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ABSTRACT
In this paper, we present VisRel, a deployed large-scale media search
system that leverages text understanding, media understanding,
andmultimodal technologies to deliver a modernmultimedia search
experience. We share our insight on developing image and video
understanding models for content retrieval, training efficient and
effective media-to-query relevance models, and refining online
and offline metrics to measure the success of one of the largest
media search databases in the industry.We summarize our learnings
gathered from hundreds of A/B test experiments and describe the
most effective technical approaches. The techniques presented in
this work have contributed 34% (abs.) improvement to media-to-
query relevance and 10% improvement to user engagement. We
believe that this work can provide practical solutions and insights
for engineers who are interested in applying media understanding
technologies to empower multimedia search systems that operate
at Facebook scale.

CCS CONCEPTS
• Computing methodologies → Image representations; • In-
formation systems→Multimedia andmultimodal retrieval;
Image search; Video search.
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1 INTRODUCTION
Facebook connects billions of people around the world. Not only
do users express themselves through posts and comments, they
also come to the social platform to search and explore. Common
use cases include (1) connecting with friends and communities,
(2) learning about a specific topic of interest, (3) getting the latest
updates on public figures and celebrities, (4) gaining a deeper per-
spective about a news event, (5) discovering inspirational memes,
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Figure 1: Example ofMedia Search in the Facebook appwith
free-text query “hawaii”.

and (6) celebrating special occasions with family and friends. As
photos and videos are among the most ubiquitous content types,
we have developed a search surface specialized for media content
to better fulfill users’ diverse information needs (Fig. 1) [31].

In developing a multimedia search engine, we have encountered
a number of challenges:

• Noisy text description: the text body of a post may not have
a strong topical connection with the accompanying media
content

• Media to text representations: relevance models need to match
free-text queries with content features that are represented
in different semantic spaces

• Variety of media types: since photos and videos can be mixed
together in the search results, relevance and ranking mod-
els need to be capable of evaluating all media types with
comparable performance

• Large document corpus: the search index comprises trillions of
media documents frommany popular Facebook features [27];
the search engine must be capable of sifting through large
amount of data for relevant results at scale

• Multilingual support: our technologies need to work consis-
tently and reliably for many languages
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Figure 2: Sequence of information processing steps in VisRel: an NLP service extracts query-side features; a triggering module
resolves what type of content to retrieve; an index service returns an initial set of candidates (thousands); multiple ranking
stages are used to select the most relevant and engaging results (hundreds).

Solving these challenges entails a deep understanding of media
content and free-text queries. We herein share our solutions for
modeling media and query representations to improve search qual-
ity, methods to match query to media content representations, and
techniques to interpret and handle a variety of search intents for
many languages. As the VisRel system is deployed to a very large
index of over 1012 entries [27], we also present the system architec-
ture and discuss some optimization steps to help the search engine
operate at scale. The contributions of this paper are highlighted
below:

Practical solutions for one of the largest search systems in
the industry. This work not only presents the system architec-
ture (Fig. 2) and the building blocks for a large-scale media search
system (§ 3) but also proffers practical suggestions on how each
component can be tuned to improve the overall efficiency and qual-
ity of the search engine.

Experience with metrics. We share hands-on experience in
working with online and offlinemetrics to evaluate the performance
of relevance models and the output quality of the search engine.
Furthermore, we offer examples wherein some metrics may fail
(§ 3.1) and describe techniques to improve the alignment between
online and offline metrics (§ 3.6).

Scalable content understanding solutions formedia search.
VisRel leverages representation learning on photos and videos, mul-
timodal modeling of textual and visual features, and free-text query
understanding to render a compelling search experience. We share
our experience in adapting modern computer vision technologies to
information retrieval tasks (§ 4) and techniques to improve query-
to-media relevance in search ranking models by aligning semantic
representations from different domains (§ 5).

Experience in online experiments. Over the course of VisRel
development, we have conducted hundreds of online A/B tests to
refine and iterate on each building block in the search system. The
suite of solutions discussed in this work has collectively improved
query-to-media relevance rate by 34% absolute (§ 3.5). We share the
results of online experiments in § 4 and § 5.

2 RELATEDWORK
Media search is a powerful tool for people to learn and explore any
topic of interest on the internet. Web search engines such as Google,
Bing, Baidu, Yandex, and Pinterest offer the ability to search publicly
accessible media content, whereas specialized search engines such

as Google photos and Apple photos provide search capabilities for
private image collections. By contrast, Facebook search is designed
to retrieve both (i) publicly accessible posts and (ii) posts with
limited visibility—e.g., friends only. To help people find and explore
any content of interest on Facebook, search products are built upon
a robust and scalable system called Unicorn [10]. With billions of
active users on the social platform, our search index comprises
over 1012 documents [27]. In this work, we share our experience in
developing practical solutions to empower efficient and effective
media content search with free-text queries.

Visual recognition technologies have garnered industry-wide
attention in recent years [2, 14, 28–30, 33]. In particular, we are in-
terested in adapting weakly-supervised fine-grained image recogni-
tion to search use cases. Joulin et al. [18] studied weakly-supervised
learning on the Flickr 100M dataset, and they demonstrated that
even in the absence of hand-labeled data, convolutional neural net-
works (CNN) can still learn good visual features and perform well
in downstream tasks. Zhai and Wu [32] trained image classifiers
over millions of images with user annotated data from Pinterest
pin-boards and produced high quality binary embeddings using a
softmax classification approach to deep metric learning. By con-
trast, we fine-tune the CNN from Mahajan et al. [23] on search logs
with a large label space. We share the data preparation and model
fine-tuning steps in § 4.2.

The utility of matching search query to document by their se-
mantic representations has been demonstrated in recent adaption
of representation learning for information retrieval tasks [15, 24].
Nowadays technology is moving towards incorporating advanced
deep learning approaches to produce visual and textual representa-
tions that are more closely aligned in semantic space. Chen et al. [5]
and Lu et al. [22] explored building complex models that achieved
state of the art performance in matching natural language and vi-
sual domains. However, these models are not practical in production
settings due to significant computation costs that can incur during
media upload (e.g., finding bounding boxes of objects of interest)
and high latency arising from late fusion of visual and textual rep-
resentations. Guo et al. [13] used BERT-based models to encode
query and document to the same semantic space and explored pre-
computing of document embeddings to reduce computation costs.
However, their work did not explore multimodal problems. In § 5,
we share our experience in applying multimodal techniques to
improve query to media content matching at Facebook scale.



3 SEARCH ARCHITECTURE AND METRICS
This section first describes how we measure and evaluate changes
to our search system in offline and online experiments (§ 3.1). It
is followed by discussions on the four core components in Vis-
Rel—query preprocessing (§ 3.2), triggering (§ 3.3), retrieval (§ 3.4),
and ranking (§ 3.5). Lastly, we present techniques to refine and
improve the accuracy of offline evaluations with respect to online
performance (§ 3.6).

3.1 Evaluation Metrics
3.1.1 Online Metrics. User satisfaction is an important factor that
determines the success of a consumer application. User feedback
surveys can be used to gauge satisfaction. However, to study an
incremental modeling improvement, tens of thousands of surveys
must be collected to ascertain if an observed difference between a
pair of A/B test cohorts has statistical significance. Evaluation by
user surveys is thus unsuitable for our day-to-day workflow due to
the laborious feedback collection process and potential exposure to
participation bias.

For online experiments, user retentionmay be used as a proxy for
user satisfaction because it is reasonable to assume that people are
much likelier to return if they have had a positive search experience
in the recent past. A user is considered retained if there is search
activity today and there was also a prior activity within a trailing
window of 𝑙 days—L7, L14, L28, etc. In practice, we find that reten-
tion metrics are often insensitive to incremental modeling changes.
Consequently, we pay close attention to behavioral metrics such as
time spent, impressions, click rate, meaningful clicks, and good click
rate to gain insights into our experiments (Table 1).

Limitations of time spent. When a user wants to explore a
general topic, our search engine may return thousands of media
results that satisfy the query. Time spent is a meaningful application
metric because one criterion of success in content discovery is the
ability to continuously stimulate the user’s appetite for information
connected to the topic of interest. However, if ranking models are
trained to optimize solely for time spent, we have found that the
resulting experience favors media featuring memes and spiritual
quotes. In addition, the top results become dominated by videos.
We conclude that this produces a suboptimal search experience
upon confirmation of retention decline in online experiments.

Table 1: Evaluation metrics for online experiments

Metric Measurement

Time Spent Duration of a search session

Impressions Number of media shown per search session

Click Rate Number of user actions per search session

Meaningful Clicks User actions that are considered of greater
application value, e.g., post shares, com-
ments, reactions, follows, etc.

Good Click Rate Ratio of search sessions with significant
time spent or meaningful clicks to all search
sessions

Table 2: Guidelines for evaluatingmedia-to-query relevance

Score Explanation

3 Media has a strong topical connection with the
likeliest interpretation of the query

2 Media has a reasonable topical connection with a
possible interpretation of the query

1 Media is vaguely connected to the query, but not
the salient subject or segment

0 No meaningful topical connection between media
and query

Limitations of click rate. Result clicks are commonly consid-
ered a favorable measure for search success. However, clicks can be
biased by extrinsic factors unrelated to media retrieval and ranking.
In one experiment, we introduced a feature to automatically adjust
the application viewport toward the salient objects detected in an
image. Accordingly, those objects would be prominently shown in
any cropped frame regardless of the original photo’s aspect ratio.
However, click rate declined by 3% in this experiment, and search
time spent unexpectedly increased. With cropped thumbnails, we
hypothesized that poor framing forces users to click on the thumb-
nails more frequently to open the full image view. By contrast, when
the main subjects are prominently shown in a cropped frame, it no
longer entails forced actions. The increase in time spent supported
our view that users experienced less friction with the application.
This example shows all behavioral metrics must be evaluated to-
gether to determine whether the proposed change delivers a better
user experience. Consequently, we have designed a metric called
meaningful clicks to encapsulate user actions of greater application
value. In addition, we combine time spent and meaningful clicks to
a composite metric called good clicks to help evaluate the overall
experience.

3.1.2 Offline Metrics. We routinely use ROC AUC, normalized en-
tropy [26], and mean average precision (mAP) to compare model
quality in retrieval and ranking development. Precision@K and Re-
call@K [28, 32] are adapted to evaluate embeddings quality. Once
model development is finalized in offline settings, we enlist the help
of human raters to evaluate the correctness and quality of model
predictions. Query data are de-identified and aggregated to form a
validation query set, and only publicly visible photos and videos are
enqueued for rating. Table 2 lists a subset of rating guidelines for
media-to-query relevance. Multiple levels of granularity are neces-
sary to derive meaningful DCG@K scores [16] so that search results
can be compared holistically. We also keep track of Off-Topic@K,
which measures the average fraction of validation queries where at
least one irrelevant media is found among the first 𝐾 search results
to the query. In practice, we only proceed to start online A/B tests
after determining that the candidate models perform at least on a
par with the baseline with respect to DCG@K and Off-Topic@K.

Limitations of human ratings. As the human raters are in-
structed to assess media-to-query relevance only, the evaluation
results are generally interpretable, and they give insight into the



performance of candidate models. We have found that DCG score
tends to positively correlate with online metrics for queries that
refer to sufficiently specific topics—e.g., “underwater wedding”,
“origami butterfly”, “round dining table”. Conversely, if the topical-
ity is overly generic—“morning”, “sunset”, “puppies”, etc.—a high
DCG score does not automatically imply that the top 𝐾 media are
universally appealing to end users. Thus, a comprehensive review
of search quality must examine both offline and online experiment
results.

3.2 Query Preprocessing
When the system receives a search query, the query text is for-
warded to a natural language processing (NLP) service to extract
query-side features. Classical techniques are applied to perform
language-specific word segmentation and spelling correction. Vari-
ous interest-based classifiers are run to infer query intent as a map
of ⟨topic � probability⟩. The topics include celebrity, commerce,
person name, sports, etc. For media search, we have trained a query-
to-media two-tower model and deployed the query-side network
to the NLP service (§ 5.1). In addition, the NLP service provides
lookup for visual per-query models (§ 5.2).

To provide similar search experience to billions of users around
the world, we have built solutions that work reliably for many
languages. Historically in the industry text representations were
separately trained for each language. However, such approaches
have high maintenance costs because it would require training sep-
arate downstream models for each use case and for each language.
By contrast, we have adopted multilingual fastText [8] embeddings
wherein representations for different words are aligned to the same
semantic space. We have also explored BERT-based representations
such as XLM-R [7], where one unified model is trained for over a
hundred languages. We share results of the XLM-R based model in
a separate paper.

3.3 Triggering
Photos and videos are only a subset of the types of results we
show to users when they search on Facebook. Since we cannot
know the intent of the user using just the query itself, we use other
information such a user preferences and past engagement to rank
each type of result. For a query like “cricket live”, videos would
be the top results shown to users while for a query like “new year
party”, events would be the top results. For certain queries, media
results have such a low rank that the user never sees it, so the
resources spent in retrieving and ranking those media results were
wasted.

As an optimization, we use a combination of rules and a trigger-
ing model to predict for which queries we should call the media
backend. The rules are based on thresholds of probabilities from
query intent computed in the NLP service. We perform offline anal-
ysis to tune to the thresholds to maximize triggering queries users
interacted with in the past. We also train a wide & deep neural
network [6] model using click data to predict if we should trigger
given a particular query. We used the query intents, user attributes,
and historical user interactions as features in the model. The model
helps the trigger logic to keep up with the changes in user query
trends. We found that using this triggering logic helps to keep the

capacity requirements lower while maintaining high engagement
in the results we do show.

3.4 Retrieval
During retrieval we need to collect a subset of media from the entire
corpus in the search index based on the user’s search query. To
facilitate this collection, we store several terms for eachmedia in the
inverted index. The terms are derived from many sources like text
descriptions of the media, the author of the media, or terms inferred
from the media itself. We match these inverted index terms with the
user’s query and assign a score based on how many terms match
and which terms match. We then pass the top N documents to the
ranking stage where N is tune-able based on the available compute
capacity. We use an intuitive strategy for score assignment. For
example, we assign a higher score if we match multiple terms for a
particular media or if we match bi-grams in addition to uni-grams
in the text description. To improve recall, we also use predicted
content based terms for matching like SURU labels, media tags
described in § 4.

Mixing photos and videos together. In certain scenarios we
show photos and videos together in a unified media search results
page. In such cases we need to find the balance between different
types of media. From running A/B experiments with mixed search
results pages we found that if we promote only photos, or only
videos, then it degraded user retention. To solve the issue, we aimed
to have similar signals and technologies to augment both videos and
photos. For example, content understanding features needed to be
present for both photos and videos, therefore we apply techniques
like tagging in § 4.1 for both types of media. Additionally, we found
that optimization of online metrics play an important role, and
optimize for good click rate, which helps to find the balance between
different types of medias on the search result page.

3.5 Ranking
VisRel executes media ranking in two stages. L1 ranking is first
applied to an initial set of about 103 candidates that are retrieved
by the index service, and the top results (∼100) are forwarded to
L2 ranking to construct the final search experience (Fig. 2). In this
section, we describe the data preparation and training steps for
each ranking stage.

Data. We train our models with human-labeled data as well
as user engagement data. Query and document features are com-
puted and logged to file system as Unicorn completes the search
request. We collect training data from aggregated and de-identified
search queries. For human-labeled data, an in-house replay sys-
tem enqueues these sampled queries for publicly visibly content
and creates pairs of ⟨query, photo/video⟩ for evaluation. The raters
then score each pair in accord with the relevance guidelines in
Table 2. The replay system is also used to refresh query and doc-
ument features of previously rated ⟨query, photo/video⟩ pairs by
applying model inference and feature extraction with the latest
system configuration.

We log user engagement data such as clicks, meaningful clicks,
and good clicks as defined in Table 1. Among these engagement
categories, good clicks offer the best query-to-media relevance for a
given action, followed by meaningful clicks and clicks in decreasing



correlation strength. On the other hand, we have also observed that
clicks are more abundant than meaningful clicks and good clicks.
Thus, we note that signal quality varies inversely with quantity.

L1 Ranking.We use user engagement data to train a gradient
boosted decision tree (GBDT) model using list-wise LambdaMART
loss [4]. We adjust the training examples’ weights based on their
clicks and sessions, such that those with higher quality can have
higher weights so as to drive the model to find the balance between
engagement and quality. We firstly assign equal weight to each
training example. For those ⟨query, media⟩ pairs that have received
fewer than 𝑁 clicks, we multiply their weights by 1 − sigmoid(𝛼 ·
𝛾no_click), where 𝛼 is a constant, and 𝛾no_click is the ratio of media
sessions that receive no click in the past 𝐾 days. We use query
intent probabilities, media embeddings, user attributes as features
in the GBDT model.

We also experimented with using the human rated data to train
the GBDT. But because that data focuses heavily on the relevance
between query text and media, the model tends to neglect engage-
ment features that reflect more on users’ interest. This leads to an
overall loss in user engagement while the human rated evaluation
metrics remain neutral.

L2 Ranking. We use user engagement data to train a wide &
deep neural network model [6] as a second stage ranker using
LambdaRank loss. In addition to all the features used in the GBDT
model, we also use the query ngrams, media understanding ngrams
as sparse features. The model is first trained on click data and
then fine-tuned on human rated data. The human rated data helps
balance the relevance vs engagement trade-off.We further fine-tune
the model using labels and weights that reflect users’ downstream
actions—like, comment, reshare, etc.—and retention (§ 3.1.1).

3.6 Improvements in offline measurements
To reduce potential selection and positional bias in training and eval-
uation datasets, we have explored offline replay with randomized
search results [20] and with reweighted historical examples [21].
Randomization may be implemented by shuffling the top 𝐾 results.
Alternatively, a small perturbation can be introduced to the ranking
score (𝑠) such that 𝑠 ′ = (1 − 𝛼) · 𝑠 + 𝛼 · rand(𝑠), where 𝛼 controls
the strength of randomization effect. In practice, randomization
is applied only to a small portion of user traffic. This is colloqui-
ally referred to as the randomized bucket. The decision to activate
randomization is determined by a combination of user, timestamp,
query, and media document. We design this procedure to be deter-
ministic and idempotent so that it can be emulated in subsequent
data processes. Although one notable drawback of randomization is
that some users are exposed to a suboptimal experience, evaluation
data collected from the randomized bucket can impart a stronger
confidence in the online performance of candidate ranking models
when they are evaluated only with traditional offline metrics such
as AUC and DCG.

Reweighting of historical examples is another technique to miti-
gate potential bias in evaluation data. As introduced in § 3.1.1, click
rate is a well-established metric to measure search success. Given a
set of search sessions (S), average click rate (CR) is computed by

CR =
1
|S|

∑
⟨X,D,C⟩𝑖 ∈S

∑
𝑑𝑖,𝑗 ∈D𝑖

I
(
𝑑𝑖, 𝑗 ∈ C𝑖

)
(1)

Table 3: RMSE for traditional metrics on randomized and
non-randomized data, and log ratio click model on non-
randomized data.Measured over 44A/B online experiments.

Randomization ROC AUC NDCG@3 Log Ratio

Non-randomized data 2.63 2.85 0.57
Randomized data 1.70 4.62 n.a.

where the ⟨X,D, C⟩𝑖 tuple denotes the search context (X), retrieved
documents (D), and clicked documents (C) in search session 𝑖; and
I is an indicator function that evaluates to 1 when the condition
is met or 0 otherwise. Instead of using only the ratio of ranking
scores for sample reweighting [21], we propose amodification using
logarithm to compute an estimated click rate (ĈR):

ĈR =
1
|S|

∑
⟨X,D,C⟩𝑖 ∈S

∑
𝑑𝑖,𝑗 ∈D𝑖

I (𝑑𝑖 ∈ C𝑖 ) ×

sign
(
𝑠ℎ (𝑑𝑖 | X𝑖 )
𝑠𝜋 (𝑑𝑖 | X𝑖 )

)
× log

(
min

{���� 𝑠ℎ (𝑑𝑖 | X𝑖 )
𝑠𝜋 (𝑑𝑖 | X𝑖 )

���� , 𝑀})
(2)

where 𝑠 (𝑑𝑖 | X𝑖 ) denotes the ranking score for document 𝑑𝑖 given
search context X𝑖 , 𝜋 stands for the production ranking model, ℎ
stands for the candidate model, and𝑀 is a hyperparameter to tune
the stability of offline evaluation. We normalize all scores within
each search interaction session to be in range [0,1] by min-max
normalization. Because we experimented with the same model
type (e.g. neural network) simple score normalization within each
session worked well. From practice we observed that normalization
based on Isotonic regression [19] could be alternative model score
normalization approach when model types are different, where
each model scores are calibrated to [0,1] range.

We use root-mean-square error (RMSE) to measure the accu-
racy of the offline evaluation framework relative to online per-
formance. In this work, RMSE is defined as the standard deviation
of the residuals between the relative change to an offline metric
(e.g. ΔAUC𝜋→ℎ/AUC𝜋 ) and the relative change to an online metric
(e.g. ΔĈR𝜋→ℎ/ĈR𝜋 ) as measured in A/B tests. In general, the smaller
the error is, the more strongly the offline metrics correlate with
online ones. Table 3 shows that ROC AUC becomes more effective
in randomized data replay. However, offline metric based on sample
reweighting with Eq. 2 has shown to even more strongly corre-
late with online metrics. Our intuition is that it is helpful to apply
logarithm to score ratio 𝑠ℎ/𝑠𝜋 because this yields a higher penalty
in cases where the new model is less confident of the clicked me-
dia, thereby penalizing candidate models that are likely to reduce
performance.

4 TECHNIQUES IN MEDIA UNDERSTANDING
Even though media contains rich semantic information, most of
media search is driven by keyword-based retrieval. However about
65% of media in our search index do not have text accompanying
them. This causes a problem when ranking because we are essen-
tially only working with around 35% of the data we have. To tackle
this problem, we use several techniques which aim to understand
the content in media and use it for retrieval and ranking.



We use a variety of heuristic, weakly-supervised, and unsuper-
vised techniques to improve retrieval and ranking. Table 4 summa-
rizes the metric improvements in relevance and online engagement
due to media understanding. Each subsection describes a respective
approach and its resulting metrics impact.

4.1 Media tagging with text
We have observed that queries with exploratory intent are often
short and generic—e.g., “nails”, “tattoo ideas”, “interior design”—
whereas many high-quality media do not contain such phrases
in the textual description. A retrieval system that relies solely on
query-to-description matching may be confronted with search qual-
ity issues as a result of sub-optimal recall. Thus, we apply keyword
tagging to annotate media with popular and relevant search queries
to improve recall of high-quality content.

Themain steps of the tagging workflow are illustrated in Figure 3.
First, we prepare a pool of seed media (∼300M). An embedding is
computed based on the media content. In addition, we collect the
most frequent queries that have been used to retrieve a given media
in each supported language. Second, for the target media, we apply
k-nearest neighbors search to find the most similar seed media based
on the content embeddings. Third, we infer a primary language for
the target media and narrow the list of keywords to those matching
the target language. Candidate keywords are weighted according
to the embedding distance and engagement history:

𝑤★(𝑡) =
𝑘−1∑
𝑖=0

log(1 + 𝑓𝑖,𝑡 )
dist(𝑒★, 𝑒𝑖 )𝛼 + 𝛽 log

𝑁

𝑛𝑡
(3)

This aggregation scheme is derived from tf-idf formulation [25],
where

• 𝑡 : the candidate keyword
• 𝑓𝑖,𝑡 : the number of engagement events on the 𝑖th seed media
with candidate keyword 𝑡

• dist(𝑒★, 𝑒𝑖 ): a distance function for the embeddings of the
target (★) and the 𝑖th seed media

• 𝑁 : the total number of seed media in the dataset
• 𝑛𝑡 : the total number of seed media that contain 𝑡 in their
respective keyword lists

• 𝑘, 𝛼, 𝛽 : hyperparameters to be tuned in offline evaluation
Finally, we assign suggested keywords that are above a predefined
threshold to the target media, thereby enabling retrieval beyond
direct keyword-to-descriptionmatching. Hyperparameters𝑘 ,𝛼 , and
𝛽 are tuned by holding out a subset of seed media and evaluating
the quality of keyword suggestions for the test media. Parameter
values are selected to maximize the average Recall@K [28, 32] over
the evaluation instances.

We have built separate tagging datasets for photos and videos
and deployed them to a large-scale retrieval system. The datasets are
refreshed daily to incorporate new keywords. The tagging process
is applied near real time at time of media upload to Facebook, so
that tagging information is available in the search index within
seconds. We ran an A/B test in retrieval by increasing retrieval score
of media when predicted keywords were matched, and observed a
4.4% improvement in DCG, 15.6% reduction in off-topic rate, 1.68%
improvement in click rate, 1.54% improvement in good click rate
and 0.27% improvement in time spent (Table 4).

Figure 3: A hypothetical example to illustrate the 3 main
steps inmedia tagging with text: (1) construct a data set with
candidate keywords for each seed media; (2) given the tar-
get media (denoted by ★), find the top-K similar seed media;
(3) aggregate candidate keywords

.

4.2 SURU – weakly-supervised media classifier
We have found that image embeddings from pre-trained models
based on ImageNet do not adapt well to media search use cases
due to significant domain shift between Facebook photos and the
ImageNet dataset. To improve embeddings quality, we applied the
weakly-supervised approach proposed by Tang et al. [28] and fine-
tuned a CNN [23] using historical photo search logs. We call the
resulting model SURU.

Data Preparation. We frame the problem as a multi-class clas-
sification task with weakly-supervised learning. Labels are derived
from historical search logs in which a result click is considered
a positive signal indicating relevance between the result and the
search query. However, as photo results are sometimes shown along
with other types of content, the absence of user action does not
necessarily imply that the photo is irrelevant to the query. Fur-
thermore, a particular photo can be retrieved by multiple search
queries. Thus, we collect ⟨photo, list of queries⟩ pairs and apply
weakly-supervised approach to classify photo to queries. We ag-
greagte search logs over multiple months to minimize seasonality
bias in the data distribution. We remove sensitive and person name
queries and enforce that each query should appear in the dataset at
least 500 times to stabilize training. In addition, we apply deduplica-
tion using image embeddings extracted from a ResNeXt trained on
hashtags [23]. The resulting dataset consisted of 10M data points
and 43K labels.

Training Details. We fine-tune the last block of a ResNeXt
model which was trained on 3.5B photos over 17K hashtags [23].
The model is trained using asynchronous stochastic gradient de-
scent on 32 GPUs across 4 machines with each GPU processing
of 48 photos at a time. We trained for 20 epochs. We used all the
techniques described in [28] to find the best performing variant to
launch to production.

Deployment.When a user uploads a media to Facebook, we run
our CNN on the media and output a quantized 256-dimensional



Table 4: Summary of metric gains from each component of VisRel. “-” imply that the gain was not statistically significant.

Modelling Technique Human Rated Metric Gain Online Metric Gain
DCG@6 Offtopic Rate@6 Click Rate Good Click Rate Time Spent

SURU +10% - +0.6% +0.4% +0.19%
Clustering - - +0.82% +0.97% +1.1%

Two-Tower Model +5.1% -6.4% +3.8% +3.59% +0.6%
Per Query Model +10.85% -13.38% +3.76% +0.95% -
Media Tagging +4.4% -15.6% +1.68% +1.54% +0.27%

OCR +3.8% - +2.32% +0.66% +0.95%
Actual & Predicted Engagement - - +3.8% +1.88% +0.41%

binary vector. The vector is quantized to save storage space (vide
[2] for details on quantization). We also store the top 10 predicted
queries for the photo along with their predicted probabilities.

Retrieval and Ranking Experiments. In the retrieval system
we used the images’ predicted queries as terms in the inverted index
of the retrieval system.We ran an A/B test using the SURU term and
observed a 0.6% improvement in photo click rate, a 0.4% improve-
ment in photo good click rate and a 0.16% improvement in photo
time spent. In the ranking system we used the 256-dimensional
binary vector as a ranking feature in our second stage wide & deep
neural network ranking model. We ran an A/B test using this model
and observed a 10% improvement in DCG@6 (Table 4). We also ex-
perimented with using the SURU embedding in the first stage model
as well, but it did not lead to statistically significant improvement
in metrics.

4.3 Media clustering features
The document corpus of our search index comprises a wide spec-
trum of interest topics. We hypothesized that categorical data aug-
mentation might be beneficial to ranking models. However, it is
impractical to manually label each media document because of the
sheer data volume. A more effective approach is 𝑘-means clustering.
As a ranking feature, it is not necessary to know beforehand what
each cluster represents as long as we can identify the cluster for a
given media.

We collected over 6.4B engaged media from search logs. Each
was represented by a 256-dimension embedding extracted from
CNNs described in [12, 23]. To accommodate this large data size,
we applied hierarchical clustering with Faiss 𝑘-means [17]:

(1) Distribute all the embeddings to 2000 machines which inde-
pendently cluster them into 1900 clusters

(2) Collect all 2000 × 1900 = 3.8M cluster centers and cluster
these centers into 8000 parent clusters

(3) Distribute the embeddings in each parent cluster into its
own machine and further cluster them to a maximum of
3000 child clusters. Enforce that each child cluster have a
minimum support of 850 embeddings to ensure sufficient
popularity for each cluster.

(4) Obtain a cluster index containing ∼1.6M clusters
The entire process completed in ∼24 hrs end-to-end. The hyper-
parameter values were chosen to ensure the embeddings fit in the
machines we used. We experimented with different number of child
clusters and found that 1.6M has good cluster quality (measured

using the ratio of mean embedding to centroid distance and mean
centroid to centroid distance).

For each media in Facebook, we assign the top 5 closest cluster
ids. We use these ids as sparse features in our ranking model and
train a new second stage wide & deep model. We ran an A/B test
using this wide & deep neural network model and observed a 1.1%
improvement in time spent, 0.82% improvement in click rate and
0.97% improvement in good click rate (Table 4).

4.4 Actual and predicted engagement features
Since we define system quality by user interaction metrics such as
click rate and good click rate (see § 3.1), we want to use historical
interaction rates as features to our ranking model. We compute two
classes of features for each media document: (1) actual engagement
features and (2) predicted engagement features.

Actual engagement features are ratios of historical engagement
rates of media: click rate, like rate, save rate, impression rate. In
order to reduce noise, we compute these metrics every day averaged
over the previous 7 days. Impression rate is defined as the number
of times a media was in the application viewport normalized by a
constant. Like rate is defined as the number of times a media was
liked divided by the impression rate. Save rate and click rate are
defined similarly.

One issue with engagement features is that they can be unre-
liable for fresh media (i.e. cold start problem). To mitigate this
problem, we calculate predicted engagement features: predicted click
rate, predicted like rate, predicted save rate, and predicted impres-
sion rate. To calculate predicted engagement we prepared a large
pool of seed media (∼100M) which has been engaged during the
week. We used a different pool of seed media for photos and videos
because we expect different user engagement behavior for them.
For each seed media in the pool we compute its embedding and
engagement features as defined above. When the new target me-
dia is deployed we extract its embedding and apply a weighted
k-nearest neighbors search to find top-K similar seed media, and
then take a weighted average of seed media engagement counters
to calculate predicted engagement counter. Weights can be defined
as the similarity between the target and seed media embedding.
We used actual engagement features in the wide & deep neural
network model (defined in § 3.5) and observed a 1.1% improvement
in good click rate (Table 4) and an additional 0.7% improvement in
good click rate when using both actual engagement and predicted
engagement features.



4.5 Handling text on media - OCR
In search engines for media, special attention needs to be given
to media that contains text. Common types of media containing
text are memes and quotes. In such media, the picture itself only
provides background or emotional support for the textual message
on the media.

To handle such media we have developed an in-house optical
character recognition system (OCR) called Rosetta [3]. Rosetta uses
a set of detection and recognition modules; it extracts all the word
boxes from the photo and then applies a CNN that translates crops
of words into character sequences. We used OCR-extracted text to
match to query text in retrieval. Furthermore, we computed tradi-
tional query-to-text matching features [1] and sparse word token
features based on OCR-extracted text, and integrated them into our
ranking models (§ 3.5), which improved search quality measured by
human raters DCG@6 by +3.8%, click rate by +2.32%, good click
rate by +0.66%, and media time spent by +0.95% (Table 4).

5 QUERY-TO-MEDIA MATCHING MODELS
To further improve the ranking quality and relevance, we develop
the following two features to more accurately capture the similarity
between query text and media.

5.1 Two-Tower Model
We adopt the two-tower architecture to model the similarity be-
tween query text and media (Fig. 4). The query-tower features in-
clude token/char n-grams and query text. For token/char n-grams
we convert them using one-hot encoding, pass through randomly
initialized embedding matrix and sum them up as the final em-
bedding for the whole query text. For query text we apply the
commonly used NLP embedding method (e.g., fastText, BERT) to
convert the query text into a fixed-length vector, and then add
another layer of MLP before fusing with query embedding. For con-
textualized embeddings (e.g., BERT), we relax the last few layers
for fine-tuning. We have used multi-lingual query representation
embeddings both for fastText [8] or BERT based such XLM-R [7].

The media-tower features include media embeddings trained via
weakly supervision (i.e., SURU in § 4.2) followed by another layer
of MLP, and media text (e.g., title, description) and OCR features,
where we process them using the same models as the query tower.

We simply concatenate embeddings on each tower as the fu-
sion method and calculate their cosine similarity as the similarity
score. We collect queries and their clicked medias as the positive
samples1, and use in-batch samples or global pool sampling as neg-
atives. We use margin rank loss for back propagation, as we find
it exhibits consistently gains over the traditional cross-entropy in
offline evaluations.

We re-train our media search 1st stage and 2nd stage rankers
using the two-tower model similarity score as a feature, and in-
creases their AUC by +1.8% and +5.4% respectively. Human rated
evaluations show DCG@6 increases by +5.1% and the off-topic rate
reduces by -6.4%. Online A/B tests show the media clicks increase
1We filter the training data by the number of clicks of (query, media) >= 2. This removes
the random noisy clicks and improves AUC of 2nd stage ranker with the two-tower
similarity score by over 2%. We also experimented other thresholds for clicks, and we
found 2 is the best option that can keep enough volume for the training data while
remove the noisiest clicks for good data quality.

Figure 4: Two-tower model for query-to-media matching
.

by +3.8%, good clicks increase by +3.59% and the time-spent in
media search increases by +0.6% (Table 4).

5.2 Per-Query Model
We train a single two-tower model with both tail and head queries
in the data to minimize the average loss. It is friendly to tail queries
and provides good generality, but it also sacrifices some specialty
for head queries on the other hand.

To make up for such loss, we propose to train one specific model
for each head query to find its most common representation/pattern.
We choose linear-SVM [9] as it is lightweight enough to run for
millions of queries simultaneously and able to update/refresh fre-
quently. We collect queries that have been searched by at least 𝑁
times in the past𝑇 days and treat clicked medias as positive samples.
For each positive sample, we randomly sample 𝐾 media within the
same batch as negative ones. We found that number of negatives
play an important role to make the models effective, we use 5x
more negatives during training. Therefore, for each head query 𝑠 ,
we train linear-SVM using𝑀 clicked positive samples and𝑀 × 𝐾
negatives ones with the media embedding v trained by weakly
supervision as the features (i.e., SURU in § 4.2).2

We train the per-query model for millions of head queries on
a daily/semi-weekly basis, and filter the results based on whether
the evaluation results exceed the per-defined thresholds (e.g., the
precision on evaluation sets ≥95%). We observed slight shift in
model scores over the week due to retraining, however we did not
observe significant influence on downstream models, where per
query model scores are used as features. Once the training is done,
we upload the linear model coefficients p and the intercept t to an
online real-time lookup service with the query string as the key
(§ 3.2). At serving time, we check whether the query string s has
the per-query model in the lookup service. If so, we calculate the

2For those head queries that might have too many clicked medias (e.g., when𝑀 is too
large), we further down-sample the clicked media to balance the memory constraints,
training time cost and model quality.



per-query model score as p𝑇 v + t, and use it as a feature in the
ranking model.

We can interpret the per-query model coefficients as the cen-
troid of clicked media clusters for the query, and the score as how
similar this media is to other clickedmedia. To compare with embed-
dings from the two-tower model above, we run embedding-based
KNN using FAISS [17] on head queries, and calculate Recall@𝑘
using clicked media as the golden dataset. This offline evaluation
results show >8% absolute increase in Recall@100 and >19% in
Recall@1000. In second stage ranker, the per-query model score
also shows up as the second most important feature. Human rated
evaluations show it increases DCG@30 by +10.85%, and reduces
the off-topic rate by -13.38%. Online A/B test shows a +3.76% in-
crease in click rate and +0.95% increase in good click rate.

Overall, we think two-tower and per-query complements each
other and using them together can achieve both good quality and
coverage in both head and tail queries.

6 CONCLUSION
We presented approaches for building a large scale media search sys-
tem called VisRel. The VisRel system is deployed to production and
processes search traffic at Facebook scale. In this paper we shared
practical ideas for handling large weakly-supervised training data,
training media classifiers for search, provided scalable solutions
for query-to-media matching, and shared experience building and
improving media search over large databases confirmed with online
A/B test experiments. Our success depended on the metrics defini-
tions and howmetrics interact with each other, we gave information
on metrics we used and trade-offs of different approaches.

This paper showcases the state of the art for large scale media
search. We envision that in the future, significant improvements in
search quality will be provided by innovations in semantic under-
standing of media, text and authors. Therefore, in future iterations
we could investigate using advanced multi-modal networks in a
variety of search components from retrieval with embedding-based
retrieval to media search engines based on query to media repre-
sentations [11] and pushing more of the multi-modal signals into
other parts of the system such as media tagging. Additionally, we
believe that in the near future the search ecosystem will have to
deal more with longer queries and that is why more sophisticated
query to document understanding models will be necessary.
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