-sample tests is minimax-optimal under some
conditions (Ramdas et al., 2016). More specifically, the power of a classifier
two-sample test is directly linked to its generalization error, which has a sample
complexity upper-upper bounded as O(n−1/2). On the other hand, the sample
complexity of some simple two-sample tests, such as the difference between the
means of two multivariate Gaussians, has a sample complexity lower-bounded as
O(n−1/2) (Ramdas et al., 2015).

3.3 Interpretability

We have assumed that f(zi) estimates p(l = 1|zi) for each of the samples zi
on the test set. Inspecting these probabilities, together with the true labels
li, allow us to determine which samples where correctly or wrongly labeled by
the classifier, with the least or the most confidence. This analysis provides
insight about which specific samples make the probability distributions P and
Q similar or dissimilar. Therefore, the statistic (2) does not only measure the
dissimilarity between two probability distributions; it also explains where the
two distributions are similar or different.
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3.4 Prior uses

The reduction of two-sample testing to binary classification follows from Friedman
(2003), is studied in great detail by Reid & Williamson (2011), and very recently
reviewed by (Mohamed & Lakshminarayanan, 2016). The same discussion and
further references appear in (Gretton et al., 2012a, Remark 20). In practice,
the use of binary classifiers for two-sample testing is increasingly common in
neuroscience (see Pereira et al. (2009); Olivetti et al. (2012) and the references
therein). Implicitly, binary classifiers also perform two-sample testing in algo-
rithms that aim at discriminating data from noise, such as noise contrastive
estimation (Gutmann & Hyvärinen, 2012), negative sampling (Mikolov et al.,
2013), and generative adversarial networks (Goodfellow et al., 2014).

4 Numerical simulations

In our experiments, we study samples Z = {z1, . . . , zn}, where zi = (xi, yi),
xi ∼ P (X), yi ∼ Q(X), and xi, yi ∈ Rd, for all 1 ≤ i ≤ n. We study two variants
of C2ST: one based on neural network binary classifiers (C2ST-NN), and one
based on k-nearest neighbour binary classifiers (C2ST-KNN). C2ST-NN uses
a binary classifier with one hidden layers of 128 ReLU neurons, and is trained
using the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.5. C2ST-KNN

uses k = bn−1/2tr c nearest neighbours for classification. When analyzing one-
dimensional samples, we compare the performance of C2ST-NN and C2ST-KNN
against the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Mann & Whitney,
1947) and the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1939). In
all cases, we compare the performance of C2ST-NN and C2ST-KNN agasint
the linear-time unbiased estimate of the Maximum Mean Discrepancy (MMD)
criterion (Gretton et al., 2012a).

MMD(D) =
1

bn/2c

bn/2c∑
i=1

k(x2i−1, x2i)+k(y2i−1, y2i)−k(x2i−1, y2i)−k(x2i, y2i−1),

where k : X ×X is a positive-definite kernel. We use a Gaussian kernel k(x, y) =
exp(−γ‖x − y‖22), where the bandwidth bandwidth hyper-parameter γ > 0 is
chosen to maximize test, using the “max-rat” rule from (Gretton et al., 2012b).
Since the Gaussian kernel is a characteristic kernel, the MMD statistic approaches
zero if and only if the null hypothesis (“P = Q”) is true, as the sample size tends
to infinity (Gretton et al., 2012a). We use a significance level α = 0.05 across all
experiments and tests.

Our code is available at https://github.com/lopezpaz/classifier_tests.

4.1 Two-sample testing

We deploy two synthetic experiments to evaluate the performance of C2ST
when used for two-sample testing. First, we evaluate the correctness of all
the considered two-sample tests (MMD, C2ST-KNN, C2ST-KNN, Wilcoxon-
Mann-Whitney, Kolmogorov-Smirnov) by examining if the specified significant
level of each test correctly upper-bounds its Type I error. To do so, we draw
x1, . . . , xn, y1, . . . , yn ∼ N (0, 1), and run each two-sample test. In this setup,
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a Type I error is to reject the null hypothesis, since the samples {xi}ni=1 and
{yi}ni=1 are drawn from the same distribution. Figure 1 f) shows that the Type
I error of all tests is upper bounded by the pre-specified significance level, for
all n ∈ {25, 50, 100, 500, 1000, 5000, 10000}, and across 100 random repetitions.
Thus, all tests show the expected behaviour, in terms of Type I error control.

Our second experiment, considers a two sample test between a Normal
distribution and a Student’s t distribution with ν degrees of freedom, based
on n samples. Recall that the Student’s t distribution approaches the Normal
distribution as ν increases. Therefore, two-sample tests must focus on the tails of
the distribution to distinguish between Gaussian and Student’s samples. Figure 1
d,e) shows the test power of all tests as we vary n ∈ {100, 500, 1000, 5000, 10000},
and ν ∈ {1, 2, 5, 10, 15, 20}. The Wilcoxon-Mann-Whitney exhibits the worst
performance, as expected (since the ranks mean of the Gaussian and Student’s t
distributions coincide) in this experiment. Kolmogorov-Smirnov, C2ST-NN, and
C2ST-KNN tests exhibit the best performance, followed by the MMD test.

4.2 Independence testing

As mentioned in Section 2, we can use two-sample tests to measure statistical
dependence, by defining the null distribution “P (X,Y ) is equal to P (X)P (Y )”.
We here compare the performance of the C2ST-NN, C2ST-KNN, and MMD
tests in this task. Since the distribution P (X,Y ) is bivariate, we do not compare
against the Wilcoxon-Mann-Whitney and Kolmogorov-Smirnov tests.

In particular, we will setup a generative model

xi ∼ N (0, 1),

εi ∼ N (0, σ2),

yi ∼ cos(νxi) + εi,

where we let xi be iid samples from some random variable X, and yi be iid
samples from some random variable Y . Thus, the pair of random variables (X,Y )
are statistically dependent, but the observable effect of such dependence weakens
as we either i) increase the frequency ν of the sinusoid, or ii) increase the variance
σ2 of the additive noise. Figure 1 a,b,c) shows the test power of the C2ST-
NN, C2ST-KNN, and MMD tests as we vary n ∈ {100, 500, 1000, 5000, 10000},
ν ∈ {2, 4, 6, 8, 10}, and σ ∈ {0.1, 0.25, 0.5, 1, 2, 3}. The figure reveals that, in this
experiment, the classifier two-sample tests have a better performance than the
MMD test. For fairness, the MMD test is much faster to run than the C2ST
tests. Moreover, the performance of MMD could be improved by using more
sophisticated kernel functions.

4.3 Evaluation of GANs for image generation

Generative Adversarial Networks, or GANs (Goodfellow et al., 2014), are gener-
ative models implementing the adversarial game

min
g

max
d

E
x

log(d(x)) + E
z

log(1− d(g(z))), (3)

In the previous, d(x) depicts the probability of the sample x being drawn from
the data distribution, instead of synthesized by the generator. This is according
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Figure 1: Results of the two-sample test experiments.

to a discriminator function d, which is also to be trained. In the adversarial
game, the generator g plays to fool the discriminator d by synthesizing samples
that look as real as possible, by transforming noise vectors z ∼ P (Z), z ∈ Rq,
into real-looking samples g(x). On the other hand, the discriminator plays to
distinguish between real samples x and synthesized samples g(z) as best as
possible. The adversarial game in GANs can be written in terms of two risk
minimizations:

Ld(d) = Ex `(d(x), 1) + Ez `(d(g(z)), 0),

Lg(g) = Ex `(d(x), 0) + Ez `(d(g(z)), 1)

= Ez `(d(g(z)), 1). (4)

Under the formalization (6), the adversarial game is then reduced to the sequential
minimization of Ld(d) and Lg(g), and reveals the true goal of the discriminator:
to be the classifier two-sample test that best distinguishes data samples x ∼ P
and synthesized samples x̂ ∼ P̂ , where P̂ is the probability distribution induced
by sampling z ∼ Q and computing x̂ = g(z). The formalization (??) highlights
the underlying existence of of an arbitrary binary classification loss function `.
(Nowozin et al., 2016) explores the relationship between the shape of this loss
function and the f -divergence minimized by the generator function g.

Unfortunately, GANs do not allow the tractable evaluation of their log-
likelihood with respect to some data. Therefore, we will employ a two-sample
test to evaluate the quality of the samples x̂ = g(z) synthesized by the generator.
In simple terms, evaluating a GAN in this manner amounts to withhold some
original data from the training process, and then use it to perform a two sample
test against the same amount of synthesized data. When the two-sample test
is a binary classifier (as discussed in Section 3), this procedure can be seen as
simply training a fresh discriminator on a fresh set of data.

We evaluate the usefulness of two-sample tests to perform model selection
in generative adversarial networks. To this end, we train a number of Deep
Convolutional Generative Adversarial Networks, or DCGANs (Radford et al.,
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2016) on the LSUN (Yu et al., 2015, bedroom class) and the Labeled Faces in
the Wild (LFW) dataset (Huang et al., 2007). We reused the torch code of
Radford et al. (2016) to train a collection of DCGANs for {1, 10, 50, 100, 200}
epochs, where the generator and discriminator networks were convolutional
neural networks (LeCun et al., 1998) with {32, 64, 96} filters per layer. We
then evaluated the quality of each DCGAN by using the MMD, C2ST-NN, and
C2ST-KNN tests.

Our first experiments in this dataset revealed an interesting result. When
performing two-sample tests directly on pixels, all tests would obtain near-
perfect test accuracy when distinguishing between real and synthesized (fake)
samples. Such near-perfect accuracy happened consistently across DCGANs,
regardless of the visual quality of their samples. This is because, albeit visually
indistinguishable, the fake samples contain a variety of pixel-level artifacts which
are sufficient for the tests to consistently differentiate between real and fake. In
a second series of experiments, we featurized all images (both real and fake)
using a deep convolutional residual network (He et al., 2015) pre-trained on
ImageNET, a dataset of natural images (Russakovsky et al., 2015). In particular,
we use the resnet-34 model from Gross & Wilber (2016). Reusing a model
pre-trained on natural images ensures that the test will distinguish between real
and fake samples based only natural image statistics, such as gabor filters, edge
detectors, and so forth. . Such a strategy is similar in spirit to perceptual losses
(Johnson et al., 2016) and the “inception score” from Salimans et al. (2016). The
intuition here is that, in order to evaluate how natural do the images synthesized
by a DCGAN look, one must employ a “natural discriminator” for this task.

Tables 1 and 2, included in the Appendix, show samples for each DCGAN,
together with the two-sample test statistics provided by MMD, C2ST-NN, and
C2ST-KNN. Although it is challenging to provide with an absolutely objective
evaluation of our results, we believe that the two-sample tests provide rank
sensibly the trained DCGAN models, and that this ranking can be used for
efficient early stopping and model selection.

5 Conditional GANs for causal discovery

To conclude our exposition, we propose the novel use of conditional GANs (Mirza
& Osindero, 2014) and classifier two-sample tests to perform causal discovery.

In causal discovery, we study the causal structure underlying a set of d
random variables X1, . . . , Xd. In particular, we assume that the random variables
X1, . . . , Xd are related by means of a causal structure, described by a Structural
Equation Model, or SEM (Pearl, 2009). More specifically, we assume that the
random variables Xi take values as described by the structural equations

Xi = fi(Pa(Xi,G), Ni),

for all i = 1, . . . , d. In the previous, G is a Directed Acyclic Graph (DAG) with
vertices associated to each of the random variables X1, . . . , Xd. Also in the same
equation, Pa(Xi,G) denotes the set of parents of the random variable Xi in
the graph G, and Ni is an independent noise random variable that follows the
probability distribution P (Ni).

Now, let us assume that the graph G captures the causal structure describing
the set of random variables X1, . . . , Xd. Then, then edges Xi → Xj gain the
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meaning “Xi causes Xj”. The causal interpretation of SEMs becomes clear when
stated in terms of interventions: if Xj is a parent of Xi in G, then intervening
on the value of Xj will have an effect on the value of Xi, and such effect will be
described correctly by the graph and the equations in our SEM.

The goal of causal discovery is to infer the causal graph G given samples
from the joint probability distribution P (X1, . . . , Xd). For the sake of simplicity,
we here focus on the discovery of causal relations between two two random
variables, X and Y . That is, given samples D = {(xi, yi)}ni=1 ∼ Pn(X,Y ), we
are interested in devising algorithms able to conclude whether “X causes Y ”,
or “Y causes X”. This problem is known as cause-effect discovery (Mooij et al.,
2016). In the case where X → Y , we can write the cause-effect relationship as:

x ∼ P (X),

n ∼ P (N),

y ← f(x, n). (5)

The current state-of-the-art in the cause-effect discovery is the family of Additive
Noise Models, or ANM (Mooij et al., 2016). These methods assume that
the structural equation (5) can be written as y ← f(x) + n, and exploit the
independence between cause X and noise N to infer the causal relationship from
data.

However, the additive noise model assumption can be limiting in some cases.
Because of this reason, we propose to use conditional generative adversarial
networks to address the problem of cause-effect discovery. The use of conditional
GANs is motivated by their shockingly resemblance to the structural equation
model (5). In particular, conditional GANs bypass the additive noise assumption
by allowing arbitrary interactions f(X,N) between the cause variable X and
the noise variable N . Moreover, GANs respect the independence between cause,
noise, and mechanism by definition, since the noise is sampled from a simple
distribution a priori.

Following the formalizations from Equation 6, training a conditional GAN
from X to Y is to minimize, in turns, the following two objectives:

Ld(d) = Ex `(d(x, y), 1) + Ez `(d(x, g(x, z)), 0),

Lg(g) = Ez `(d(x, g(x, z)), 1). (6)

Therefore, our recipe for cause-effect discovery using conditional GANs is to:

1. Learn a conditional GAN fromX to Y and generateDX→Y = {(xi, gy(xi, zi))}ni=1.

2. Learn a conditional GAN from Y toX and generateDX←Y = {(gx(yi, zi), yi)}ni=1.

3. Denote by t̂X→Y the two-sample statistic on D versus DX→Y .

4. Denote by t̂X←Y the two-sample statistic on D versus DX←Y .

5. If t̂X→Y < t̂X←Y , return “X causes Y ”.

6. Else if t̂X→Y > t̂X←Y , return “Y causes X”.

7. Else, return “test inconclusive”.
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Using a conditional GAN together with the C2ST-KNN test for cause-effect
discovery yields 73% accuracy on the 99 scalar Tübingen cause-effect pairs
dataset, version August 2016 (Mooij et al., 2016). Running 100 conditional
GANs from different random initializations and preferring the top 1% for each
cause-effect pair increases the performance to 82% classification accuracy. This
result highlights the promise of GANs for causal discovery. Evaluating the same
ensembles using the C2ST-NN test yielded 73%, and 65% when using the MMD
test. Overall, our results are a significant improvement with respect to ANM:
our implementation yields 66% accuracy. Learning-based methods, which require
constructing a large dataset of cause-effect pairs, obtain near 79% accuracy
(Lopez-Paz et al., 2015).
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A Results of image experiments

gf df ep random sample MMD KNN NN

- - - - - -

32 32 1 0.154 0.994 1.000

32 32 10 0.024 0.831 0.996

32 32 50 0.026 0.758 0.983

32 32 100 0.014 0.797 0.974

32 32 200 0.012 0.798 0.964

32 64 1 0.330 0.984 1.000

32 64 10 0.035 0.897 0.997

32 64 50 0.020 0.804 0.989

32 64 100 0.032 0.936 0.998

32 64 200 0.048 0.962 1.000

32 96 1 0.915 0.997 1.000

32 96 10 0.927 0.991 1.000

32 96 50 0.924 0.991 1.000

32 96 100 0.928 0.991 1.000

32 96 200 0.928 0.991 1.000

64 32 1 0.389 0.987 1.000

64 32 10 0.023 0.842 0.979

64 32 50 0.018 0.788 0.977

64 32 100 0.017 0.753 0.959

64 32 200 0.018 0.736 0.963

64 64 1 0.313 0.964 1.000

64 64 10 0.021 0.825 0.988

64 64 50 0.014 0.864 0.978

64 64 100 0.019 0.685 0.978

64 64 200 0.021 0.775 0.980

64 96 1 0.891 0.996 1.000

64 96 10 0.158 0.830 0.999

64 96 50 0.015 0.801 0.980

64 96 100 0.016 0.866 0.976

64 96 200 0.020 0.755 0.983

96 32 1 0.356 0.986 1.000

96 32 10 0.022 0.770 0.991

96 32 50 0.024 0.748 0.949

96 32 100 0.022 0.745 0.965

96 32 200 0.024 0.689 0.981

96 64 1 0.287 0.978 1.000

96 64 10 0.012 0.825 0.966

96 64 50 0.017 0.812 0.962

96 64 100 0.019 0.670 0.983

96 64 200 0.020 0.711 0.972

96 96 1 0.672 0.999 1.000

96 96 10 0.671 0.999 1.000

96 96 50 0.829 0.999 1.000

96 96 100 0.668 0.999 1.000

96 96 200 0.849 0.999 1.000

Table 1: GAN evaluation experiments on the LSUN dataset.

13



gf df ep random sample MMD KNN NN

- - - - - -

32 32 1 0.806 1.000 1.000

32 32 10 0.152 0.940 1.000

32 32 50 0.042 0.788 0.993

32 32 100 0.029 0.808 0.982

32 32 200 0.022 0.776 0.970

32 64 1 0.994 1.000 1.000

32 64 10 0.989 1.000 1.000

32 64 50 0.050 0.808 0.985

32 64 100 0.036 0.766 0.972

32 64 200 0.015 0.817 0.987

32 96 1 0.995 1.000 1.000

32 96 10 0.992 1.000 1.000

32 96 50 0.995 1.000 1.000

32 96 100 0.053 0.778 0.987

64 96 200 0.037 0.779 0.995

64 32 1 1.041 1.000 1.000

64 32 10 0.086 0.971 1.000

64 32 50 0.043 0.756 0.988

64 32 100 0.018 0.746 0.973

64 32 200 0.025 0.757 0.972

64 64 1 0.836 1.000 1.000

64 64 10 0.103 0.910 0.998

64 64 50 0.018 0.712 0.973

64 64 100 0.020 0.784 0.950

64 64 200 0.022 0.719 0.974

64 96 1 1.003 1.000 1.000

64 96 10 1.015 1.000 1.000

64 96 50 1.002 1.000 1.000

64 96 100 1.063 1.000 1.000

64 96 200 1.061 1.000 1.000

96 32 1 1.022 1.000 1.000

96 32 10 0.222 0.978 1.000

96 32 50 0.026 0.734 0.965

96 32 100 0.016 0.735 0.964

96 32 200 0.021 0.780 0.973

96 64 1 0.715 1.000 1.000

96 64 10 0.042 0.904 0.999

96 64 50 0.024 0.697 0.971

96 64 100 0.028 0.744 0.983

96 64 200 0.020 0.697 0.976

96 96 1 0.969 1.000 1.000

96 96 10 0.920 1.000 1.000

96 96 50 0.926 1.000 1.000

96 96 100 0.920 1.000 1.000

96 96 200 0.923 1.000 1.000

Table 2: GAN evaluation on the LFW dataset.
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