
Eliminating Bugs with Dependent Haskell
(Experience Report)

Noam Zilberstein
Facebook

California, USA
noamz@fb.com

Abstract
Using dependent types in production code is a practical way
to eliminate errors. While there are many examples of using
dependent Haskell to prove invariants about code, few of
these are applied to large scale production systems. Critics
claim that dependent types are only useful in toy examples
and that they are impractical for use in the real world. This
experience report analyzes real world examples where de-
pendent types have enabled us to find and eliminate bugs in
production Haskell code.

CCS Concepts: • Software and its engineering → Soft-
ware development techniques; Functional languages.

Keywords: Haskell, Dependent Types, GADTs

ACM Reference Format:
Noam Zilberstein. 2020. Eliminating Bugs with Dependent Haskell
(Experience Report). In Proceedings of the 13th ACM SIGPLAN Inter-
national Haskell Symposium (Haskell ’20), August 27, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3406088.3409020

1 Introduction
As software systems grow more complicated, it becomes
increasingly difficult to reason about end-to-end correctness.
It is therefore attractive to use languages with highly expres-
sive type systems in order to prove invariants about code
at compile time. These techniques are well known within
the Haskell community, but claims that they can be used to
increase correctness in practice are largely unsubstantiated.
Critics dismiss these techniques as academic exercises that
are impractical for use in the real world because they are too
complicated and not powerful enough.

Dependent types are practical for use in production code.
In fact, not only are they practical, but they are effective at

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8050-8/20/08.
https://doi.org/10.1145/3406088.3409020

eliminating bugs. Through real world examples, we demon-
strate that bugs can be discovered and removed at scale using
dependent types. These bugs range from accidental coercions
and missing inputs to infinite loops.
Haskell is an excellent language to demonstrate depen-

dently typed programming in a real world setting. Recent
advancements in the Dependent Haskell [13] project have in-
creased the expressiveness of the Haskell type system, open-
ing up new possibilities for encoding correctness guarantees
in code. Haskell is also a performant, natively compiled lan-
guage that is suitable for use in large scale systems.

At Facebook, Haskell is used to write abuse detection rules
as part of a system called Sigma [8]. These rules span a wide
variety of abuse types including spam, fake accounts, and
fraud. The correctness of this code is crucial; Sigma makes it
possible for us to identify and block malicious interactions
before they affect people on Facebook. Due to the adversar-
ial nature of abuse detection problems, Sigma code must be
deployed to production quickly. This further necessitates
strong correctness guarantees at compile time. Sigma is also
a large scale use-case as it is invoked on nearly every inter-
action that a user has on Facebook (over one million times
per second).
Previous work has shown that dependent types can be

successfully deployed in production code [2]. This report
builds on top of previous work to show how the use of de-
pendent types prevents bugs in practice. In particular, we
make the following contributions:

• Section 2 discusses what it means to use dependent
types in Haskell and why Haskell’s relatively weak
form of dependent types presents some benefits.

• Section 3 introduces the Thrift compiler, a motivating
use case that we refer to in the rest of the paper.

• Sections 4, 5, and 6 examine different techniques that
are used to prove correctness invariants, show what
real-world bugs they prevent, and give additional ex-
amples for how those techniques can be applied to
different types of problems.

2 Dependently Typed Programming in
Haskell

The primary goal of programming with dependent types in
Haskell is to express invariants about code at the type level.

https://doi.org/10.1145/3406088.3409020
https://doi.org/10.1145/3406088.3409020
https://doi.org/10.1145/3406088.3409020

Haskell ’20, August 27, 2020, Virtual Event, USA Noam Zilberstein

These invariants are checked by the Haskell compiler (GHC)
and therefore any code that compiles must adhere to them.
This benefit is seen during initial development as well as
during refactoring.

While Haskell’s type system is more expressive than that
of most mainstream languages, Haskell is not truly a depen-
dently typed language. More concretely, there is a phase
separation between types and terms. This means that the
invariants that can be expressed are limited. However, this
limitation also comes with an upside; Haskell has a more
powerful type inference system thanmost dependently typed
languages. In practice, Haskell’s constraint solver can auto-
mate more invariant checking than that of languages like
Agda [7].

Although the guarantees are weaker than those of a true
dependently typed language, we obtain correctness guaran-
tees that go beyond regular static typing by expressing more
information about the program at the type level. For example,
we can use Generalized Algebraic Datatypes (GADTs) [10]
to constrain what values can be represented by core data
structures. If fewer invalid values can be represented, then
the developer can make fewer mistakes. GHC has powerful
pattern match redundancy checking for GADTs [6], so the
inability to represent invalid values also means that we do
not need to handle invalid patterns. This makes the code
cleaner and easier to understand. In addition, we can use
GHC’s type-level strings, lists, and tuples along with the abil-
ity to promote data types [14] to express nearly any value at
the type level.

We do not aim to prove that every aspect about the code is
correct. Rather, we use types to verify individual properties.
Expressing more properties leads to a higher level of confi-
dence. In some cases, types even guide the programmer to
think through edge cases which are not explicitly checked
by the compiler (as seen in Section 4.1). Even lightweight
applications of dependent types go a long way.

3 Thrift: A Motivating Example
The Thrift Interface Description Language (IDL) [11] is used
to define data structures and interfaces for Remote Procedure
Calls (RPCs) that can be used across many programming
languages. Users can define several types of data structures:

• Structs in Thrift are similar to structs in C. A Thrift
struct is a data structure with user-defined fields. Each
field has an integer identifier which is unique within
the struct, a name, and a type.

• Enums are simple enumeration types. They can take
on one of many values.

• Typedefs are named type aliases.
Thrift enables backend services to communicate via strongly-
typed APIs. Developers use auto-generated clients in their
favorite programming language to query any existing Thrift
service. These clients are generated by a Thrift compiler.

struct User {
1: i64 id,
2: string name,
3: Pet pet,

}

enum Pet {
Dog = 0,
Cat = 1,

}

service MyService {
User getUser(1: i64 id)

}

Figure 1. Example Thrift IDL code

The input to the Thrift compiler is a source file written
in the Thrift IDL. Figure 1 shows an example of such source
code. In this example, we define an RPC for fetching data
about a user given their user ID. The result is a data structure
containing three fields including the user’s pet which is
defined as a Thrift enum. The output of the Thrift compiler
is source code in some programming language. The above
Thrift code would produce Haskell code that looks roughly
like this:
data User = User

{ user_id :: Int

, user_name :: String

, user_pet :: Pet

}

data Pet = Dog | Cat

getUser :: Int → IO User

getUser user_id = ...

The Haskell Thrift compiler is used to generate Haskell
code from Thrift IDL files. The Thrift IDL files are parsed into
an AST, typechecked, and then output as Haskell code. The
Thrift compiler internals make extensive use of dependent
Haskell in order to guarantee correctness invariants. For
example, the typechecked ASTmust be wellformed. Previous
work has been done to implement compilers with encoded
invariants in Haskell [5]. However, these compilers were
not used in a production setting and therefore they did not
demonstrate that these techniques eliminate bugs in practice.
The Sigma codebase relies on millions of lines of code

generated by the Thrift compiler in order to fetch additional
data needed by abuse detection rules. Bugs in the Thrift
compiler could cause the fetched data to take on an incorrect
value and therefore cause rules to make incorrect decisions.

Deploying the Haskell Thrift compiler exposed many bugs
in the existing C++ implementation which is used to gen-
erate Thrift code for languages other than Haskell. These

Eliminating Bugs with Dependent Haskell (Experience Report) Haskell ’20, August 27, 2020, Virtual Event, USA

bugs involved accepting ill-typed inputs, infinite looping,
mistaken coercions, and ambiguous behavior.

In the following sections we will present a variety of tech-
niques that are deployed in the Haskell Thrift compiler, show
the types of bugs that they prevent, and give more examples
of how these techniques can be reused for other applications.

4 Constrained Data Structures
Using a combination of GADTs and PromotedData Kinds [14],
we can constrain the values that a data structure can take
on. By carefully constructing the data structure upfront, the
programmer is forced to think through various edge cases
later on.
As part of the compilation process, Thrift code must be

typechecked. The Haskell implementation of the Thrift type-
checker uses two different Abstract Syntax Tree (AST) rep-
resentations, an unresolved representation for before type-
checking and a resolved representation for after typecheck-
ing.
The implementation centers around the definition of a

Thrift type as a GADT which uses the Status data kind to
distinguish between values that can exist only during certain
stages of compilation. A simplified version of this data type
can be found in Figure 2. Note that the single quote prefix
(eg 'Resolved) denotes a data constructor that has been
promoted to the type level. The data type also has a second
type parameter which we will discuss in Section 5.
Base types and collections can be either resolved or un-

resolved allowing a shared data constructor for both states.
Named types must be resolved during typechecking to de-
termine whether they are type aliases, structs, enums, or
undefined. The TNamed constructor can only be used in an
unresolved AST due to its type being Unresolved. This en-
sures that the AST will only contain resolved named types
after typechecking.

4.1 Infinitely Recursive Types
In Thrift IDL code, it is possible to create an infinite loop
using type aliases:
typedef X Y
typedef Y Z
typedef Z X

This Thrift program is invalid. The types X, Y, and Z are all
defined in terms of each other and therefore none of them
can be instantiated as a concrete type. When faced with this
input, the C++ Thrift compiler entered into an infinite loop.
This happened because the code did not resolve the value of
the type alias correctly. It was hard to detect this divergent
behavior because Thrift compilation happens as part of a
large multi-process build job. Developers were therefore
confused as to why the build was hanging. The infinite loop
may not even have been in their own Thrift code, but rather
in a dependent source file.

data Status = Resolved | Unresolved

data Bottom

data Type (u :: Status) (t :: ⋆) where

TInt :: Type u Int

TBool :: Type u Bool

TString :: Type u String

TList :: Type u t → Type u [t]

TMap :: Type u k → Type u v → Type u (Map k v)

TNamed :: String → Type 'Unresolved Bottom

TAlias

:: String

→ Type 'Resolved t

→ Type 'Resolved t

TStruct

:: String

→ Schema s

→ Type 'Resolved (StructVal s)

TEnum

:: String

→ EnumSchema s

→ Type 'Resolved (EnumVal s)

Figure 2. Definition of Thrift Types

Named types can refer to each other, forming a graph
structure. The resolution step must be done in topological
order with respect to the graph of named types. The C++
implementation did not attempt to resolve type aliases and
instead it traversed the pointers indefinitely during code
generation.

This is an interesting result because the bug is not explic-
itly precluded by the resolved named types invariant. Rather,
the need for topological sorting was made obvious by the
fact that all type aliases must be fully resolved to a concrete
type. In a less strongly typed AST, it would be possible for
the Thrift compiler to shallowly resolve a type alias to:
TAlias "Y" (TNamed "X")

This is essentially what the C++ Thrift compiler did. How-
ever, that term is not well-typed in Haskell because it mixes
resolved (TAlias) and unresolved (TNamed) data construc-
tors. This inability to mix values made it obvious that types
referred to in the type alias must be resolved before the alias
itself. In this way, the properties that we encode in the AST
force us to think through edge cases even if they are not
explicitly checked by GHC.

4.2 Additional Applications: Sync vs Async Rules
The idea of using GADTs and Data Kinds to constrain data
type values can be applied to a wide variety of applications

Haskell ’20, August 27, 2020, Virtual Event, USA Noam Zilberstein

outside of compilers. In Sigma, we use this same idea to
differentiate between types of rules.

Rules are evaluated in two rounds. First, the synchronous
rules are run and return a response back to the client. For
example, a synchronous rule could return a Tag response
which adds additional metadata to a request. More heavy-
weight classification is run in the asynchronous round. These
rules can only perform actions after the fact such as logging
information.
The key invariant relating to rule types is that synchro-

nous responses can only be returned within synchronous
rules. A synchronous response returned by an asynchronous
rule would have no effect because the request that it is trying
to modify has already finished. Conversely, async responses
can be returned anywhere because they make no assumption
about the status of the request being processed.

Similar to the Thrift example, rule types are encoded as a
data kind and responses are encoded as a GADT. The struc-
ture can be seen below where Tag is constrained to be Sync
and Log is universally quantified.

data RuleType = Sync | Async

data Response (t :: RuleType) where

Tag :: Response 'Sync

Log :: Response t

...

In this scheme, the following rule is not well-typed because
it is returns a synchronous response in an asynchronous
rule.

checkScore :: Double → [Response 'Async]

checkScore score =

if score > 0.9 then [Tag] else []

There was initially no type-level distinction between sync
and async responses; Sigma developers needed to rely on
a boolean flag in a separate configuration file in order to
determine what type of rule they were working with. This
became intractable especially in deeply nested helper func-
tions. Adding the type-level distinction caused this invariant
to be checked by GHC. This uncovered hundreds of viola-
tions in which sync responses were getting silently dropped.

5 Associated Types
We can encode propositions in the type signatures of func-
tions by associating the type parameters of multiple data
types.
The GADT representing Thrift types in Figure 2 has a

second type parameter of kind ⋆ (the kind of terms). This
type parameter does not introduce any invariants on the
data structure itself; Thrift types are arbitrarily composable.
However, we use the parameter in the Thrift typechecker
to guarantee that typechecked constants are wellformed by
associating it with the type parameter of a TypedConst.

An UntypedConst is a sum type used in the unresolved
Thrift AST to represent the syntax of Thrift constants. A
TypedConst is used in the resolved AST and is either an
identifier or a Haskell literal of type t.

data UntypedConst

= IntLit Int

| StrLit String

| ...

data TypeConst t

= Identifier String (Type 'Resolved t)

| Literal t

The core typechecking function associates the type parame-
ters of the input Type and the output TypedConst.

typecheckConst

:: Type 'Resolved t

→ UntypedConst

→ Either TypeError (TypedConst t)

This guarantees the wellformedness of literals. Consider the
following partial implementation of typecheckConst.

typecheckConst TInt (IntLit n) = Right $ Literal n

typecheckConst TInt (StrLit s) = Right $ Literal s

The first line is correct; we are typechecking a TInt therefore
we are allowed to return a Haskell Int. The second line
will cause a type error in GHC because returning a String
violates the constraints introduced by pattern matching on
the TInt data constructor.

While the output must be wellformed, this does not guar-
antee total correctness. An implementation of this type sig-
nature could go wrong in several ways including returning
an error on any input or returning 0 for every integer. How-
ever, those mistakes are not particularly easy to make as they
require the programmer to intentionally insert a new value.
In our experience, no bugs of this kind have been introduced.
We will see how this mechanism combined with type-level
schemas provides strong guarantees in Section 6.

5.1 Additional Applications: Typed Data Fetches
Sigma uses a library called Haxl [9] in order to efficiently
handle data fetching by dispatching fetches asynchronously,
automatically batching fetches to the same datasource, and
caching the results. In order to implement this behavior, data
fetches need to be represented as data types rather than
simple IO functions. These data types are aggregated into
batched IO requests and used as keys in the data cache.
Different data fetches have different return types, there-

fore each request type is a GADT which associates the re-
quest data constructor with its return type. For example:

data UserDataRequest a where

GetName :: Int → UserDataRequest String

GetPet :: Int → UserDataRequest Pet

Eliminating Bugs with Dependent Haskell (Experience Report) Haskell ’20, August 27, 2020, Virtual Event, USA

data Schema (s :: [(Symbol, ⋆)]) where

SNil :: Schema '[]

SCons

:: ∀ (name :: Symbol) t s. KnownSymbol name

⇒ Type 'Resolved t

→ Schema s

→ Schema ('(name, t) ': s)

data StructVal (s :: [(Symbol, ⋆)] where

SVNil

:: Schema '[]

SVCons

:: ∀ (name :: Symbol) t s. KnownSymbol name

⇒ Type 'Resolved t

→ TypeConst t

→ StructVal s

→ StructVal ('(name, t) ': s)

typecheckStruct

:: Schema s

→ [(String, UntypedConst)]

→ Either TypeError (StructVal s)

Figure 3. Schemas and Values for Structs

The function that performs the fetching, caching, and batch-
ing uses the GADT’s type parameter to guarantee the output
type of the fetch:

dataFetch :: DataSource r ⇒ r a → Haxl a

DataSource is a type class that defines how to perform the
fetch and batch requests and UserDataRequest has an in-
stance of DataSource. The type signature of dataFetch is
similar to that of typecheckConst in that both guarantee
that any output value is wellformed according to the type of
the input. A wrapper function provides a convenient way to
fetch data with caching and batching done automatically.

getName :: Int → Haxl String

getName userId = dataFetch $ GetName userId

6 Type-Level Schemas
The Thrift compiler must check wellformedness for structs
and enums using the associated types in the typecheckConst
function. However, these types are created by users and there-
fore there is no standard Haskell type that we can associate
with structs or enums. Instead, we use type-level schemas to
dynamically build representations of those types.
For structs, the wellformedness property states that all

named fields are present and well-typed. The schema type
is therefore a type-level list of field names (of kind Symbol)
and types (of kind ⋆). The structure of schemas and struct
literals is shown in Figure 3. The function for typechecking

struct literals associates the type parameter of the Schema
with that of the StructVal in order to ensure that the result
is wellformed. For example, the schema for the User struct
in Figure 1 is as follows:

SCons @"id" TInt

(SCons @"name" TString

(SCons @"pet" (TEnum ...) SNil)) ::

Schema

'[("id", Int), ("name", String), ("pet", Pet)]

By construction, any StructVal with the same schema type
must contain well formed values for the "id", "name", and
"pet" fields. We can now complete the definition of type-
checking struct literals:

typecheckConst (TStruct _ schema) (MapLit fields) =

Literal <$> typecheckStruct schema fields

Figure 4 gives an outline for how enums are typechecked.
Typechecking an enum generates a proof that the enum’s
name is an element of the desired schema. The proof object
is a singleton [3] which essentially expresses the index of
the relevant element in a type-level list. This is the opposite

data EnumSchema (s :: [Symbol]) where

ESNil :: EnumSchema '[]

ESCons

:: ∀ (name :: Symbol) t s. KnownSymbol name

⇒ Proxy name

→ EnumSchema s

→ EnumSchema ('(name, t) ': s)

data EnumVal (s :: [Symbol]) =

∀ n. EnumVal String (MembershipProof n s)

data MembershipProof x xs where

PHere :: MembershipProof x (x ': xs)

PThere

:: MembershipProof x xs

→ MembershipProof x (y ': xs)

typecheckEnum

:: EnumSchema s

→ String

→ Maybe (MembershipProof name s)

typecheckEnum ESNil _ = Nothing

typecheckEnum (ESCons name s) symbol =

case someSymbolVal symbol of

SomeSymbol name' →

case eqT name name' of

Just Refl → Just PHere

Nothing → PThere <$> typecheckEnum s symbol

Figure 4. Enum Schemas and Typechecking

Haskell ’20, August 27, 2020, Virtual Event, USA Noam Zilberstein

of what we do for structs; instead of proving that all fields
are present, we need to prove that any member is present.

Intuitively, the MembershipProof is a proof by induction
that an element x is contained in a list. The base case (PHere)
states that if x is the head of the list, then x is contained
within the list. We then use an inductive step (PThere) to
conclude that if x is contained in some list xs , then x is also
contained in the list y : xs .

When typechecking enums, we build a MembershipProof
by iterating through the schema to find the element that
we are looking for. We take in the name of the identifier
that we are typechecking as a term-level String. In order
to get a type-level representation of the identifier, we use
someSymbolVal from the GHC.TypeLits library. This is nec-
essary because Haskell is not truly a dependently typed
language and therefore there is a phase separation between
types and terms.

The eqT function (from Data.Typeable) checks whether
two type-level strings have the same type and Refl is a proof
that the types are equal. Pattern matching on the ESCons
and Refl constructors allows GHC’s constraint solver to
resolve s to (name ': s') which satisfies the constraint of
the PHere constructor, completing the proof. If the names are
not equal (the Nothing case), then we recurse deeper into the
schema. Returning a proof verifies that the identifier we are
checking must be a valid enum value. We now complete the
typechecking function by packing the proof into an EnumVal.

typecheckConst (TEnum schema) (Ident symbol) =

case typecheckEnum schema symbol of

Just pf → Right $ Literal $ EnumVal symbol pf

Nothing → Left $ TypeError $...

The act of building the proof object introduces additional
runtime and space complexity. We need O(n) space to store
the proof whereas an unverified version of the code would
not need any additional space. We also traverse the schema
linearly rather than using a set to simply check for member-
ship in constant time. We could use a type-level set, but it
would add significant complexity in building up a proof ob-
ject compared to using a simple list. In practice, enums rarely
have more than a handful of constructors and performance
is not an issue.

6.1 Common Bugs with Thrift Enums
Although enums are a seemingly simple concept, the se-
mantics of Thrift enums give rise to numerous bugs. The
C++ Thrift compiler essentially treats enums as integers.
This means that there is no checking done to ensure that an
integer is a valid value for a given enum.
In Thrift, it is legal to use integer literals for enums. The

following example is valid Thrift IDL code and the last line
is equivalent to setting value equal to B. However, it would
not be legal to set value equal to 3, because the enum X has
no member with value 3.

enum X {
A = 0,
B = 1,
C = 2,

}

const X value = 1

This case was overlooked in the C++ Thrift typechecker
whereas the bug was not present in the Haskell implemen-
tation because the Haskell implementation needed to find a
name associated with the numeric value which is provably
part of the schema. While this bug is not desirable, worse
yet is the ability to set a constant of one type equal to an
enum value of a different type.

enum Status {
Ok = 0,
Error = 1,

}

enum Result {
ERROR = 0,
OK = 1,

}

const Status error_status = ERROR

In this example, multiple enums define error states with
different capitalization. It is easy for the programer to acci-
dentally use the wrong one in Thrift IDL code. While pro-
grammers may think that the value of error_status is an
error state, they are unwittingly setting the value to Ok. Al-
though this is a toy example, a real bug of this nature was
discovered in production code because the file failed to pass
the Haskell Thrift typechecker. This type of silent coercion
could be used intentionally, but the instances found in pro-
duction were bugs.

Further ambiguity arises from the semantics of enum scop-
ing. In Thrift, symbols imported from other modules must be
qualified using the module names. Enums on the other hand
can optionally be qualified in order to disambiguate values
from different enums. This means that a value called X.A
could either refer to a value A from amodule called X.thrift,
or it could be a value A from an enum called X that is defined
in the local module. Once again, a bug of this nature was
discovered thanks to the Haskell Thrift typechecker.
The fact that the Haskell Thrift typechecker had fewer

bugs is no coincidence. Expressive types force the program-
mer to be more rigorous in the implementation. We can-
not accept arbitrary integers or identifiers as enum values
because we need a valid name with which to construct
a MembershipProof. The programmer could get invent a
name, but that would entail knowingly inserting an incor-
rect value. The goal of using dependent types is to guide the
programmer towards a correct implementation, not to fully
verify the code.

Eliminating Bugs with Dependent Haskell (Experience Report) Haskell ’20, August 27, 2020, Virtual Event, USA

6.2 Additional Applications: Schematized Inputs
The Sigma API uses JSON input maps to pass data to abuse
detection rules. The API for accessing inputs inside of rules
is:
lookupInput :: FromJSON a ⇒ Text → Haxl a

Haxl is a monad which is primarily used for asynchronous
data fetching [9]. In this case, we are only using it as a reader
monad to inspect the input map and to represent exceptions.
The lookupInput function can fail in one of two ways.

First, the input key may not be present in the input map.
Second, the key may be present, but it may have a different
JSON type than the programmer requested. In practice, the
first failure type is more prominent.
The obvious solution to this problem would be to switch

to using strongly typed inputs. In this scheme, each rule
would define a Haskell datatype as its input type. However,
this would greatly reduce opportunities for code sharing.
If each rule had a separate input type, there would be no
way to express that some common helper function requires
a subset of keys that are present in many rules (Haskell does
not support row polymorphism).

To get the best of both worlds, we use a type-level schema
on top of strongly typed inputs in order to enable code shar-
ing. The new input lookup API is:
get

:: ∀ (key :: Symbol) ty input. Has key ty input

⇒ ty

As opposed to lookupInput, get is pure indicating that it
cannot fail (pure exceptions are not used in the Sigma code-
base). This is because the Has constraint ensures that the
key is available in input with type ty. Note that get takes
no term arguments. To specify which key to look up, the
programmer uses a visible type application [4].
getUserId :: Has "UserId" Id input ⇒ Id

getUserId = get @"UserId"

Type application is a foreign concept to most Sigma develop-
ers, however it is natural to use because it looks much like
what they are used to when they use lookupInput.
getUserId' :: Haxl Id

getUserId' = lookupInput "UserId"

Another option would have been to use a Proxy, however
in practice we found that the type application was easier
to understand for Sigma developers who are not familiar
with advanced Haskell type system features. Using type-
level schemas, we were able to construct a safe API with the
same usability and portability as the untyped API.

7 Conclusion
The increasing complexity of modern codebases makes it
difficult for engineers to reason about correctness. Using ad-
vanced techniques to express invariants in the type system

greatly enhances our ability to write correct code. These tech-
niques have traditionally only been explored in academic
settings, however there is evidence that using them in the
software engineering industry will lead to great improve-
ments in code correctness.
This work shows promising results from using Depen-

dent Haskell. We were able to eliminate errors in diverse
real-world software projects including compilers and abuse
detection rules. These errors include accepting ill-typed in-
puts in a typechecker, failing due to missing inputs, and
incorrectly coercing values. It therefore makes sense to incor-
porate dependent types in future Haskell software projects.
Potential downsides of using dependent types include

longer compile times due to increased constraint solving and
cryptic error messages. In practice, we did not find either of
these concerns to be an issue.
The majority of software is not written in Haskell; most

software is implemented in imperative languages, many of
which are not strongly-typed. However, the software indus-
try is trending towards making code statically typed. This
includes initiatives to build typecheckers for PHP [12] and
Javascript [1]. Programmers are increasingly forced to fix
type errors as they write their code; these errors used to
manifest themselves at runtime. This experience report pro-
vides evidence that it is worthwhile not only to check types
statically, but also to continue evolving the expressivity of
type systems for mainstream programming languages. Com-
mon Haskell paradigms such as higher-order functions, im-
mutability, and control of side effects have already started
to show up in imperative languages. Dependent types could
be the next big step.

Acknowledgments
I would like to thank Stephanie Weirich for opening my eyes
to Dependent Types and for encouraging me to write about
my experience. I am also grateful to my colleagues Andrew
Farmer, Simon Marlow, and Josef Svenningsson for giving
feedback on a draft of this paper and for reviewing my depen-
dently typed Haskell code as well as the anonymous Haskell
Symposium reviewers who gave transformative feedback.

References
[1] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and

Gabriel Levi. Fast and precise type checking for JavaScript. Proceedings
of the ACM on Programming Languages, 1(OOPSLA):48:1–48:30, 2017.

[2] David Thrane Christiansen, Iavor S. Diatchki, Robert Dockins, Joe
Hendrix, and Tristan Ravitch. Dependently typed haskell in industry
(experience report). Proceedings of the ACM on Programming Languages,
3(ICFP):100:1–100:16, 2019.

[3] Richard A. Eisenberg and Stephanie Weirich. Dependently typed
programming with singletons. ACM SIGPLAN Notices, 47(12):117–130,
2012.

[4] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
Visible type application. In Proceedings of the European Symposium on
Programming, pages 229–254, 2016.

Haskell ’20, August 27, 2020, Virtual Event, USA Noam Zilberstein

[5] Louis-Julien Guillemette and Stefan Monnier. A type-preserving com-
piler in Haskell. ACM SIGPLAN Notices, 43(9):75–86, 2008.

[6] Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-
mon Peyton Jones. GADTs meet their match: Pattern-matching warn-
ings that account for GADTs, guards, and laziness. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’15, pages 424–436, 2015.

[7] Sam Lindley and Conor McBride. Hasochism: The pleasure and pain
of dependently typed Haskell programming. In Proceedings of the ACM
SIGPLAN Symposium on Haskell, Haskell ’13, pages 81–92, 2013.

[8] Simon Marlow. Fighting spam with Haskell. https://engineering.fb.
com/security/fighting-spam-with-haskell/, 2015. Accessed: 2020-07-
07.

[9] Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. There
is no fork: An abstraction for efficient, concurrent, and concise data
access. ACM SIGPLAN Notices, 49(9):325–337, 2014.

[10] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Washburn. Simple unification-based type inference for GADTs.

In Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’06, pages 50–61, 2006.

[11] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable
cross-language services implementation. Facebook White Paper, 5(8),
2007.

[12] Julien Verlaguet and Alok Menghrajani. Hack: A new programming
language for HHVM. https://engineering.fb.com/developer-tools/
hack-a-new-programming-language-for-hhvm/, 2014. Accessed:
2020-07-07.

[13] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo
de Amorim, and Richard A. Eisenberg. A specification for dependent
types in Haskell. Proceedings of the ACM on Programing Languages,
1(ICFP):31:1–31:29, 2017.

[14] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a
promotion. In Proceedings of the 8th ACM SIGPLANWorkshop on Types
in Language Design and Implementation, TLDI ’12, pages 53–66, 2012.

https://engineering.fb.com/security/fighting-spam-with-haskell/
https://engineering.fb.com/security/fighting-spam-with-haskell/
https://engineering.fb.com/developer-tools/hack-a-new-programming-language-for-hhvm/
https://engineering.fb.com/developer-tools/hack-a-new-programming-language-for-hhvm/

	Abstract
	1 Introduction
	2 Dependently Typed Programming in Haskell
	3 Thrift: A Motivating Example
	4 Constrained Data Structures
	4.1 Infinitely Recursive Types
	4.2 Additional Applications: Sync vs Async Rules

	5 Associated Types
	5.1 Additional Applications: Typed Data Fetches

	6 Type-Level Schemas
	6.1 Common Bugs with Thrift Enums
	6.2 Additional Applications: Schematized Inputs

	7 Conclusion
	References

