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• Parabolic Wave Equations are used extensively to model electromagnetic wave propagation over 
complex terrain and through the ionosphere

• Parabolic Equations are solved with the Split-Step Fourier method, which splits space into vertical slices 
[1]:

• FFT is used to advance through each slice

• Phase screens are used to account for atmospheric effects

Introduction
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• Goal: A signal representation that promotes sparsity and easy RBC implementation

• Solution: Space-frequency technique to represent a wavefront

• The Gabor Transform decomposes wavefronts into weighted sums of window functions with spatial 
shifts and frequency modulations [2]

• Gabor coefficients are the inner product of wavefront and dual window
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• The Gabor spectrum of a field can be sparsified via thresholding:

• CPU time and memory use per step is governed by the number of nonzero Gabor coefficients

• RBCs can be implemented by deleting window functions that “escape” the domain

• RBCs require no extra memory

• RBC implementation has minimal reflections at steep propagation angles

• RBC implementation has substantial reflections at grazing incidence to upper boundary

• Thin absorbing layer can be added to compensate:

• Absorbing layers are effective for attenuating fields at grazing incidence

• Absorbing layer is implemented by windowing fields at the edge of the domain
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Gabor Transforms

Propagation in the Gabor Domain

• Define a beamlet to be a window function propagating in free space.

• Green’s function (propagation matrix) is computed by propagating each beamlet by one step [3]

• To advance a wavefront through space:

• Take Gabor Transform of initial fields

• Apply Green’s function matrix to each Gabor coefficient

• Inverse Gabor Transform to obtain propagated fields

Sparsification and Radiation Boundary Conditions (RBCs)

Pros Cons

Handles wide range of angles Memory scales with 𝑂(𝑁)

Easy to implement CPU time scales with 𝑂(𝑁 log𝑁)

Entire domain must be stored

RBCs are costly to implement

Pros/Cons of Split-Step Fourier Propagation over Ocean

• Atmosphere modeled with trilinear duct

• Earth curvature correction applied

• Gabor field representation exceeds 90% sparsity with 11.4% average error

• Gabor coefficient spectrum shows modal behavior

Excitation: Gaussian
Centered at 25 m
Gaussian width: 0.9 m
Frequency: 10 GHz
TM polarization
Ocean duct, curved Earth
No cylindrical decay

Knife-Edge Diffraction

• Modeled using Split-Step method enhanced with backward-forward propagation [4]:

• Set fields on knife edges to zero, then reflect and propagate fields in opposite direction

• Gabor field representation exceeds 90% sparsity with 13.8% average error

Energy Loss from Sparsity

• Sparsifying fields results in a loss of energy

• The ratio between energy of the Split-Step Fourier method and the Gabor method is computed for the 
ocean ducting case:

For a single spatial step:

Minimal loss for 

up to 97-98% sparsity

For many spatial steps:

Energy loss accumulates

over long range, but this can

be controlled

Excitation: Gaussian
Centered at 2253 m
Gaussian width: 1000 m
Frequency: 300 MHz
-7.5 degree propagation angle
TE polarization
Free space, flat Earth
No cylindrical decay

Performance of Radiation Boundary Conditions

• Absorbing layer works well for paraxial propagation, but steep propagation angles require thick layer

• Gabor-based RBCs have minimal reflection for steep propagation angles

• Combined 2-km-thick absorbing layer + Gabor RBCs achieves minimal reflection for broad range of 
angles

• Reflection coefficient is computed by launching a beam at the upper boundary, letting energy reflect 
downwards or wrap around, and taking the ratio of final energy to initial energy

CPU Time: Gabor versus Split-Step Fourier

Conclusions
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Excitation: Gaussian
Centered at 8192 m
Gaussian width: 200 m
Frequency: 100 MHz
Free Space, Flat Earth
No cylindrical decay
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