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ABSTRACT
Adaptive and intelligent user interfaces have been proposed as a crit-
ical component of a successful extended reality (XR) system [15]. In
particular, a predictive system can make inferences about a user and
provide them with task-relevant recommendations or adaptations.
However, we believe such adaptive interfaces should carefully con-
sider the overall cost of interactions to better address uncertainty
of predictions. In this position paper, we discuss a computational
approach to adapt XR interfaces, with the goal of improving user
experience and performance. Our novel model, applied to menu
selection tasks, simulates user interactions by considering both
cognitive and motor costs. In contrast to greedy algorithms that
adapt based on predictions alone, our model holistically accounts
for costs and benefits of adaptations towards adapting the interface
and providing optimal recommendations to the user.

1 INTRODUCTION
Extended reality (XR) is a growing area of post-desktop computing,
spanning virtual reality (VR), augmented reality (AR), and mixed
reality (MR). In VR, users are immersed in complex 360° environ-
ments where digital content can be freely accessed. In AR and MR,
users can seamlessly interact with both the real world and virtual
content, blurring the boundaries between them. This is radically
different from current interaction paradigms where digital inter-
faces occupy their own dedicated physical spaces (screens) and offer
users optimized and performant input methods to interact with
them. It is still unclear what new interaction capabilities and inter-
faces can best support the user and enable them to better interact
with content here. Given recent advancements in computational in-
teraction [11, 14], we see great potential for applying or developing
computational approaches to generate or adapt XR user interfaces
(UIs). In contrast to static UIs, these approaches could dynamically
adapt the UI to a user’s context and activity, thereby improving
interactions.

In this position paper, we introduce a model that can simulate a
user’s interactions with an XR interface, with the goal of selecting
optimal UI adaptations. We assume that the system has a predictive
model that provides a probability distribution over all possible ac-
tions in the interface. In a menu interface, for instance, the system
could predict the selection probability for each of the menu items.
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Prior work has developed methods and models for predicting users’
intentions given some prior information such as the user’s interac-
tion history and their context (e.g. [2, 6, 10, 19]). Given a probability
distribution over available actions, a predictive system can then
generate the UI. For example, it could generate a simplified menu
that prioritizes items with high probability (e.g. [7]), preferentially
reveal items [4], gradually reorganize items [18], or augment the
standard menu interface with recommendations (e.g. [17]).

A key aspect of our proposed model is that it consider various
costs during interaction. Recent work has studied the cognitive
costs and recovery time associated with recognition errors [9], and
planning-based approaches have been developed to estimate long-
term costs and benefits of adaptations [18]. Here, we study cognitive
and interaction costs in the context of a predictive system that
makes adaptive recommendations based on contextual predictions
about the user’s intents1. We argue that a ‘greedy’ recommender
approach – one that exclusively prioritizes high probability actions
– might be sub-optimal when used directly because it does not take
into account the interface design and potential adverse interaction
costs of inaccurate predictions. We develop a simulation model of a
user’s interactions with a hierarchical menu. The model takes into
account both benefits of a suitable adaptation and costs of inaccurate
predictions.We consider three key time-based costs of interactions –
inspection cost, selection cost, and correction cost – to compute the
utility of any given adaptation. In contrast to a greedy baseline that
always selects the highest-probability action, our model attempts
to minimize the overall selection time. The model is instantiated in
a menu-based XR system, enabling it to adaptively selects a utility-
maximizing starting point in the menu hierarchy. We demonstrate
the model’s predictions in a system with illustrative scenarios.

2 OVERVIEW
2.1 Background: Adaptive User Interfaces
In this paper, we discuss XR systems that can adapt their inter-
face to a user. By observing the user’s context, such systems can
make probabilistic predictions about their future intentions [15].
An adaptation policy determines how the interface should adapt
given a contextual probability distribution. Prior works have ex-
plored several policies, such as frequency, recency, and access rank,
among others (e.g. [5, 7, 13]). However, these typically assume that
the system’s predictions are accurate without fully considering the
cost of inaccurate predictions. As such, they can be ‘greedy’ in
that they aim to optimize adaptations solely based on these predic-
tions by recommending highest probability actions. When making
adaptations, they do not fully take into account the UI design or
1In this paper, we assume that contextual predictions are available to the adaptive
system; we do not develop this predictive model here.
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the fact that the user might have learned parts of it. To address
these gaps, in the present work, we introduce a model-based ap-
proach for adapting XR interfaces. The system considers the utility
of adaptations given contextual observations of the user to select
an optimal adaptation that can both maximize the benefits of an
accurate prediction and minimize the costs incurred otherwise.

2.2 General Approach: Model-Based Simulation
In our model-based approach, the goal is to estimate the utility
[8, 16] of an adaptation given a contextual probability distribution
over actions supported by the interface. This utility is a combination
of the benefits provided by an adaptation and the costs incurred due
to inaccurate predictions. As such, it is tightly coupled to both the
system’s predictions and the user interface design itself. The key to
computing utility is simulation of the user’s interaction sequence
when completing a given task. We consider target acquisition tasks,
where a user interacts with the UI to find and select a target item,
which is common when interacting with typical graphical UIs such
as menus, toolbars, and interactive applications. Each interaction
sequence – navigating from a starting point to the target item
– has a total cost associated with it. This could be quantified by,
for example, the time taken to complete the interaction sequence,
cognitive load, or physical exertion. Conversely, an adaptation has
a benefit associated with it; this is the cost that is circumvented
through adaptation of the starting point.

For any general adaptive interface, the utility of an adaptation
is a combination of the benefit provided by the adaptation and the
costs incurred due to inaccurate adaptations where the user’s target
item differs from the one favored by the adaptation. By modeling
the sequence of actions taken by a user to complete an interaction
task and estimating the costs incurred, an adaptive system can
effectively use simulations to estimate the utility of each possible
adaptation. It can then select the utility-maximizing adaptation to
optimize the interface given the user’s current context. We develop
one such adaptive system and elaborate upon the simulation model
that drives interface adaptations here.

3 MODEL FORMULATION
3.1 Application: Adapative XR System
Menus have received extensive attention in HCI research as they
are widely used and adaptation has potential to improve usability
[1]. Our simulation-based interaction model studies the case of
hierarchical menus. In our design, the user can traverse the menu hi-
erarchy, where items are grouped semantically into sub-menus, and
select items using selection actions. A dedicated correction action
(e.g. back button or gesture) enables the user to undo a selection,
or go one step up the hierarchy to a parent menu. While static
menus always provide the top-level item (root node) as the starting
point for interaction, we develop an adaptive menu that can dynam-
ically select any item as a starting point. This could either be the
root node, any intermediate sub-menu, or a leaf item (final action).
Figure 1 illustrates the adaptive system using an example menu.
Our simulation model adapts such a menu with the objective of
minimizing selection time.

3.2 Interaction Cost Parameters
Previous literature has developed models to explain a user’s search
process within linear menus [18]. We build upon prior work to
formulate a model for simulating user interactions with our hier-
archical menu-based XR interface. The model takes into account
cognitive and motor components of the interaction, given by the
three time-based cost parameters, to estimate the total cost of a
specific interaction event.

3.2.1 Inspection Cost (𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 ): When traversing a menu, the user
needs to first visually inspect the interface to find relevant items.
Each visual inspection has a cost associated with it. In this work,
we consider that inspection cost is item-independent, and use a
constant time-based cost of inspection 𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 .

3.2.2 Selection Cost (𝑇𝑠𝑒𝑙𝑒𝑐𝑡 ): This parameter defines the cost as-
sociated with taking a selection action. As the user inspects the
interface and finds relevant sub-menus or the target item, they
provide input by selecting the item. This selection could be using
a point-and-click technique, a dedicated gesture, or other input
modalities. The cost associated with this action is directly depen-
dent on the input technique, and is influenced by factors such as
input precision, encumbrance, and noise.

3.2.3 Correction Cost (𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ): During interaction, the usermight
need to take corrective actions either when they make an incorrect
selection or when the system presents an adaptation that is not
suitable towards the user’s actual intention. Such corrective actions
also have costs associated with them. Similar to the selection cost,
the input technique used to enable corrective actions influences the
correction cost.

3.3 Simulating User Interactions
We formulate a model for simulating user interactions with the
described adaptive XR interface. Given a starting menu item as
stimulus, it produces the set of actions required to acquire a target
item. We consider that a user adopts a serial search strategy, where
they inspect each menu item until they find their target item or
they reach the end of the menu.

3.3.1 Search-and-Select: During a target acquisition task, the user
inspects (reads) the menu interface until they either find a sub-
menu item that contains their target item or the target item itself;
upon finding this item, they make a selection. The total time cost
for this sequence of actions (𝑇𝑠𝑒𝑎𝑟𝑐ℎ (𝑖𝑙 )) is given by:

𝑇𝑠𝑒𝑎𝑟𝑐ℎ (𝑖𝑙 ) =
𝑙∑︁
𝑗=1

𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 +𝑇𝑠𝑒𝑙𝑒𝑐𝑡 (1)

where 𝑖𝑙 is either the target sub-menu or target item and 𝑙 is the
location of 𝑖𝑙 . To recursively search and select within sub-menus,
the above search process is repeated and costs are accumulated.

3.3.2 Backtracking: If the user encounters a sub-menu that does
not contain the target item, they need to take a sequence of correc-
tive actions, called backtracking, to traverse the menu hierarchy and
find the appropriate parent menu before beginning the above search-
and-select process. Each corrective action incurs a correction cost,
following which, items in the parent sub-menu are displayed. The
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Figure 1: (a) An example application UI, with ‘Music’ as the currently selected item. (b) Hierarchical structure of the application
menu, with ‘Entertainment’ as the top-level item (root). The structure shows the path from the current item (‘Music’, highlighted
in yellow) to the target item (‘Top 50’, highlighted in green). To complete this target acquisition task, the user needs to make
two corrections followed by three selections. The tree diagram is also annotated to show the selected adaptations for the three
scenarios.

user now serially searches for a relevant item within this sub-menu;
if they fail to find such an item, they repeat these backtracking
steps until they encounter a relevant item. The total backtracking
cost to recursively find an item related to the target item is given
by:

𝑇𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 =

𝑛∑︁
𝑘=1

(𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 · (𝑙𝑘 ·𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 )) (2)

where 𝑛 is the number of sub-menus and 𝑙𝑘 is either the position
of the relevant item within a sub-menu 𝑘 or the number of items in
sub-menu 𝑘 if the relevant item is not present.

3.3.3 Total Interaction Cost: Using the two components above,
search-and-select and backtracking, we can compute the total cost
of any target acquisition task. When the user is presented with an
initial menu item 𝑘 and has a target 𝑙 , this cost is given by:

𝑇 (𝑘, 𝑙) = 𝑇𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 +𝑇𝑠𝑒𝑎𝑟𝑐ℎ (3)

where 𝑇𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 is the total time cost required to backtrack to the
closest common parent item of 𝑘 and 𝑙 , and 𝑇𝑠𝑒𝑎𝑟𝑐ℎ is the time cost
for inspecting the menu and making selections until the target item
𝑙 is acquired.

3.4 Selecting Adaptations
With the above formulation, we can predict the total cost for any
interaction sequence. As described in subsection 3.1, the system
adapts the interface by selecting a suitable starting point 𝑘 , given a
probability distribution 𝑝 over all leaf menu items. Each adaptation
has a utility associated with it, which is the combination of the
benefit and costs of an adaptation 𝑘 :

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑘 =

(
𝑛∑︁
𝑖=0

𝑝𝑖 ·𝑇 (𝑘, 𝑖)
)
− (𝑝𝑘 · 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑘)) (4)

where 𝑛 is the number of leaf items, 𝑇 (𝑘, 𝑖) is the cost for starting
from item 𝑘 when the target is 𝑖 , 𝑝𝑖 is the predicted probability of
leaf item 𝑖 , and 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑘) is the benefit of starting at item 𝑘 . For
our menu-based interface, given a target item 𝑙 , benefit of adaptively
selecting a starting item 𝑘 is given by 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑘) = 𝑝𝑘 ·𝑇 (0, 𝑘).

With this formulation, we can predict the utility of every possible
adaptation in the interface. As this utility estimates the average
selection time, we can then select the adaptation 𝑎 that minimizes
this value:

𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖∈𝑛

𝑈𝑖 (5)

4 WALKTHROUGH
4.1 Setup
Menu Interface: We implement an application that allows users to
select from a range of actions: watching TV shows or movies and
listening to radio stations or specific music genres. These actions
are presented in a hierarchical menu, where a (sub-)menu and its
contents are displayed in a list. Additionally, a ◀ “back” button
allows for corrective actions (Figure 1-a). Figure 1-b illustrates the
hierarchical structure of the menu interface and the sequence of
actions taken by a user to navigate from a starting item to select a
target item.

Probability Distribution: TheXR device observes the users context
to generate a probability distribution over the given action space. It
can, for instance, observe the user’s current location, activity, and
time-of-day to make inferences about what their intentions would
be. We consider the following exemplary probability distribution
for leaf items to demonstrate various scenarios:
𝑝 = {Reality: 0.073, Comedy: 0.024, Drama: 0.098, Top
50: 0.024, New: 0.024, Classics: 0.122, News: 0.11,
Charts: 0.085, Retro: 0.122, Jazz: 0.073, Electronic:
0.22, Rock: 0.025}.
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Item Probability Scenario 1: Utility (in ms) Scenario 2: Utility (in ms) Scenario 3: Utility (in ms)
Entertainment 1.000 8121.0 2121.0 7605.0
Watch 0.365 6731.0 3461.0 8050.0
Listen 0.635 4984.0 2254.0 5525.0
Shows 0.195 6883.5 5663.5 10427.5
Movies 0.170 7067.0 5747.0 10495.0
Radio 0.317 4808.9 4076.9 7442.5
Music 0.318 4736.5 4008.5 7114.5
Reality 0.073 7687.2 8125.2 12441.0
Comedy 0.024 8226.3 8370.3 12931.5
Drama 0.098 7370.5 7958.5 11982.5
Top 50 0.024 8299.2 8443.2 12996.0
New 0.024 8294.4 8438.4 12972.0
Classics 0.122 7152.8 7884.8 11674.0
News 0.110 5857.0 6517.0 9659.0
Charts 0.085 6120.0 6630.0 9849.0
Retro 0.122 5673.8 6405.8 9283.0
Jazz 0.073 6228.8 6666.8 9865.0
Electronic 0.220 4523.7 5843.7 7954.5
Rock 0.025 6761.2 6911.2 10367.0

Table 1: Model results showing the list of menu items, probabilities, and utility values for the three scenarios. The value
associatedwith the optimal adaptation for each scenario are shown in bold (Electronic = 4523.7ms for scenario 1, Entertainment
= 2121.0 ms for scenario 2, Listen = 5525.0 ms for scenario 3.)

4.2 Example Scenarios
Here, we present a set of illustrative scenarios that imitate differ-
ent conditions or properties of the XR system, to study how they
might result in varying model predictions and adaptations. For each
scenario, Table 1 presents the model outputs (utility) for all menu
items.

4.2.1 Scenario 1: low inspection cost, high selection cost, low cor-
rection cost. Here, the XR system is designed such that inspections
have a low cost, corrections have a low cost, and selections have
high cost. This might be the case when the UI displays texts in
large fonts, simple gestures are used for correction (e.g. swipe),
and selection is tedious (e.g. point-and-click). We use the following
values: 𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 = 100 ms, 𝑇𝑠𝑒𝑙𝑒𝑐𝑡 = 2500 ms, 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 500 ms.

The system selects Electronic as the optimal adaptation. Since
this item has high probability and selection is more time-consuming
that correction or inspection, it is advantageous for the system to
make this optimistic adaptation.

4.2.2 Scenario 2: low inspection cost, low selection cost, high correc-
tion cost. In this scenario, while inspection is similar to scenario
1, selection now has a low cost (e.g. pinch), while correction has
a higher cost (e.g. point-and-click). We use the following values:
𝑇𝑖𝑛𝑠𝑝𝑒𝑐𝑡 = 100 ms, 𝑇𝑠𝑒𝑙𝑒𝑐𝑡 = 500 ms, 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 2500 ms.

The system selects Entertainment as the adaptation to opti-
mize the utility. Given the current context, with uncertainty in
the contextual predictions, the system chooses the root item for a
conservative adaptation to avoid the high correction costs.

4.2.3 Scenario 3: high inspection cost, average selection cost, average
correction cost. Finally, we consider a case where inspection costs
are relatively high; this might be the case when text is rendered in
small fonts, or items are represented using abstract icons. Addition-
ally, we select average selection and correction costs, where similar
gestures are used for both actions (e.g. left-swipe and right-swipe).

Here, the system selects Listen as the adaptation. By selecting
a high-probability sub-menu, which is neither the root nor a leaf
item, it considers the trade-offs to optimize the average selection
time using a balanced adaptation.

4.3 Summary
As the above scenarios illustrate, our simulation model successfully
takes various interaction costs into account to compute utility. By
doing so, it can select optimal adaptations, which vary between
scenarios, that minimize the average selection time. In contrast,
to the above results, a greedy approach would always select the
highest probability item (Bonobo) as the adaptation.

5 DISCUSSION
In this position paper, we have argued for a computational approach
to adapt XR interfaces that considers both costs and benefits of
adaptations. We presented a novel model that considered three
cost components – inspection, selection, and correction – towards
simulating user interactions with a hierarchical menu. Given a
contextual probability distribution, the model can estimate utility
and select optimal adaptations that minimize interaction time. Our
illustrative scenarios demonstrate the benefits of such a model:
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by considering varying cost parameters, it can enable a system to
select varying adaptations that are suitable for particular scenarios.

We see several exciting topics for future research onmodel-based
adaptive interfaces. While we consider a serial search strategy, an
extended model could account for varying visual search strategies
such as foraging and recall. Additionally, model predictions can be
improved by identifying user expertise from prior interactions and
including it in the model. Our model considers total interaction
time as the objective for optimization; exploration of other aspects,
such as ergonomics [3] and learnability [12] and their associated
cost parameters will be important for optimal adaptive XR systems.
Furthermore, extending the model to consider different adaptation
styles will increase its applicability in various systems. For instance,
our model considers a hierarchical menu where a single item is
recommended as the starting point. Future adaptive systems can
benefit by similarly developing simulation-based models for sce-
narios where multiple recommendations, or custom shortcuts, are
presented.

To conclude, computational methods for generating or adapting
their interfaces are a promising approach for the future of highly
usable XR systems. By adapting based on both contextual infer-
ence and interaction utility, they will be able to overcome new
challenges imposed by the device and the environment. We believe
future applications can benefit from applying simulation-based in-
teraction models, and look forward to developing and discussing
novel models and approaches for such adaptive interfaces.
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