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ABSTRACT

It has been known that direct speech-to-speech translation (S2ST)
models usually suffer from the data scarcity issue because of the
limited existing parallel materials for both source and target speech.
Therefore to train a direct S2ST system, previous works usually uti-
lize text-to-speech (TTS) systems to generate samples in the tar-
get language by augmenting the data from speech-to-text translation
(S2TT). However, there is a limited investigation into how the syn-
thesized target speech would affect the S2ST models. In this work,
we analyze the effect of changing synthesized target speech for di-
rect S2ST models. We find that simply combining the target speech
from different TTS systems can potentially improve the S2ST per-
formances. Following that, we also propose a multi-task framework
that jointly optimizes the S2ST system with multiple targets from
different TTS systems. Extensive experiments demonstrate that our
proposed framework achieves consistent improvements (2.8 BLEU)
over the baselines on the Fisher Spanish-English dataset.

Index Terms— speech-to-speech translation, text-to-speech
augmentation, discrete units

1. INTRODUCTION

Speech-to-speech translation (S2ST) focuses on translating speech
from a source language into the speech of a target language [1]. Con-
ventional cascaded S2ST models decompose the task into three com-
ponents, including automatic speech recognition (ASR), machine
translation (MT), and text-to-speech (TTS) [2, 3]. Alternatively,
some previous works adopt end-to-end speech-to-text translation
(S2TT) instead of ASR and MT. However, it would introduce high
computational costs and inference latency for further application. To
mitigate the issue, recent literature focuses on building direct S2ST
models without three standalone modules [4–12].

The training of direct S2ST models needs inevitably large
amounts of parallel S2ST corpora, which are far more difficult to
obtain than conventional cascaded methods [6]. To mitigate the
issue and enable the training for S2ST models, previous works in-
corporated TTS systems to form the dataset for S2ST [4–11]. Nearly
all the published datasets on S2ST are extended from speech-to-text
corpora where the target speech for S2ST is synthesized by TTS
systems [13–15]. When synthesizing the target speech for S2ST,
researchers in previous works usually select a specific TTS sys-
tem. For instances, in [14], they utilized a variant of Non-attentive
Tacotron (NAT) [16], while in [15], they adopted Fastspeech2 [17].
To the best of our knowledge, there is no investigation into how
different synthesized target speech would affect the S2ST modeling.

To fill the research gap aforementioned, this paper focuses on the
effect of different synthesized speech from various TTS systems. We
find simply using training data from multiple TTS systems can im-
prove the performance of S2ST. To further utilize the shared knowl-

edge across multiple TTS systems, we further propose a framework
that jointly optimized the S2ST systems with multiple targets from
different TTS systems. Results show that our proposed method could
significantly improve the S2ST performances over baseline models.
To be specific, our proposed framework shows a 2.8 BLEU score
improvement over the best baseline system with a single TTS target
on the Fisher Spanish-English dataset [18]. The contribution of this
work can be summarized as follows:

• We first investigate the effect of different TTS systems for
target synthesized speech for S2ST.

• We propose a multi-task framework that combines knowledge
from different TTS data, which shows reasonable improve-
ments according to our experiments.

2. METHODOLOGY

In this section, we first review the background of this research, in-
cluding the S2ST system with discrete units and various TTS sys-
tems used in this work. Then, we introduce our proposed frame-
work for combining knowledge from target speech from different
TTS systems.

2.1. Background

S2ST with discrete units: Speech self-supervised learning (SSL)
models have shown outstanding performances on various tasks [19,
20]. Notably, they are also applicable to synthesis tasks [21–23].
To apply SSL representations, a common strategy is to discretize
them into speech units through clustering approaches [21, 24]. Pre-
vious works have shown that the discrete units can disentangle lin-
guistic content from other acoustic properties (e.g., speaker iden-
tity or prosody information), resulting in easier learning of linguistic
information directly from speech [21]. Due to this reason, Lee et
al. proposed a direct S2ST model, which uses discrete speech units
as the prediction target of the system [7]. Their experiments also
demonstrated their superiority over the translatotron-based methods
[4, 5] and comparable performances to the cascaded S2ST systems
[2, 3, 25]. The discrete units in their system are generated from the
K-Means clustering over the representation from a pre-trained Hu-
BERT model [26].
TTS systems: As mentioned in Sec. 1, previous studies usually em-
ploy TTS systems to generate the target speech for S2ST. The trans-
latotron series of works mainly adopt auto-regressive (AR) TTS sys-
tems (i.e., NAT) [4, 5, 14], while there are also other studies that ap-
ply non-auto-regressive (NAR) TTS such as Fastspeech2 [15]. All
these models are text2Mel models, where they convert the text to
Mel spectrogram, so they need additional vocoders to get the wave-
form of speech. The choices of vocoders also vary, including non-
parametric Griffin-Lim and neural vocoders.
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Fig. 1. The framework of our proposed S2ST model using multi-
ple TTS targets. The blue blocks represent the S2ST modeling; the
green blocks are modules used to generate target discrete units; the
gray blocks are the targets of the S2ST model, while the first token
is for predicting which TTS target is used for inference; the yellow
block is for model inference. Details are explained in Sec. 2.2.

In this work, we select three TTS models: Tacotron2 (TT2) [27],
Fastspeech2 (FS2) [17], and VITS [28]. Tacotron2 is a classical
AR TTS text2Mel model, while Fastspeech2 is a typical NAR TTS
text2Mel model. VITS, different from others (text2Mel + vocoder),
directly models the process from text to waveform (text2wav), which
does not need additional vocoders. For text2Mel models (i.e., TT2
and FS2), we adopt three different vocoders for investigation: Par-
allel WaveGAN (PWG) [29], Hifi-GAN (HFG) [30], and StyleMel-
GAN (SMG) [31]. We also investigate the effect of duration control
for NAR models by tuning the speed factor in the inference.

For the first set of our experiments, we evaluate the S2ST model
with different target TTS speech. Then, we further conduct experi-
ments on combining synthesized speech from different TTS systems.
For this study, we focus only on single-speaker TTS systems.
Overall Workflow: Based on the previous work discussed, the over-
all workflow for constructing an S2ST system is outlined below:
(1) Target speech synthesis: Target speech is synthesized using a
TTS model, which can be either an acoustic model and vocoder or
a direct text2wav model. (2) Discrete unit extraction: The synthe-
sized target speech is converted into discrete units using a HuBERT
model by clustering. (3) S2ST system training: The S2ST model is
trained using source speech as input and target discrete units as out-
put. (4) Inference: During inference, the S2ST model converts the
source speech into a sequence of discrete units. Then, a unit-based
vocoder is applied to generate the final waveform speech.

2.2. The Proposed Framework

As in [21, 24], speech discrete units from speech SSL representa-
tions can potentially disentangle linguistic, prosodic, and speaker-
related information. However, at the same time, it is still noisy to
use. For example, in [12], the authors have shown that the same sen-
tence spoken by different speakers, could result in different speech
discrete unit sequences. A similar phenomenon may happen when
the same sentence is generated by different TTS systems. To ver-
ify our hypothesis, we measure the Pearson correlation coefficients
of the HuBERT units’ distribution between different TTS systems
trained on LJSpeech [32].1 As shown in Fig. 2, it clearly indicates
that different TTS systems are still different though with the same
linguistic source and trained on the same corpus. The data includes

1The configuration of HuBERT and TTS systems are discussed in Sec. 3.2
in detail.
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Fig. 2. The Pearson correlation coefficients between different TTS
systems: the unit distribution is collected with the development set
of the Fisher Spanish-English dataset [18]. For the wave generation
from FS2 and TT2, we both utilize the Hifi-GAN vocoder.

the development set of the Fisher Spanish-English corpus [18]. On
the other hand, given the same utterance in the target language, the
synthesized speech should have the same linguistic content. There-
fore, it is reasonable to assume that the extracted units could have a
similar consensus shared across, given the same text is employed to
generate speech from different TTS systems.

Following the assumption discussed above, we propose the
framework as shown in Fig. 1. The framework is based on the model
proposed in [7] but is additionally designed to capture the high-level
consensus over linguistic information across different TTS systems.
To be specific, we add separate decoder branches for speech dis-
crete units generated from different TTS systems. For simplicity,
in Fig. 1, we show the case with two targets, but it could be easily
extended into three or more targets because of its parallel property.

Instead of directly predicting the units in parallel, we also ap-
pend a special token at the start of target unit sequences as shown in
the gray blocks in Fig. 1. The special token is defined as an indicator
of the quality of synthesized speech, which we can use to select bet-
ter output during model inference. Practically, we first compute the
character error rates (CER) at the sentence level for each utterance
from different TTS systems. Then, at the training stage, we assign
token [Y] to the TTS system with the best CER among candidate
target speech discrete units and token [N] to other systems.2 For
inference, we compute the probability of the first predicted special
token [Y] from all the decoders and select the one with the highest
probability to continue generating the sequences. Noted that since
the special token is at the start of the sequence, the inference process
does not need to auto-regressively generate future tokens if it already
has a lower probability than other branches. Therefore, compared to
the base system without multiple TTS targets, there is not much ad-
ditional searching burden when doing inference.

Due to the noise present in discrete units, a similar approach
was explored in [12]. The authors proposed a speaker normalization
method to normalize the units of different speakers to a reference
speaker. However, in the case of using different TTS systems, it
can be challenging to determine which system should be used as the
reference, as they are all synthesized using the same text.

3. EXPERIMENTS

3.1. Datasets

For S2ST, we use the Fisher Spanish-English dataset [18], which is
also widely used in the previous S2ST works [7,9]. The English TTS
systems are applied to synthesize target speech from the English text
for training and validation. For the training of TTS systems, we use
LJSpeech, a 24-hour single-speaker corpus [32].

2For even cases, we assign [Y] to all systems with the best CER.



3.2. Experimental Settings

3.2.1. Model architectures

Speech-to-unit translation model (S2UT): We follow the updated
version of S2UT model described in [11], which is an extension
of [7]. For speech discrete unit generation, we adopt the pre-trained
multilingual HuBERT, K-Means clustering, and the unit-based HFG
vocoder released in [11,12]. The vocabulary size of the discrete unit
is 1,000, corresponding to the number of clusters in the K-Means
model. The generated discrete units are reduced by duplication-
pooling, during the training of S2UT models. On the other hand, the
reduced units are recovered to their original lengths through a dura-
tion predictor that is jointly trained with unit-based HFG. The same
of [11], the encoder is initialized from a Conformer-based wav2vec
2.0, while the decoder is initialized from the mBART decoder [33]
released in [11]. To keep the consistency over different settings, we
do not tune the hyper-parameters, but use the settings as [11] for
different systems.
TTS models: As mentioned in Sec. 2.1, we utilize three different
TTS systems (i.e., TT2, FS2, and VITS) and three different vocoders
(i.e., PWG, HFG, and SWG). To keep the reproducibility of the ex-
periments, all the models are from public-available checkpoints in
ESPnet-TTS [34, 35], an open-source framework for TTS.

3.2.2. Training and decoding

For the training of S2UT models, we use the AdamW optimizer [36]
with a learning rate of 0.0005. The scheduler is applied with a
warmup policy that starts the learning rate from 1e-7 and reaches the
maximum learning rate at 20k steps. We accumulate the gradients
for every 120 steps to simulate a large batch size, which has shown
to be effective for S2ST learning. During the training, we follow the
“LNA-D” policy introduced in [11], which does not fine-tune all the
parameters in the pre-trained mBART decoder but only the Layer-
Norm and self-attention parameters. For the decoding of S2UT, we
apply beam search with a beam size of 10.

For NAR TTS models, the duration can be tuned with a speed
factor, resulting in the duration control to the generation. In our
experiments, apart from the TTS models we discussed in Sec. 2.1,
we also apply different speed factors including 0.95, 1.0, and 1.05.

3.2.3. Experiments design

The experiments generally include three folds:
Single TTS systems: To compare the effect of different TTS sys-
tems, we directly train the S2UT model with discrete units generated
from a single TTS system.
Simple combination of TTS systems: As discussed in Sec. 2.2,
multiple TTS systems could potentially improve the S2ST, by nor-
malizing the noise from unit sequences. To systematically inves-
tigate the effects of different systems, we carry out experiments
based on the modeling properties of different TTS systems, includ-
ing AR versus NAR, different vocoders, different speed factors, and
text2Mel versus text2wav.
Multi-task framework for multiple TTS targets: We follow the
design of the experiments in the simple combination of TTS systems,
but change from the data combination into the multi-task way of
training, as introduced in Sec. 2.2. We use the wav2vec 2.0-based
ASR model to compute the CER mentioned in Sec. 2.2. Due to the
requirements of large GPU memory to train models with more than
three additional branches, we limit the number of TTS systems to
less than four.

Table 1. S2ST Performances on different TTS systems. The “Data
ID” column stands for the target speech units generated from the
TTS system. The CER and BLEU are calculated as discussed in
Sec. 3.2.4. The acoustic models (AM) and vocoders are introduced
in Sec. 2.1.

Data ID AM Vocoder CER(↓) BLEU(↑)

A
TT2

PWG 9.1 37.3
B HFG 8.9 37.3
C SWG 8.7 37.3

Avg. TT2 / 8.9 37.3

D
FS2

PWG 9.4 37.5
E HFG 8.3 37.6
F SWG 8.7 37.5

Avg. FS2 / 8.8 37.5

G VITS 8.4 38.3

3.2.4. Evaluation metric

The TTS quality is first evaluated by inputting the synthesized
speech to the ASR model and calculating the character error rate
(CER) between the ASR prediction and the reference text. For the
ASR model, we employ the open-source ASR model that is trained
over wav2vec 2.03. For evaluation of the translation quality, we first
utilize the same ASR model to get the transcription of the S2ST
system (i.e., predicted units + code-HFG vocoder) and then compute
BLEU score with the reference text using SacreBLEU [37]. Noted
that the reference text is also tokenized and converted to lowercase
without punctuation for BLEU calculation.

3.3. Results and Discussion

We conduct experiments with target speech discrete units generated
from a single TTS system. The best system was obtained from syn-
thesized speech using VITS (data G), and the results are shown in
Table 1. We observe that there was no significant effect on S2ST
performance when different vocoders were applied to models A-C
and models D-F. However, the difference in acoustic models could
affect the S2ST results, with the best system using target speech syn-
thesized from VITS and the worst from TT2. We also find that the
CER in each TTS acoustic model roughly correlated with their S2ST
performance.

An interesting finding from Table 1 is that systems with differ-
ent vocoders achieved similar performances despite having different
CERs from the ASR model. We assume that this is due to the Hu-
BERT units helping to normalize the vocoder differences in speech
synthesis. To verify this hypothesis, we conduct a Pearson coeffi-
cient analysis over HuBERT unit distribution on FS2 with different
vocoders and found that the Pearson scores were all above 0.98.

Furthermore, we find that VITS usually had a higher CER than
TT2 and FS2 for spoken words (e.g., ”HMM”, ”HUM”). This could
be due to the data domain mismatch between the read speech used
for TTS training (i.e., LJSpeech) and ASR training (i.e., Librispeech)
and the conversational speech used for S2ST training (i.e., Fisher).

Table 2 presents the effect of different speed factors on NAR
TTS systems. The results show that a smaller speed factor can im-
prove the performance of the S2ST system. However, when mea-

3https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self



Table 2. S2ST Performances on different speed factors. The Fast-
speech2 (FS) model is combined with the HFG vocoder for TTS as
default. The TTS models are introduced in Sec. 2.1.

Data ID TTS Speed Factor CER(↓) BLEU(↑)

H
FS2

0.95 8.7 38.0
E 1.0 8.3 37.5
I 1.05 9.5 37.4

J
VITS

0.95 8.6 38.7
G 1.0 8.4 38.3
K 1.05 8.5 38.3

Table 3. S2ST Performances on multiple TTS targets. We follow the
categories listed in Sec. 3.2.3 to conduct experiments The models
with ✓in the “Multi-task” column are trained with the framework
proposed in Sec. 2.2.

Category Data Multi-task BLEU(↑)

Best Single TTS system J / 38.7

TT2 + FS2 B + E ✗ 37.0
✓ 37.6

TT2 + Vocoders A + B + C ✗ 37.3
✓ 37.3

FS2 + Vocoders D + E + F ✗ 37.7
✓ 37.9

FS2 + Speed Factors H + E + I ✗ 38.8
✓ 39.7

VITS + Speed Factors J + G + K ✗ 39.7
✓ 41.5

VITS + TT2 B + G ✗ 37.2
✓ 38.4

VITS + FS2 E + G ✗ 39.6
✓ 40.5

VITS + TT2 + FS2 B + E + G ✗ 38.5
✓ 40.1

suring the CER of the synthesized speech, using the default speed
factor of 1.0 is more favorable. Combining the results from Table 1
and Table 2, we find that VITS with a speed factor of 0.95 yields
the best-synthesized data for building the unit-based S2ST system.
Therefore, we report this number as a reference in the following
combination experiments.

Table 3 shows the results with the combination of different TTS
systems A-K, investigated in previous experiments. The experi-
ments with “✗” are the approaches that simply combine the data
from different TTS systems for training, while the experiments with
“✓” are based on our proposed method in Sec. 2.2. When compar-
ing models between Table 1 and Table 3, the results show that there
are usually some improvements in S2ST by simply merging the data
from different TTS systems. For example, we get 39.6 BLEU by
combining data E and G from Table 3, while from Table 1, when
training with only B or G, we get 37.6 and 38.3 BLEU, respectively.
Noted that there are also cases that the simple combination of data
does not improve the S2ST performances (e.g., A + B + C versus
A, B, and C). Meanwhile, compared to models without multi-targets

Table 4. S2ST Performances from different branches of the pro-
posed framework. The BLEU Diff. is the absolute difference be-
tween the system trained on corresponding single TTS systems. The
details are discussed in Sec. 3.3.

Category Branch(es) BLEU(↑) BLEU Diff.

VITS + TT2 + FS2

B 37.9 +0.6
E 38.8 +1.2
G 38.9 +0.6
B + E + G 40.1 /

VITS + FS2
E 38.8 +1.2
G 39.0 +0.7
E + G 40.5 /

VITS + Speed Factors

J 39.5 +0.8
G 39.1 +0.8
K 39.0 +0.7
J + G + K 41.5 /

training, we would get even better results by adopting the framework
proposed in Sec. 2.2.

As introduced in Sec. 2.2, given an utterance during inference,
the proposed framework starts with predicting the first token (e.g.,
[Y] or [N]) of each decoder branch. Then, it selects the decoder
branch with the highest probability of token [Y] as the decoder
branch for this utterance. In Table 4, we conduct an ablation study
about the inference based on the special token. To be specific, we
report the S2ST performances of each decoder branch from the
proposed framework and compare the results with S2ST systems
trained only on the corresponding TTS targets. Three S2ST systems
with the top three performances are chosen in our comparison. The
results show that the S2ST performances get improved for all the
branches when compared to systems trained on a single TTS sys-
tem (e.g., models trained with E or G from Table 1, and models
trained with J, G, K from Table 2). Meanwhile, it also shows the
effectiveness of the proposed inference procedure because the com-
bination of branches with our proposed method still outperforms the
single-branch performances.

4. CONCLUSION

This work first investigates the effect of using different targets from
different TTS systems. Experiments show that simply combining
the target speech from TTS systems could help the learning of S2ST,
especially the speech-to-unit model (S2UT). Following the findings,
we propose a new framework to integrate multiple TTS targets into
the S2ST modeling. Experiments demonstrate that our proposed
framework can consistently improve the performances of the best
baseline S2ST by 2.8 BLEU.
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