Gabor Frame-Based Sparsification and Radiation Boundary Conditions for Parabolic Wave Equations
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Sparsification and Radiation Boundary Conditions (RBCs) Energy Loss from Sparsity

. Parabolic Wave Equations are used extensively to model electromagnetic wave propagation over . The Gabor spectrum of a field can be sparsified via thresholding: . Sparsifying fields results in a loss of energy

complex terrain and through the ionosphere a,,(x), [am)|=7]al, *  The ratio between energy of the Split-Step Fourier method and the Gabor method is computed for the
. Parabolic Equations are solved with the Split-Step Fourier method, which splits space into vertical slices B (X) = 0, |am)|<z|al, ocean ducting case:

[1]: For a single spatial step:

. CPU time and memory use per step is governed by the number of nonzero Gabor coefficients
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. RBCs can be implemented by deleting window functions that “escape” the domain Minimal loss for
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e  RBCs require no extra memory up to 97-38% sparsity

. RBC implementation has minimal reflections at steep propagation angles

Np=256

. RBC implementation has substantial reflections at grazing incidence to upper boundary

. FFT is used to advance through each slice . : _ ' :
> U v ue ! y 2 . Thin absorbing layer can be added to compensate: For many spatial steps:
' 01/

rier Energy

1—k—ZAx

0 Y@k «  Absorbing layers are effective for attenuating fields at grazing incidence Energy loss accumulates

y(X+AX, z) = IFFT{y(X,kK,)e

Gabor Energy / Fou

*  Absorbing layer is implemented by windowing fields at the edge of the domain over long range, but this can

. Phase screens are used to account for atmospheric effects E be controlled

Pros/Cons of Split-Step Fourier Propagation over Ocean
CPU Time: Gabor versus Split-Step Fourier

Handles wide range of angles Memory scales with O(N) *  Earth curvature correction applied

Easy to implement CPU time scales with O(N log N) *  Gabor field representation exceeds 90% sparsity with 11.4% average error

Entire domain must be stored
RBCs are costly to implement
Gabor Transforms -
. Goal: A signal representation that promotes sparsity and easy RBC implementation Vi,
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. CPU time for advancing a Gaussian beam by one spatial step is computed, where the Gabor parameters
(e.g. window width, truncation threshold) are selected for maximum sparsity
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. Gabor method outperforms Split-Step Fourier for large domains
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. Solution: Space-frequency technique to represent a wavefront _ \ e
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. The Gabor Transform decomposes wavefronts into weighted sums of window functions with spatial
shifts and frequency modulations [2]

Excitation: Gaussian 2| /S
Centered at 25 m ——F

Gaussian width: 0.9 m
Frequency: 10 GHz

TM polarization

Ocean duct, curved Earth
No cylindrical decay
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. Gabor coefficients are the inner product of wavefront and dual window

W(2) =D 2 (D (¥ (2), &, (2)) O (2) = 9(z—na)e"™” o= .
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Performance of Radiation Boundary Conditions
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Gabor Windows | window vs. Dual Window e Gabor coefficient spectrum shows modal behavior *  Absorbing layer works well for paraxial propagation, but steep propagation angles require thick layer

. Gabor-based RBCs have minimal reflection for steep propagation angles

7 T X = 150.0 km T 28 ] . . . o .
> ) ; . Combined 2-km-thick absorbing layer + Gabor RBCs achieves minimal reflection for broad range of
: T angles | .
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. Define a beamlet to be a window function propagating in free space. S AN /\/\ Gabor RBCs Absorbing Layer  Absorbing Layer + Gabor RBCs
. Green’s function (propagation matrix) is computed by propagating each beamlet by one step [3] oL - : YWl | - .o
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***** ::> Al L : ) Knife-Edge Diffraction . Reflection coefficient is computed by launching a beam at the upper boundary, letting energy reflect
j - *  Modeled using Split-Step method enhanced with backward-forward propagation [4]: downwards or wrap around, and taking the ratio of final energy to initial energy
ST T e Set fields on knife edges to zero, then reflect and propagate fields in opposite direction .
. To advance a wavefront through space: Conclusions
o . Gabor field representation exceeds 90% sparsity with 13.8% average error
*  Take Gabor Transform of initial fields e Gabor propagator can be used as an alternative to Split-Step Fourier
1 Pass ] 10 Passes T 8

. Apply Green’s function matrix to each Gabor coefficient . Gabor propagator is more efficient:
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. Inverse Gabor Transform to obtain propagated fields . Structured fields have sparse representations
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il Wavefront propagated Wavefront _ o . }N f\ //’ . CPU and memory usage scales more efficiently than Fourier method
N a0 | Nmol s T . S - S «  Radiation Boundary Conditions are easily implemented:
-. M":F:“f“"“”” a2 Biation: Gaussan e Works well when paired with conventional absorbing layer
| it e  Efficient for all propagation angles
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—20 TE polarization
Free space, flat Earth
e No cylindrical decay REfe rences
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