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Abstract Markets and their corresponding equilibrium concepts have traditionally been used as very powerful building
blocks to find allocations and prices. This chapter provides examples of the use of Fisher markets in the technology
industry.We focus on Internet advertising auctions, fair division problems, content recommendation systems, and robust
abstractions of large-scale markets. After introducing these markets, we describe how these models fit the relevant
application domains and what insights they can generate, exhibiting the most important theoretical and computational
results from the recent literature on these topics.

1 Introduction

Firms in the technology industry often face situations where they must allocate goods to buyers, either literally or
figuratively. Among them, internet companies have routinely employed mechanisms centered around auctions because
they are robust and allow for changing market conditions and successful price discovery. Some of these mechanisms
are ‘static’ in the sense that the whole market is cleared at once, while others are ‘dynamic’ meaning that decisions are
made on a rolling horizon basis. In financial markets, to sell a newly released bond, potential buyers submit a supply
function which specifies how many bonds they are willing to buy at what price. Then, the issuer computes a market-
clearing price and use those functions to allocate bonds to buyers. In spectrum auctions, buyers and sellers submit
combinatorial bids, and the market maker solves a large mixed integer program (MIP) to find the optimal allocation of
spectrum to firms. In electricity markets, market equilibrium is used for pricing electricity in a way that incentivizes
suppliers to generate the right amount of electricity. These prices are hard to compute due to non-convexities in the
electricity production cost of a supplier (e.g., due to fixed costs of starting production), and integer programming is
often used to compute these equilibria. In the technology industry, the volume of transactions and the dynamic nature
of its markets make it hard to solve the whole allocation centrally and in one shot. Usually, firms resort to dynamic
versions of the market that can be solved in a repeated way. For example, in the internet advertising use cases, an
individual auction is run for the ad slots generated when a user interacts with the system. This may be triggered by a
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search query with keywords, by loading a news article, or by refreshing the feed of a social network. Similarly, there
are applications to recommender systems used in the technology industry. In that setting, no explicit market and real
money is exchanged. Nonetheless, the allocation of recommendation slots to different content creators can be modeled
as a market with ‘funny money,’ where content creators use their funny-money budgets to optimize their allocation
in recommendation slots to users. Another example of a market without money is robust content review problems,
where different categories of sensitive content need to be reviewed, and the allocation of reviewing capacity towards
the content categories can be modeled as a market allocation problem.

We will focus on the technology industry with its variety of use cases of market-equilibrium based allocations for
divisible goods. These kind of market models can be used for a variety of purposes. The most immediate is to find
a solution to these markets when the solution is needed and use it to perform the actual allocation. This would be
comparable to the bond and spectrum markets mentioned earlier where the transactions are based on the solution to
the market model. There are situations in which solving the problem in real-time is not feasible. In those cases, the
solution may be computed offline and used as a benchmark. In an ex-post analysis, the firm can judge the merits of the
allocation used in practice vis-a-vis the market approach and decide if the online solution approach should or should
not be improved in terms of solution quality or computational efficiency. Yet another alternative is to use these models
to compute features that can useful to forecast outcomes at the right level of granularity. If one would like to forecast
relevant market metrics for next year—e.g., welfare, prices, revenues—running each ad auction individually, given that
there might be millions of them per day, does not seem to be the right granularity. Instead, viewing the situation as
recurrent realizations of a market for which we can predict the input parameters can provide a better handle to make the
right forecast. Finally, another important use case is to evaluate counterfactuals. Having a market model that can deliver
predictions allows us to change some of the underlying premises or interactions and find how the solution depends
on those changes. An example of this could be to understand how a marketing promotion can provide incentives to
advertisers and transform the resulting situation to another equilibrium.

An important factor in common in the use cases above is the need to compute solutions in those market models. It
is not enough to know that a solution exist, one actually needs the solution itself to operate the system, to forecast it, or
to make strategic decisions. To that end, we will discuss algorithmic approaches to solving these models, with a focus
on large-scale methods.

To set the stage, we offer a few more details on these ideas by discussing how to use fair recommender systems on
a job recommendations site. Such a site is a two-sided market. On one side are the users, who view job posts. On the
other side, there are the employers creating job posts. Naively, a system might try to simply maximize the number of
job posts that users click on, or apply to. This can lead to extremely imbalanced allocations, where a few job posts
get a huge number of views and applicants, which is bad both for users and employers. Instead, the system may wish
to fairly distribute user views across the many different job posts. To achieve a balance between fair distribution and
market efficiency, market-equilibrium-based allocation can be used. In this setting the buyers are the job posts, and the
goods are slots in the ranked list of job posts shown to job seekers.

In the next sections, we describe the various models that relate to the main use cases, including ad auctions,
recommender systems, and fair division. Then we focus on algorithms and present several ideas that permit solving
large-scale models as required by the use cases in the technology industry. This is an expository piece that exhibits
existing theoretical research and computational studies done in the setting of internet-scale market applications.
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2 Introduction to Fisher Markets and Market Equilibrium

This section introduces the market equilibrium problem, the basic modeling element of this chapter. We focus on a
particular type of market, usually referred to as Fisher market, where there is a set of n buyers that are interested in
buying goods from a distinct seller. Every buyer has a budget of Bi > 0 dollars. There is a set of m infinitely-divisible
goods and each good j has a supply of sj > 0 units that can be divided and sold arbitrarily. We refer to the full supply
vector by s.

We will use x ∈ Rn×m+ to denote an allocation of goods to buyers, where xi j ≥ 0 is the amount of good j that is
allocated to buyer i. We also denote the bundle of goods given to buyer i as xi ∈ Rm (the i’th row of x). Each buyer has
a utility function ui(xi) 7→ R+ that captures how much they like the bundle xi . We make the following assumption to
avoid degeneracy issues: there exists an allocation x such that ui(xi) > 0 for all buyers i. This means that it is possible
to find an allocation such that all buyers get strictly-positive utilities.

When solving for market equilibria, the goal is to find a price p ∈ Rm+ for each of the m goods such that the market
clears. Clearing the market means that there should exist a feasible allocation x such that every buyer is assigned an
optimal allocation given their budgets and the prevailing prices. Formally, the demand set of a buyer i with budget Bi

finds an optimal bundle under a set of prices by solving

Di(p) = argmaxxi ≥0 {ui(xi) : 〈p, xi〉 ≤ Bi} .

A market equilibrium is an allocation-price pair (x, p) such that every buyer gets an optimal bundle and goods are not
oversold. Mathematically, that corresponds to xi ∈ Di(p) for all buyers i, and

∑
i xi j ≤ sj for all goods j, where the

inequality has to be attained if pj > 0.
Market equilibria have been thoroughly studied and found to have many attractive theoretical properties. One of the

most celebrated properties is their Pareto optimality: a market equilibrium allocation x satisfies that, for every other
allocation x ′, if a buyer is better off under x ′, then some other buyer is strictly worse off. In other words, x is such that
no other allocation can simultaneously (weakly) improve all individuals’ utilities. Either all utilities stay the same in
other solutions or improving one buyer comes at the expense of another buyer. This is known as the first fundamental
theorem of welfare economics.

Beyond Pareto optimality, there are several other interesting properties that are verified by market equilibria. They
include envy-freeness, where every buyer prefers their own allocation to that of any other after correcting for budget
sizes, and proportionality, where every buyer is at least as happy as if they were allocated a fraction of each good
proportionally to their budget. These properties will be discussed in more detail when applying market equilibrium to
fair division.

2.1 Convex Programming and Utility Functions

A very attractive feature of Fisher markets that make them particularly appealing for modeling purposes is that one can
characterize equilibria in computationally efficient ways. Not only this implies that they are guaranteed to exist, but
also that they are eminently computable, both in theory and in practice. Indeed, there is a nice convex program whose
solutions satisfy the market equilibrium properties. Before writing the convex program, let us consider some properties
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that we would like an optimal allocation x to satisfy. As mentioned before, a feasible allocation necessitates the supply
constraints to be respected:

∑
i xi j ≤ sj for all j.

Secondly, since a buyer’s demand does not change even if we rescale their valuation by a constant, we require the
optimal solution to the convex program to also remain unchanged. Similarly, splitting the budget of a buyer into two
separate buyers with the same valuation function should leave the allocation unchanged. These conditions are satisfied
by the budget-weighted geometric mean of the utilities:(∏

i

ui(xi)Bi

)1/
∑

i Bi

.

Since taking roots and logs of the objective does not change the set of optimal solutions, we simplify the objective and
include the supply constraints to get the so-called EG optimization problem:

max
x≥0

∑
i

Bi log ui(xi)

s.t .
∑
i

xi j ≤ sj, j = 1, . . . ,m,
(EG)

We denote the dual variables corresponding to each of the supply constraints by pj . If the utilities in EG are concave
and non-negative then this yields a convex program, since composing a concave and nondecreasing function (the log)
with a concave function (ui) yields a concave function. Moreover, if the utilities are concave, continuous, non-negative,
and homogeneous (CCNH) then an optimal solution x to EG satisfies the market equilibrium allocation conditions,
and the dual variables p provide the equilibrium prices. Formulating the EG program was a seminal idea in the field
of market equilibrium computation. It was originally done for linear utilities (which are CCNH) by Eisenberg and
Gale [1959]. The general CCNH case was shown by Eisenberg [1961] a few years later. A more modern derivation for
differentiable CCNH utilities can be found in Nisan et al. [2007]. For a derivation of the fully general CCNH statement
with the more modern formulation of EG, see Gao and Kroer [2020].

Let us review the implications of having the EG formulation. First, it gives us an immediate proof of market
equilibrium existence for the CCNH Fisher market setting: the feasible set is clearly non-empty, and the max is
guaranteed to be achieved. Second, it allows us to show Pareto optimality directly. A maximizer of EG is indeed Pareto
optimal since another solution that simultaneously improves all utilities would be feasible and have a strictly higher
objective, contradicting optimality. Third, the optimality of a solution to the EG formulation can also be used to show
from first principles that the equilibrium utilities and prices must be unique. If there were more than one allocation at
equilibrium, then by the strict concavity of the log function we would get that there is a strictly better solution, which is
a contradiction. Thus, the set of equilibrium utilities must be unique. From there it can be seen that equilibrium prices
are unique as well, which follows from the EG optimality conditions.

2.2 Classes of Utility Functions

In the previous section we saw that the EG formulation can be used to compute a market equilibrium as long as the
utility functions belong to the fairly abstract class CCNH. To understand this class and to provide more context on what
is used in practice, we present some concrete examples of its most common types of utilities. To get intuition on the
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generality of the class, one should primarily consider the homogeneity constraint. Imposing homogeneity disallows
many potential utility functions but we will see that it is still a fairly rich class.

The easiest example of a utility function is a linear utility ui(xi) = 〈vi, xi〉 where vi ∈ Rm+ is a vector of per-good
utility rates. It is immediate that linear utilities are CCNH. They can be useful for modeling internet markets—in
particular, both ad auctions and fair recommender systems—so they are of special interest to this chapter. More
concretely, ad auction models rely on quasilinear utilities, a slight variation of linear utilities, where buyers subtract
the price that they pay: ui(xi, p) = 〈vi − p, xi〉. Technically, this does not fall under the EG framework, since the utility
now depends on the prices p. However, it was shown independently by Chen et al. [2007] and Cole et al. [2017] that a
small modification to EG can handle quasilinear utilities.

Beyond linear utilities, the next list enumerates the most famous utility classes within CCNH. Let us consider i to
be an arbitrary buyer and ai j to be calibration parameters for every good j.

1. Leontief utilities: ui(xi) = minj
xi j
ai j

,
2. Cobb-Douglas utilities: ui(xi) =

∏
j(xi j)

ai j /(
∑

j ai j ) ,

3. Constant elasticity of substitution (CES) utilities: ui(xi) =
(∑

j ai j x
ρ
i j

)1/ρ
, where ρ is another calibration parameter,

with −∞ < ρ ≤ 1 and ρ , 0.

CES utilities turn out to be the most general so far: Leontief utilities are obtained as ρ approaches−∞, Cobb-Douglas
utilities as ρ approaches 0, and linear utilities when ρ = 1. More generally, ρ < 0 implies that goods are complements,
whereas ρ > 0 implies that goods are substitutes.

An interesting consequence of the existence of the EG formulation is that various natural iterative economic processes
converge to a Fisher market equilibrium. This is because many such processes are formally equivalent to some form of
iterative first-order optimization on the EG program. For example, various tâtonnement algorithms converge to a Fisher
market equilibrium. A tâtonnement process is an iterative dynamicwhere amarket operator repeatedly announces prices
pt at each time t, each buyer i reports their demand xti under the given prices, and the market operator increases the
price of over-demanded goods and decreases those of under-demanded ones. This can be reinterpreted as subgradient
descent on the dual convex program of EG.

Other interesting dynamics based on theEG formulation also exist. Perhaps themost important one is the proportional
response process, where buyers iteratively specify how much they wish to spend on each good, and the market operator
sets the prices to the sum of these spends. This dynamic turns out to perform extremely well in practice, and we will
review it in detail later. This was discovered by Wu and Zhang [2007] when analyzing bit-torrent sharing dynamics,
and [Birnbaum et al., 2011] later gave a surprising convergence guarantee based on a mirror-descent equivalence.

3 Auction Markets and Budget Management Systems

Advertisers participate in internet ad markets to get impressions, clicks, or conversions of ads that are placed in content
shown to users by the platform. To accomplish this, advertisers set up ad campaigns that indicate how much they are
willing to bid in exchange for those events. Since the values per conversion are unknown to the platform, in the last
decade, platforms turned to computing allocations and prices by running an auction every time a user shows up, and
the competition in these auctions gave rise to ad auction markets. In addition to values, ad campaigns usually specify
budget or ROI (return-on-investment) constraints. This allows them to control their total spend and to maximize the
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value they get out of the system while guaranteeing that they do not exceed the maximum amount of money that they
are willing to spend. Bidding is typically performed by a proxy bidder, operated by the platform but acting on behalf
of a given advertiser. This proxy bidder attempts to maximize the utility derived by the advertiser, while taking into
account the specified constraints.

When designing the market mechanism and the corresponding proxy bidders, the platform needs to provide tools
to allow advertisers to run ad campaigns that are effective. One of the issues that arises is that budgets and bids in a
campaign may not necessarily be in agreement with each other. In light of that problem, a platform may offer ways
to compute alternative campaign parameters that align budgets and bids. The two fundamental budget management
systems that are dominant in practice and in the literature are (a) throttling, which uses a feedback loop to limit the
number of auctions an ad participates in, and (b) pacing, which uses a feedback loop to shade bids. We provide more
details about these mechanisms below.

The purpose of this section is to illustrate how market models and their equilibria can be used as a tool to understand
tradeoffs in auction markets and budget management systems. We will focus on systems based on pacing mechanisms,
since that is one of the dominant budget management methods used in practice, and these systems are particularly
amenable to analysis via Fisher market models. As a simplification, we assume that each individual auction allocates
a single good, usually referred to as a ‘slot.’ This is a simplification that allows us to model the repeated auctions as a
quasi-linear Fisher market, and hence make available all the theory and results that apply to their equilibria. In practice,
it is common for platforms to simultaneously auction several impression opportunities (slots to be filled with ads) in
real time when they display a page or refresh a feed.

It is important to highlight that in the real-time operation of a platform, instead of relying on market equilibria
as considered here, they typically rely on control algorithms which tune the parameters used by the proxy bidder to
align the advertisers’ campaign parameters. (The parameters may include the pacing multiplier which is relevant to our
model, but in other implementations they may include participation probabilities for throttling campaigns.) The market
equilibria that we describe in this section can be thought of as the desired steady state of the system. In practice, the
control algorithms need to learn these parameters in an online fashion. Budget constraints and other pacing aspects
invalidate traditional guarantees such as the strategyproofness of second price auctions.

We analyze the pacing equilibrium problem that results from the pacing system when the underlying allocation is
produced by either a second or first price auction, in that order. By reinterpreting this problem as a game where players
choose pacing parameters, we connect the equilibria of those games to solutions to suitable Fisher markets. After the
static analysis, we also discuss the effects of adding temporal considerations to the model to get a dynamic auction
market. This more closely parallels how campaigns are tuned in practice. We will see that the static game representation
provides a good approximation that can be used as a starting point of dynamic procedures.

3.1 Market Models for Pacing Systems

We define an auction market similarly to a Fisher market (Section 2). We consider a set N of n buyers and a set M of
m goods. Buyer i has value vi j ≥ 0 for good j, and each buyer has a budget Bi > 0. Each good j will be sold by itself
in a sealed-bid auction, using either the first or second price as a payment rule. To disregard trivial cases, we assume
that for all buyers i, there exists some good j such that vi j > 0, and for all goods j there exists i such that vi j > 0. Let
x ∈ Rn×m+ be an allocation of goods to buyers, with associated prices p ∈ Rm+ . The utility that a buyer i derives from
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this allocation is

ui(xi, p) =

〈vi, xi〉 − 〈p, xi〉 if 〈p, xi〉 ≤ Bi ,

−∞ otherwise .
(1)

We will use the abbreviations SP and FP for second and first price auctions markets, respectively.
Although auctions have several appealing properties when considered individually, budgets add a coupling constraint

across auctions that influences those properties. For instance, it is well known that second price auctions in isolation
are strategyproof, but the following example shows that second price auction markets with budgets are not: Consider
an instance with two buyers and two goods, with valuations v1 = (100, 100), v2 = (1, 1) and budgets B1 = B2 = 1. If
both buyers submit their true valuations then buyer 1 wins both goods, pays 2, and gets −∞ utility. To fix this problem,
each buyer needs to smooth out their spending across auctions to make sure that they remain within budget.

For large-scale internet auctions the smoothing is frequently achieved via budget management systems as mentioned
at the beginning of this section. The following two mechanisms are widely used in practice by platforms. In both, each
buyer i (or proxy bidder, as it may be) has to tune a parameter αi ∈ [0, 1].

1. Probabilistic throttling: The parameter αi encodes the probability that the buyer participates in each auction. For
each auction j, an independent coin is flipped for buyer i. If it comes up heads (with probability αi) then the buyer
participates in the auction with a bid bi j = vi j . Otherwise the buyer is excluded from that particular auction.

2. Multiplicative pacing: The parameter αi acts as a scalar multiplier on the reported bids from the advertiser. For
each auction j, buyer i submits a bid bi j = αivi j .

Figure 1 illustrates these options under second price auctions, in a simplified setting. For ease of presentation, the
figures plot the opportunities in terms of time along the x-axis, even though these market abstractions are static. Time
is inconsequential in this section, but we will revisit time in depth when we address dynamics in Section 3.2. We
consider a focal buyer whose value is constant in all auctions and hence the bids are constant across them. The buyer
participates in auctions as long as some budget remains, and then participation stops. Competition arising from other
buyers present in the auctions cause resulting prices, plotted in the y-axis, to vary in different auctions. Since the figure
represents second price auctions, the price in each auction is not necessarily the same, even though the focal buyer
bids a single fixed amount. The circles represent the participation opportunities of the focal buyer and the shaded ones
represent the auctions in which the focal buyer won.

Fig. 1 Comparison of budget management systems. Left: no budget management, middle: probabilistic throttling, right: multiplicative
pacing.

The left panel shows the outcome if the budgets are not managed and buyers bid naively: the focal buyer spends
the budget too fast, and ends up running out of money prematurely. There are many low-price and high-value goods to
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the right of the budget exhaustion line that the buyer cannot get. This is a lost opportunity for the buyer. Furthermore,
in practice, buyers tend to prefer to smoothly spend their budget throughout the day as opposed to running out of
money long before the end of the planning window. The middle panel shows the effect of probabilistic throttling for
an appropriately chosen parameter αi . Buyers only participate in some auctions, allowing them to continue to have a
remaining budget until the end of the planning horizon. As before, buyers end up winning some expensive auctions,
while missing out on cheaper ones. From the buyer’s perspective this is still sub-optimal in terms of utility, since
all goods have the same value to the buyer. Finally, the right panel shows the effect of multiplicative pacing for an
appropriate value of a pacing multiplier αi . In this case, the buyer bids optimally in the many auctions, and is able
to extract maximum value from their budget by buying the right set of goods. Note that the buyer ends up buying all
goods over a certain bang-per-buck threshold (this holds in general for second price markets, if we allow the buyer to
get a fraction of a good to reach their budget constraint exactly).

Other budget management systems discussed by Balseiro et al. [2017, see Table 1] include thresholding, reserve
pricing, and multiplicative boosting. All these mechanisms work by modifying the participation, bidding or payment
rules. For example, thresholding requires the buyer’s bids to pass a given threshold to participate, thus forcing buyers to
only bid on high-value goods. Reserve pricing is similar, except that the threshold is also used to compute the resulting
winning price.

In this section we focus on static models of budget management systems, where the set of goods and values are known
ahead of time. One advantage of this perspective is that we can model highly structured valuations across goods. On the
other hand, it ignores the stochastic nature associated with impressions that arrive across a day. Several related papers
consider goods that arrive stochastically and valuations are then drawn independently. For instance, Balseiro et al.
[2015] show that when buyers get to select their bids in each individual auction, a multiplicative pacing equilibrium
arises naturally via Lagrangian duality on the budget constraint, under a fluid-based mean-field market model. Balseiro
et al. [2017] show the existence of pacing equilibrium for multiplicative pacing as well as the other pacing rules
mentioned earlier in a stochastic model with independent valuations. They also give a very interesting comparison of
revenue and social welfare properties of the various pacing mechanisms in the unique symmetric equilibrium of their
setting. One of the main insights they provide is that multiplicative pacing achieves strong social welfare properties,
while probabilistic throttling achieves higher revenue properties.

3.1.1 Second Price Auction Markets

We now explore the case of multiplicative pacing in a static market model with second price auctions. We follow
the treatment in Conitzer et al. [2018], and direct the reader there for details, proofs and additional references. In the
historical notes at the end of the section, we include additional references to papers that discuss probabilistic throttling.

In the right panel of Figure 1 we have seen that the focal buyer can optimize its utility by selecting a fixed shaded
bid that depends on the total budget. The intuition that a buyer in a repeated auction setting should bid according to
a single scalar times their valuations can be shown to hold more generally, even when goods have different values.
Specifically, for a given set of bids by all the other buyers, a buyer can always specify a best response by choosing an
optimal, constant pacing multiplier. The resulting bid for the buyer on a particular good would be the value of the good
in that auction times the fixed pacing multiplier.

Theorem 1 For arbitrary but fixed bids in each auction for buyers k , i, buyer i has a best response that consists of
multiplicatively-paced bids. This assumes that if a buyer is tied for winning an auction, they can choose the fraction
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that they want to win. This holds even if the buyer (or proxy bidder) can dispose of some goods that they win, in order
to avoid exceeding their budget.

The previous result takes the perspective of a best response for an individual buyer. The main question we now wish
to address is what happens at equilibrium when all buyers play best responses to each others’ bids. We refer to such an
outcome as a pacing equilibrium.

Definition 1 A second price pacing equilibrium (SPPE) is a vector of pacing multipliers α ∈ [0, 1]n, a fractional
allocation xi j , and a price vector p that satisfies the following properties.

(Goods go to highest bidders) If xi j > 0, then αivi j = maxi′∈N αi′vi′ j for each buyer i ∈ N and good j ∈ M .
(Prices) The unit price of good j ∈ M is pj = maxk,i αkvk j for any buyer i ∈ N such that xi j > 0.
(Budget-feasible)

∑
j∈M xi jpj ≤ Bi for each buyer i ∈ N .

(No unnecessary pacing) Additionally, if the budget inequality is strict then αi = 1.
(Demanded goods sold completely)

∑
i∈N xi j = 1 for each good j ∈ M .

The conditions above enforce that winning bids get the goods and buyers pay the second price. The no unnecessary
pacing condition comes from the practical consideration that buyer should only be paced if their budget constraint is
binding. It is basically a complementarity condition that specifies that the mechanism does not want to pace buyers
unless it has to. It follows (almost) immediately from Theorem 1 that in an SPPE every buyer is best responding.

Notice that the equilibrium not only includes the pacing multiplier but also the allocations. This is because there
may be multiple winning bids for a given good j, and in that case the good may be split among the winning bids,
such that each buyer hits their budget constraint exactly. This inclusion of the allocations as part of an SPPE makes it
slightly different from a game-theoretic Nash equilibrium. More concretely, we can almost view the problem of finding
an SPPE as a pure Nash equilibrium problem in terms of a pacing game that can be defined by the set of pacing
multipliers. However, because we must specify the allocation as well, the resulting problem becomes more akin to a
market equilibrium (in fact there are strong equivalences between SPPE and market equilibrium, as we shall see later).
Nonetheless, it is also possible to formulate a static game with full information such that its pure Nash equilibria and
the pacing multipliers α of an SPPE are in one-to-one correspondence. We refer the interested reader to Conitzer et al.
[2018] for the details of this.

Importantly SPPE, as defined above, are always guaranteed to exist. This does not follow immediately from previous
results such as the existence of Nash equilibria in a standard game. SPPE correspond to a specific type of pure-strategy
Nash equilibria and the existence must be explicitly proved.

Theorem 2 An SPPE of a pacing game is always guaranteed to exist.

To illustrate this result, we include a quick sketch of the main elements of the proof. First, one constructs a smoothed
pacing game, where the allocation is smoothly shared among all bids that are within ε of the maximum bid. This
makes the allocation a deterministic function of the pacing multipliers α. Several other smooth approximations are also
introduced to deal with other discontinuities. In the end, one gets a game in which each player simply has the interval
[0, 1] of pacing multipliers as the action space and utilities are well-behaved continuous and quasi-concave functions.
For this smoothed game, one can then appeal to a fixed-point theorem to guarantee the existence of a pure-strategy
Nash equilibrium in the smoothed game. Finally, the limit point of smoothed games as the smoothing factor ε tends to
zero yields an equilibrium in the original pacing equilibrium problem.
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Unfortunately, while an SPPE is guaranteed to exist, there may be multiple solutions. Moreover, they can have large
differences in revenue, social welfare, and other relevant statistics of interest. Figure 2 shows an example of this where
the total platform revenue can be orders of magnitude different in two different SPPE. In practice this means that we
might need to select the equilibrium that suits ours needs, instead of just solving for one. Although multiplicity of
equilibria is a possibility, through simulations one can see that it is not a very common occurrence when looking at
instances inspired by real-world ad markets.

Given the practical motivation of the use of market equilibria to understand, manage and forecast ad markets, one
may want to actually compute SPPE for a given instance. For instance, the resulting pacing multipliers may be used to
shade buyers’ bids and drive the system to an operating point in which buyers do not have an incentive to adjust bids
further. Although the computational complexity of finding an arbitrary SPPE is open, finding an extremal one (e.g.,
minimizing/maximizing revenue/social welfare) can be proved to be NP complete. Nevertheless, all the equilibrium
conditions can be written as linear constraints with mixed-integer variables, leading to a mixed integer programming
(MIP) formulation in which feasibility is equivalent to being at equilibrium. The formulation can be augmented with
an objective function of interest to optimize among equilibria.

This formulation can be used to compute equilibria for modestly-sized instances, but as a method it is not very
scalable. Instead, we can map SPPE to more general market equilibria to unlock more efficient methods.

Fig. 2 Multiplicity of equilibria. Left: a problem instance. Right: two possible and very different SPPE.

To put SPPE in perspective, they can be seen as market equilibria, considering a market setting where each buyer
has a quasi-linear demand function Di(p) = argmax0≤xi ≤1ui(xi, p), where ui was defined in (1). This characterization
follows immediately by simply using the allocation x and prices p from the SPPE as a market equilibrium. Theorem 1
tells us that xi ∈ Di(p), and the market clears by definition of SPPE. This implies that SPPE have several useful
properties including no envy and Pareto optimality (if one considers the seller as a participant too). This yields the
interesting guarantee that, in a budget-adjusted sense, no buyer prefers the allocation of any other buyer, given the
prices.
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3.1.2 First Price Auction Markets

We now switch to first price auctions in the context of pacing equilibria. Every other aspect of the definition of the
market is the same as for SPPE. First price auctions were used initially in internet ad auctions in the 1990’s, for example
by Yahoo and others. But incentive and stability issues caused a shift to second price auctions. However, first price
auctions have seen a recent resurgence of interest for these markets. Notably, several major ad exchanges switched
to first price in recent years. For instance, Google Ad Manager switched in September 2019, while Twitter’s MoPub
exachange switched in August 2020. A major motivation cited by both exchanges is that a first price mechanism will
increase transparency and reduce complexity. The incentive and stability issues observed in the 1990’s are likely to be
less of an issue in today’s thicker and much larger-scale markets. We will see that, in the context of repeated auctions,
a mechanism that relies on first price repeated auctions has several desirable properties. See also Paes Leme et al.
[2020] for an interesting analysis in which firms endogenously choose first price. Our treatment here follows the work
of Conitzer et al. [2019]; we refer the reader to that article for additional insights, results and proofs.

To build towards market equilibria, we start by defining budget-feasible pacing multipliers, which guarantee that
buyers stay within budget for goods that are allocated according to first price auction rules.

Definition 2 A set of budget-feasible first price pacing multipliers (BFPM) is a vector of pacing multipliers α ∈ [0, 1]n

and a fractional allocation xi j ∈ [0, 1] that satisfies the following properties:

(Goods go to highest bidders) If xi j > 0, then αivi j = maxi′∈N αi′vi′ j for each buyer i ∈ N and good j ∈ M .
(Prices) The unit price of good j is pj = maxi∈N αivi j for each good j ∈ M .
(Budget-feasible)

∑
j∈M xi jpj ≤ Bi for each buyer i ∈ N .

(Demanded goods sold completely) If pj > 0, then
∑

i∈N xi j = 1 for each good j ∈ M .
(No overselling)

∑
i∈N xi j ≤ 1 for each good j ∈ M .

To define a pacing equilibrium in the case of first price auctions, we take a BFPM and also impose a complementarity
condition between the budget constraint and the pacing multiplier. This guarantees that buyers cannot be paced unless
they spend their entire budget.

Definition 3 A first price pacing equilibrium (FPPE) is a BFPM (α, x) that also verifies the no unnecessary pacing
condition, which means that if

∑
j∈M xi jpj < Bi , then αi = 1 for each buyer i ∈ N .

The only difference between an FPPE and an SPPE is the pricing condition, which now uses first price.
A very nice property of the first price setting is that BFPMs satisfy a monotonicity condition: if (α′, x ′) and (α′′, x ′′)

are both BFPM, then the pacing vector α = max(α′, α′′), where the max is taken componentwise, is also a BFPM. The
associated allocation is that for each good j, we first identify whether the highest bid comes from α′ or α′′, and use the
corresponding allocation of j (breaking ties towards α′).

Intuitively, the reason that (α, x) is also BFPM is that for every buyer i, their bids are the same as in one of the two
previous BFPMs (say (α′, x ′)WLOG.), and so the prices they pay are the same as in (α′, x ′). Furthermore, since every
other buyer is bidding at least as much as in (α′, x ′), they win weakly less of each good (using the tie-breaking scheme
described above). Since (α′, x ′) satisfied budgets, (α, x) must also satisfy budgets. The remaining conditions are easily
checked.

In addition to componentwisemaximality, there is also amaximalBFPM (α, x) (there could bemultiple x compatible
with α) such that α ≥ α′ for all α′ that are part of any BFPM. Consider α∗i = sup{αi |α is part of a BFPM}. For any ε
and i, we know that there must exist a BFPM such that αi > α∗i − ε . For a fixed ε we can take componentwise maxima
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to conclude that there exists (αε, xε ) that is a BFPM. This yields a sequence {(αε, xε )} as ε → 0. Since the space of
both α and x is compact, the sequence has a limit point (α∗, x∗). By continuity (α∗, x∗) is a BFPM.

We can use this maximality to show existence and uniqueness (of multipliers) of FPPE:

Theorem 3 An FPPE always exists and the set of pacing multipliers {α} that are part of an FPPE is a singleton.

To prove this one can consider the component-wise maximal α and an associated allocation x such that they form a
BFPM and show that it has no unnecessarily paced buyers. This follows from supposing that some buyer i is spending
strictly less than Bi and αi < 1 and deriving a contradiction to the maximality of the pacing multipliers. Uniqueness
follows from the component-wise maximality and the no unnecessary pacing condition.

Sensitivity Analysis

FPPE enjoy several nice monotonicity and sensitivity properties that SPPE do not. Several of these follow from the
maximality property that we have seen earlier: the unique FPPE multipliers α are such that α ≥ α′ for any other BFPM
(α′, x ′). The following actions are all guaranteed to weakly increase the revenue at equilibrium.

Adding a buyer n + 1. The original solution (α, x) together with αn+1 = 0, xn+1 = 0 is a BFPM of the expanded
instance. By the monotonicity property, prices must weakly increase.

Adding a good. The FPPE of the expanded instance α′ satisfies α′ ≤ α. (To see this, consider the set of buyers whose
multipliers increased, since they win more goods and prices are up, some buyer must strictly exceed their budget, a
contradiction). The set of buyers i ∈ N such that α′i < αi must be spending their whole budget by the no unnecessary
pacing condition. For buyers such that α′i = αi , they pay the same as before, and win weakly more goods.

Increasing a buyer i’s budget. The original solution (α, x) is a BFPM in the updated instance. By the maximality of
the FPPE solution, its multipliers must be larger.

It is also possible to show that revenue enjoys a Lipschitz property: increasing a single buyer’s budget by ∆ increases
revenue by at most ∆. Similarly, social welfare can be bounded in terms of ∆, though multiplicatively, and it does not
satisfy monotonicity.

Convex Program to Compute FPPE

As discussed earlier, besides theory, the motivation of formulating pacing systems as markets is to provide algorithms
to compute them. Computing an FPPE turns out to be easier than an SPPE since we do not need to rely on an integer
program. This is due to a direct relationship between pacing and market equilibria. FPPE are given exactly by the set
of solutions to the quasi-linear variant of the Eisenberg-Gale convex program for computing a market equilibrium:

max
x≥0,δ≥0,u

∑
i

Bi log(ui) − δi

s.t. ui ≤
∑
j

xi jvi j + δi, i ∈ N (2)∑
i

xi j ≤ 1, j ∈ M (3)

min
p≥0,β≥0

∑
j

pj −
∑
i

Bi log(βi)

s.t . pj ≥ vi j βi, i ∈ N, j ∈ M

βi ≤ 1, i ∈ N

We show the primal convex program on the left and its corresponding dual convex program on the right. The variables
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xi j denote the fractional amount of good j that buyer i wins. The leftover budget is captured by δi , which is the primal
variable corresponding to the dual constraint βi ≤ 1.

The dual variables βi and pj correspond to constraints (2) and (3), respectively. The variable pj is the price of
good j and βi = minj:xi j>0{pj/vi j} can be interpreted as the inverse bang-per-buck for buyer i. With this definition of
βi , the constraint βi ≤ 1 is intuitively clear: a quasi-linear buyer only wishes to spend money if their price-per-utility
is at most 1.

One can show via Karush-Kuhn-Tucker conditions that FPPE and EG are equivalent. Informally, the correspondence
between them follows because βi specifies a single price-per-utility rate per buyer which exactly yields the pacing
multiplier αi = βi . Complementary slackness then guarantees that if pj > vi j βi then xi j = 0, so any good allocated to i

has rate βi exactly. Similarly, complementary slackness on βi ≤ 1 and the associated primal variable δi guarantee that
buyer i is only paced if they spend their whole budget.

Theorem 4 An optimal solution to the quasi-linear Eisenberg-Gale convex program corresponds to an FPPE with
pacing multiplier αi = βi and allocation xi j , and vice versa.

It follows that an FPPE can be computed in polynomial time, and that we can apply various first-order methods to
compute large-scale FPPE. Such first-order methods will be discussed in Section 5.2.

3.1.3 Comparison between SPPE and FPPE

The SPPE and FPPE properties have interesting differences, which we summarize in Table 1. For additional details,
see the literature in the historical notes at the end of the section. FPPE are unique (this can be shown from the
convex program, or directly from the monotonicity property of BFPM) while SPPE are not. In practice SPPE instances
admitting multiple equilibria seem rare. FPPE can be computed in polynomial time. While the complexity of SPPE is
unknown, it is NP-hard to maximize revenue or social welfare. FPPE are robust to perturbations (e.g., revenue increases
smoothly as budgets are increased). Both equilibrium concepts correspond to (different) market equilibria but SPPE
requires buyer demands to be “supply aware.” SPPE correspond to a pure-strategy Nash equilibria, and thus buyers are
best responding to each other. Neither FPPE nor SPPE are strategyproof, but the market equilibrium connection can
be used to show strategyproofness in an appropriate “large market” sense.

As we will discuss in Section 3.3, FPPE and SPPE have also been studied experimentally, using instances generated
from real ad auction data. To complete the comparison, we report themost interesting takeaways from those experiments
here:

• Manipulation is hard in both SPPE and FPPE if you can only lie about your value-per-click.
• FPPE dominates SPPE on revenue.
• Social welfare can be higher in either FPPE or SPPE. Experimentally, there was not a clear winner of which of the

two solution concepts provides a higher social welfare.

3.2 Dynamic Budget Management Systems

The previous section explored a market with repeated auctions viewed as a static game between advertisers that set
pacing multipliers. Since that view ignores time, this section presents a dynamic view, where a buyer or a proxy bidder
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SPPE FPPE
Exists? Yes Yes

Is unique? No Yes, up to buyer utilities
Is efficiently computable? NP-hard Convex program
Is welfare monotone? No Yes, in goods
Is revenue monotone? No Yes, in goods/buyers/budgets

Is shill proof? No Yes
Pacing eq. is best response? Yes No

Simulated revenue SPPE ≤ FPPE
Simulated welfare Ambiguous

Table 1 A comparison of FPPE and SPPE.

has to sequentially tune its pacing multiplier to manage their bids over time. The goal is to hit the ‘right’ pacing
multiplier as before and match the spend and the budget, but each buyer has to learn that multiplier as the market plays
out. We will see how to approach this problem using ideas from regret minimization. The exposition closely follows
the work of Balseiro and Gur [2019].

3.2.1 Dynamic Auctions Markets

In this section we consider second-price mechanisms with n buyers who participate in auctions sequentially at times
t = 1, . . . ,T . At time t an auction takes place and each buyer samples a valuation vit independently from a cumulative
distribution (CDF) function Fi supported in [0, v̄i] which is assumed to be absolutely continuous and with bounded
density fi . We use the vector notation vi to denote the sequence of realized valuations across all auctions. As earlier,
we assume that each buyer has some budget Bi to be spent across all auctions. We define by ρi = Bi/T the per-period
target expenditure, which we assume to be bounded by v̄i . Each buyer is characterized by a type θi = (Fi, ρi).

After realizing the valuation vit , buyer i submits a bid bit . We let dit = maxk,i bkt denote the highest bid other than
that of i, and we use the vector notation di to refer to the sequence across all auctions. The buyers’ utilities continue to
be quasi-linear: they receive a utility of uit = 1{dit ≤ bit }(vit − dit ), where the first term is an indicator function that
equals one if buyer i wins auction t, and pay zit = 1{dit ≤ bit }dit .1

We assume that each buyer has no information on the valuation distributions, including their own. Instead, they just
know their own target spend rate ρi (i.e., spend per time period) and the total number of time periods T . Buyers also
do not know how many other buyers are in the market. At time t, buyer i knows the history (viτ, biτ, ziτ, uiτ)t−1

τ=1 of
their own values, bids, payments, and utilities. Furthermore, they know their current value vit . Based on this history,
they choose a bid bit . We will say that a bidding strategy for buyer i is a sequence of mappings β = β1, . . . where βt
maps the current history to a bid (potentially in randomized fashion). The strategy β is budget feasible if the bids bβit
generated by β are such that

∑T
t=1 1{dit ≤ bβit }dit ≤ Bi under any vector of highest competitor bids di . For given di

and valuation vectors vi , we denote the expected value of a strategy β as

π
β
i (vi, di) = Eβ

[
T∑
t=1

1{dit ≤ bβit }(vit − dit )

]
,

1 In this case with continuous distributions, the probability of ties is zero.
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where the expectation is taken with respect to randomness in β.
We would like to compare this outcome to the hindsight optimal strategy. We denote the expected value of that

strategy as

πHi (vi, di) := max
xi ∈{0,1}T

T∑
t=1

xit (vit − dit )

s.t .
T∑
t=1

xitdit ≤ Bi .

(4)

The hindsight optimal strategy has a simple structure: a buyer simply chooses the optimal subset of goods to win while
satisfying the budget constraint. In the case where the budget constraint is binding, this is a knapsack problem.

Ideally we would like to consider a strategy πβi that approaches πHi . However, this turns out not to be possible. We
will use the idea of asymptotic γ-competitiveness to see this. Formally, β is asymptotically γ-competitive if

lim sup
T→∞,
Bi=ρiT

sup
vi ∈[0,v̄i ]T ,
di ∈R

T
+

1
T

(
πHi (vi, di) − γπ

β
i (vi, di)

)
≤ 0 .

Intuitively, the condition says that asymptotically, β should achieve at least 1/γ of the hindsight-optimal expected value.
For any γ < v̄i/ρi , asymptotic γ-competitiveness turns out to be impossible to achieve. Thus, if our target expenditure

ρi is much smaller than our maximum possible valuation, we cannot expect to perform anywhere near as well as the
hindsight optimal strategy. The general proof of this fact is quite involved, but the high-level idea is not too complicated.
We show the construction for v̄i = 1, ρi = 1/2, and thus the claim is that γ < v̄i/ρi = 2 is unachievable. The impossibility
is via a worst-case instance. In this instance, the highest other bid comes from one of the two following sequences:

d1 =
(
dhigh, . . . , dhigh, v̄i, . . . . . . , v̄i

)
d2 =

(
dhigh, . . . , dhigh, dlow, . . . , dlow

)
,

for v̄i ≥ dhigh > dlow > 0. The general idea behind this construction is that in the sequence d1, buyer i must buy
many of the expensive goods to maximize their utility, since they receive zero utility for winning goods with price v̄i .
However, in the sequence d2, buyer i must save money so that they can buy the cheaper goods priced at dlow .

For the case we consider here, there are T/2 of each type of highest other bid (assuming that T is even for
convenience). Now, we may set dhigh = 2ρi − ε and dlow = 2ρi − kε , where ε and k are constants that can be tuned.
For sufficiently small ε , buyer i can only afford to buy a total of T/2 goods, no matter the combination they get.
Furthermore, buying a good at price dlow yields k times as much utility as buying a good at dhigh .

To achieve at least half of the optimal utility under d1, buyer i must purchase at least T/4 of the goods priced at
dhigh . Since they do not know whether d1 or d2 occurred until after deciding whether to buy at least T/4 of the dhigh
goods, this must also occur under d2. But then buyer i can at most afford to buy T/4 of the goods priced at dlow when
they find themselves in the d2 case. Finally, for any γ < 2, we can pick k and ε such that achieving γπHi requires buying
at least T/4 + 1 of the dlow goods.

It follows that we cannot hope to design an online algorithm that competes with γπHi for γ < v̄i/ρi . However, it
turns out that a subgradient descent algorithm can achieve exactly γ = v̄i/ρi
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3.2.2 An Adaptive Pacing Strategy

In this section, we present a pacing strategy that optimizes the pacing multipliers by adjusting them over time. We
consider a focal buyer i ∈ N for whom we set αi = 1

1+µ and iteratively tune it by running a subgradient descent scheme
on the value for µ, which will allow the buyer to smoothly spend the budget across the T time periods.

The algorithm takes as input a step size εi > 0 and some initial value µ1 ∈ [0, µ̄i] where µ̄i is an upper bound on µ.
We use P[0,µ̄i ] to denote projection onto the interval [0, µ̄i]. The algorithm APS, proposed by [Balseiro and Gur, 2019]
and motivated by Lagrangian duality, proceeds as follows:

Algorithm 1: APS [Balseiro and Gur, 2019]
1 Initialize the pacing parameter µ1 and the remaining budget B̃i1 = Bi .
2 for every time period t = 1, . . . ,T do
3 Observe vit , construct a paced bid bit = min( vit

1+µt , B̃it ).
4 Observe spend zit , and refine the pacing multiplier using the update rule µt+1 = P[0,µ̄i ](µt − εi(ρi − zit )).
5 Update remaining budget B̃i,t+1 = B̃it − zit .

The problem maxx∈{0,1}T
∑T

t=1 [xit (vit − (1 − µ)dit ) + µρi] is the Lagrangian relaxation of the hindsight optimal
optimization problem (4). The optimal solution for the relaxed problem is easy to characterize: we set xit = 1 for all t

such that vit ≥ (1 − µ)dit . Importantly, this is achieved by the bid bit =
vit
1+µ that we use in APS.

The Lagrangian dual is the minimization problem

inf
µ≥0

T∑
t=1

[
(vit − (1 − µ)dit )+ + µρi

]
, (5)

where (·)+ denotes thresholding at 0. This dual problem upper bounds πHi (but we do not necessarily have strong
duality since we did not even start out with a convex primal program). The minimizer of the dual problem yields the
strongest possible upper bound on φHi . However, solving this requires us to know the entire sequences of vi and di .
APS approximates this optimal µ by taking a subgradient step on the t’th term of the dual:

∂µ
[
(vit − (1 − µ)dit )+ + µρi

]
3 ρi − dit1{bit ≥ dit } = ρi − zit .

Thus APS is taking subgradient steps based on the subdifferential of the t’th term of the Lagrangian dual of the
hindsight optimal optimization problem.

The APS algorithm achieves exactly the lower bound we derived earlier, and is thus asymptotically optimal.

Theorem 5 APS with step size εi = O(T−1/2) is asymptotically vit
ρi
-competitive, and converges at a rate of O(T−1/2).

This result holds under adversarial conditions: for example, the sequence of highest other bids may be as d1, d2 in the
lower bound. However, in practice we do not necessarily expect the world to be quite this adversarial. In a large-scale
auction market, we would typically expect the sequences vi, di to be more stochastic in nature. In a fully stochastic
setting with independence, APS turns out to achieve πHi asymptotically:
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Theorem 6 Suppose (vit,dit ) are sampled independently from stationary, absolutely continuous CDFs with differ-
entiable and bounded densities. Then the expected payoff from APS with step size εi = O(T−1/2) approaches πHi
asymptotically at a rate of T−1/2.

Theorem 6 shows that if the environment is well-behaved then we can expect much better performance from APS.
It can also be shown that when all buyers use APS with appropriate step sizes, then each buyer converges to a solution
that achieves the optimal dual value (5) (note that since we do not have strong duality this does not imply that πHi is
achieved).

3.3 Numerical Experiments

In previous sections, we have illustrated how pairing auction markets and market equilibria can allow us to derive
theoretical properties and can give us a tool to effectively compute equilibria in auction markets. Recalling the focus
on equilibrium computation, in this section we present an empirical study, drawing from the material in Conitzer et al.
[2018, 2019]. Relying on SPPE and FPPE computed for a set of stylized and realistic instances, we discuss how these
equilibria compare in terms of revenue and welfare, provide evidence that incentives in FPPE arising from the first
price auction are not problematic, and show how the static FPPE can be used to effectively seed the dynamic pacing
algorithm.

The experiments are mainly based on realistic instances derived from the real-world auction markets at Facebook
and Instagram. The instances were constructed in two steps, as explained in Conitzer et al. [2019]. The first step is
to take bidding data for a region during a period and use it to create n buyers and m goods. The buyers are the top
n advertisers that participate in the most auctions in that period in that region. The set of goods is constructed by
applying a k-means algorithm to the auctions in which the advertisers participated. The features used for this are the
n-dimensional vector of bids of each advertiser in each auction. The valuation of a buyer to a good is set to the average
valuation of auctions in the cluster. The budgets are set equal to the expected value that the buyer would receive in
a uniform random allocation of goods to buyers, i.e., Bi =

1
n

∑
j vi j . The motivation for this is that it leads to a good

mixture of budget-constrained and unconstrained buyers, since in aggregate this constrains the sum of prices to be the
sum of average valuations, whereas it would be the sum of maximum valuations if every buyer were unconstrained. The
set of constructed instances combines different days, platforms, number of buyers (n ∈ {6, 8, 10, 12, 14}), and number
of goods (m ∈ {10, 20, 30}) for a total of 210 instances for FPPE. Instances for SPPE require to be slightly smaller to
be able to solve the MIP. The numerical study includes a set of instances with {3, . . . , 8} buyers and {4, . . . , 8} goods,
for a total of 2 × 7 × 6 × 5 = 420 instances.

3.3.1 Computational Comparison between SPPE and FPPE

This section compares revenue and social welfare under FPPE and SPPE, as shown in Figure 3. The left panel shows
the CDF of the ratio of FPPE revenue to that of SPPE. The right panel is similar but with social welfare. We see that
FPPE revenue is always higher than SPPE revenue, though both coincide for about 30% of instances, and almost never
more than 4.5 times as high. For social welfare, perhaps surprisingly, neither solution concept is dominating, with most
instances having relatively similar social welfare under either solution concept, though FPPE does slightly better. There
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Fig. 3 CDF of the FPPE / SPPE ratio of revenue (left) and social welfare (right).

are two caveats to keep in mind for these results: (a) the numerical study did not compute the social-welfare-maximizing
SPPE so it is possible that there is a better equilibrium (although this is highly unlikely given that most instances admit
a single equilibrium); (b) many buyers are budget constrained in the FPPE of our setting, and so these insights might
not translate to cases where many buyers are not budget constrained. These experiments show that an FPPE is not
necessarily worse than an SPPE with respect to social welfare (at least with nonstrategic buyers), while potentially
having a significantly higher revenue.

3.3.2 Incentives in FPPE

This section summarizes why incentives for advertisers are less of a problem than expected when using first price
auctions. The incentive to deviate is quantified through the ex-post regret of buyers at FPPE, which capture what can
be achieved when they unilaterally deviate to a different pacing multiplier while keeping the FPPE multipliers fixed for
all other buyers. Figure 4 displays those ex-post relative regrets as the fraction of utility that is lost if the buyer uses the
best-response pacing multiplier instead of reporting truthfully. The median regrets are very close to zero for instances
of all sizes and the third quartile is below 0.02. The conclusion is that ex-post incentives to shade bids for individual
advertisers when they can report a lower value per conversion or budget is very small in almost all cases. Furthermore,
the incentive for misreporting the value per conversion or budget as inputs to the mechanism is vanishingly small.
In the unrealistic case when advertisers have the power to shade bids at the auction level, the level of ex-post regret
depends on the market thickness. Even in this extreme case, the average relative regret is never above 0.2.

As a hypothesis, this conclusion has to do with the coarseness at which manipulations can be performed when
buyers do not have the ability to shade bids in individual auctions. Even if there is a large gap between the first and
second price in a given auction, the winning buyer may not be able to exploit this, because once they start lowering
their value per conversion, they might start losing some other auction much closer to their first price bid. Thus, a buyer
need not face a “thick” market in every auction as one would conclude with first price auctions. It is enough for the
incentive to deviate to be small if just a fraction of the auctions targeted by each advertiser is competitive.
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Fig. 4 Summary statistics of relative ex-post regret at an FPPE (ratio of best-response utility keeping competitors’ bids fixed to utility under
the FPPE). There is a data point for each buyer at the FPPE of each instance. The lower and upper edges of the boxes represent the first and
third quartiles; the lines extending from the box show outliers within 1.5 times the inter-quartile range; and the dots represent individual
outliers outside that range. The plot on the right is a zoomed-in version of the plot on the left.

3.3.3 Seeding Dynamics with SPPE

As we described in Section 3.2, real-world pacing heuristics rely on tractable adaptive algorithms that update buyers’
pacing multipliers over time. This section looks at the rate at which the APS algorithm converges since the longer it
takes to converge, the worse it is at optimizing the buyer’s utility. In the evaluation, the algorithm is seeded with the
solutions to the static SPPE and the resulting regret compared to other starting solutions such as constant or random
pacing multipliers. The seed is computed from a static instance that abstracts away the dynamics but captures the
market structure. The MIP mentioned earlier is used to solve the problem.

For each set of initial pacing multipliers, the runs are done with parameters ε and αmin, determined through grid
search by choosing those that minimize the average ex-post relative regret (i.e., the average amount that a buyer could
have improved its utility by playing a single best-response multiplier, given the other bids are fixed). As shown on
the left of Figure 5, running APS on stylized random instances with MIP-based initial multipliers produces a lower
regret than with other choices of initial multipliers. The performance of the MIP-based solution degrades as the noise
parameter σ on the input data grows, but even at the highest levels we considered, this solution outperforms the
others. For the fixed initial multipliers, the resulting regret is highly sensitive to choices in the step size: low initial
multipliers would often not reach the MIP’s equilibrium multipliers by the time the algorithm terminated. For realistic
instances, the right plot of Figure 5 shows that the regret experienced by buyers when starting from the MIP-based
initial multipliers was lower than in the other cases, for every learning rate ε that was considered. The worst learning
rate for the MIP was better than the best learning rate for any other set of starting points. These findings are robust to
different number of clusters m when producing the realistic instances.

In conclusion, using an SPPE of a static representation of an instance to warm-start an adaptive algorithm on the
dynamic instance resulted in better convergence, and these improvements were robust to noise in the input data. This
robustness provides evidence that the MIP does not need the exact valuation distribution or exact market structure to
be useful. In Section 5.3, we discuss how to compress a large instance to create a smaller, approximate representative
instance that could be tractably solved by the MIP.
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Fig. 5 Mean relative regret from running APS. Each curve plots different initial pacing multipliers αinit
i . Left: Stylized instances with

random perturbations. Regret as a function of the noise parameter σ. Right: Realistic instances with 8 clusters (no noise). Regret as a
function of the learning rate ε (shown in log scale as log 10(1 + ε )).

3.4 Historical Notes

Borgs et al. [2007] study a dynamic bid optimization scheme based on first and second price auctions with perturbed
allocation rules. While they do not discuss pacing as an equilibrium, their perturbation scheme in the first-price
case leads to FPPE. Balseiro et al. [2015] started the study of pacing equilibria and showed that when buyers get to
select their bids individually, multiplicative pacing equilibrium arises naturally via Lagrangian duality on the budget
constraint, under a fluid-basedmean-field market model. The literature has generally studiedmodels where goods arrive
stochastically and valuations are then drawn independently. Balseiro et al. [2017] show existence of pacing equilibrium
for multiplicative pacing as well as several other pacing rules for such a setting; they also give a very interesting
comparison of revenue and social welfare properties of the various pacing options in the unique symmetric equilibrium
of their setting. Most notably, multiplicative pacing achieves strong social welfare properties, while probabilistic
throttling achieves higher revenue properties. The static multiplicative pacing equilibrium results that we presented in
this chapter were developed by Conitzer et al. [2018] for second price auction markets, and by Conitzer et al. [2019]
for first price ones. The fixed-point theorem that is invoked to guarantee existence of a pure-strategy Nash equilibrium
in the smoothed game is by Debreu [1952], Glicksberg [1952], and Fan [1952].

The quasi-linear variant of Eisenberg-Gale was given by Chen et al. [2007] and later rediscovered by Cole et al.
[2017]. For discussion on strong duality and optimality conditions for these problems, see Bertsekas et al. [2003,
Proposition 6.4.4]. The KKT conditions can be significantly generalized beyond convex programming.

The dynamic model of budget management was developed by Balseiro and Gur [2019]. Beyond auction markets, the
idea of using paced bids based on the Lagrange multiplier µ has been studied in the revenue management literature, see
e.g., Talluri and Van Ryzin [1998], where it is shown that this scheme is asymptotically optimal as T tends to infinity.
There is also recent work on the adaptive bidding problem using multi-armed bandits [Flajolet and Jaillet, 2017].

The numerical study that we presented was performed by Conitzer et al. [2018] for second price auction markets
and the comparison of dynamic pacing under the various starting points, and by Conitzer et al. [2019] for first price
auction markets and the comparison between them.
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4 Fair Division Problems and Applications At Scale

Market equilibrium is also intimately related to the problem of fairly dividing goods among agents. In fair division
problems the setup is completely analogous to the Fisher market setting: we have m divisible goods to allocate to
n individuals. The preferences of individuals are captured by utility functions ui(xi). The goal is to find a “good”
assignment x of goods to buyers. However, what is considered “good” turns out to be complicated in the setting of fair
division, as there are many possible desiderata we may wish to satisfy.

First, we would like the allocation to be efficient, meaning that it should lead to high utilities for the individuals.
One option would be to try to maximize the social welfare

∑
i ui(xi). However, this turns out to be incompatible with

the fairness notions that we will introduce later. An easy criticism of social welfare in the context of fair division is that
it favors utility monsters: individuals with much greater capacity for utility are given more goods. Since social welfare
maximization is typically incompatible with fairness, fair division mechanisms typically opt for the less stringent notion
of Pareto optimality of the resulting allocation x. That requires that for every other allocation x ′, if one individual i is
better off under x ′ than under x, then some other individual i′ is strictly worse off. In other words, x should be such
that no other allocation weakly improves all individuals’ utilities, unless all utilities stay the same.

In addition to Pareto optimality, fair division mechanisms typically strive for allocations that satisfy various fairness
conditions. We will be concerned with the following two desiderata:

Envy free: An allocation x has no envy if ui(xi) ≥ ui(xi′) for every pair of individuals i and i′. In other words, every
individual prefers their own bundle at least as much as that of anyone else.

Proportionality: An allocation x satisfies proportionality if ui(xi) ≥ ui
(

1
n · s

)
. In other words, every individual

prefers their own bundle at least as much as receiving a bundle composed of an nth of every good.

An allocation that satisfies Pareto optimality, no envy, and proportionality turns out to be achievable using the
so-called competitive equilibrium from equal incomes (CEEI), a classic economic solution concept based on market
equilibrium. In CEEI, a fair allocation is obtained as follows. First, we give each individual a unit budget of funny
money that represents a fake currency to operate the content recommendation system. Second, we compute a market
equilibrium for the Fisher market consisting of the individuals and their utility functions, along with the unit budgets
of funny money. Finally, we take the corresponding market equilibrium allocation x, call it our fair division, and forget
about the funny money.

CEEI is an appealing solution with respect to the previous desiderata. It is Pareto optimal since every market
equilibrium satisfies it as discussed in Section 2. It has no envy since each buyer has the same budget. That means that
each buyer can afford the bundle of any other buyer, and every buyer buys an optimal allocation given the prices and
budgets. Finally, proportionality is satisfied since each buyer can afford the bundle where they get sj/n of each good.
This is easily shown by noting that the sum of prices must equal the sum of budgets.

In the divisible setting, CEEI is guaranteed to exist, and it is computable both using convex programming (via the
Eisenberg-Gale convex program), and at scale via first-order methods as we shall see in Section 5.2. In contrast, for
the indivisible setting, CEEI is not necessarily guaranteed to exist. In that case, one could rely on approximate-CEEI,
a relaxed solution concept where buyers get slightly unequal budgets [Budish, 2011].

Let us now discuss the main applications of CEEI. The most obvious fair division settings that come to mind
as practical examples involve indivisible objects, e.g., housing assignment, school choice, fair estate division, and
so on. There have been several interesting applications of market-equilibrium ideas to the indivisible case. In spite
of the possible non-existence of market equilibria, Budish et al. [2016] apply an approximate market equilibrium
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notion to the problem of fairly assigning course seats to MBA students. While market equilibria are not guaranteed to
exist in that setting, Budish [2011] shows that approximate equilibria exist, and that they have appealing fairness and
incentive properties. This approach is currently applied at several business schools. Another interesting application is
that of fairly dividing goods such as items in an estate. A publicly available implementation of this can be found at
www.spliddit.org . That webpage allows users to set up fair division instances of moderate size, and a fair allocation
is offered by computing the discrete allocation that maximizes the geometric mean of utilities. This is a direct extension
of EG to the discrete setting. A market equilibrium approximation is not guaranteed, but approximations to discrete
variants of envy freeness and proportionality are guaranteed, as shown by Caragiannis et al. [2019].

The indivisible approaches mentioned above are, however, far from scalable to the size of allocation problems faced
in auction markets and content ranking applications. Indivisible fair division problems can be converted into divisible
ones by allowing randomized allocation. But this may not lead to particularly fair or acceptable solutions (for example,
flipping a coin to decide who inherits a house would not be acceptable to many people). Although sometimes this
randomization can be resolved successfully [e.g., Budish et al., 2013], generally speaking the randomization can lead
to large ex-post regret. However, internet firms can usually circumvent this issue because of the scale of their markets.
For instance, if they allocate content to users attempting to provide an balanced distribution from creators, then a
randomized allocation may be enough. Content gets shown a large number of times, which smooths out randomization
issues that can crop up in settings where each individual is assigned only a few goods. In the following sections we
will describe applications of the divisible CEEI solution concept to such internet-scale problems.

4.1 Fair Recommender Systems and Diversity in Ranking

As a concrete application ‘at scale,’ in this section we go deeper to describe how Fisher markets and their equilibria
can be used to model large-scale content recommendation systems. The main aspect of these recommendations is that
we want to explicitly consider fairness and diversity goals. The problem can be summarized as follows: we have a set
of n pieces of content (e.g., songs we could recommend to users, or job posts that we could show to users). We have
m opportunities to show content (e.g., each job seeker is shown a ranked list of five job posts, which would generate
five opportunities). The goal is to allocate the content to the different opportunities in a way that maximizes a relevant
efficiency metric (e.g., likes of recommended songs, or actual job applications). At the same time, we also wish to treat
each piece of content fairly. For example, in the jobs setting, we may wish to avoid showing a small set of job posts
over and over, even if most job seekers were likely to apply to them. Not only this is not conducive to improving the
ecosystem in this two sided market but also it is unlikely that all applications can be accepted by the company offering
the job.

For the content recommendation problem, the analogy to market equilibrium is that the content creators are the
buyers, and the content recommendation slots are the goods (e.g., if there are five job posts shown per page then there
would be five goods to ‘sell’ in the market). By reducing the content recommendation problem to a market equilibrium
problem, we can guarantee Pareto-efficient content recommendation, where every content creator will have budget-
adjusted envy-freeness, and receive at least their budget-proportional utility. The budget of ‘funny money’ given to
each content creator can be chosen according to what fraction of the recommendations we want each content creator to
receive. As an example, consider the music recommendation setting and two musicians where one is up-and-coming
while the other is a superstar. While the goal is to fairly give some exposure to the up-and-coming musician, we likely
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would not want to give equal budgets to the two musicians. Instead, the superstar might get a larger budget of ‘funny
money’, while the up-and-coming musician might get a smaller budget that is large enough to ensure exposure.

Similarly to the discussion about proxy bidders in Section 3, this vision of a recommender system may be im-
plemented by the platform in its entirety. A proxy bidder submits the value of each opportunity acting on behalf of
the buyer. In this setup the funny money and budgets are merely abstractions used in the market, and are entirely
controlled by the platform. There is no actual money changing hands in this mechanism. The whole point is to make
the recommendations fair, and not that anybody can buy their way into more appealing slots.

More concretely, suppose that we have n content creators (say job posts), and m possible recommendation slots to
fill (e.g., every time a job seeker shows up we show them a single job post). Furthermore, suppose that we measure the
quality of recommending job post j to job seeker i by the probability that the job seeker clicks on (or applies to) the job
post. This probability vi j will represent the value in the market model. We wish for a given job post i to get allocated
roughly to some percentage of all content slots. We can set the budget Bi for job post i equal to that percentage. Having
defined buyers, goods, values and budgets, now we have a Fisher market model that admits an equilibrium. Allocating
the job posts according to that equilibrium guarantees several desirable properties. For any job post i, proportionality
guarantees that the expected number of job seekers that will click on the job post is at least as high as if that post were
shown to each job seeker with probability Bi . Secondly, the no-envy property guarantees that every job post has at least
as high of an expected number of clicks as if they receive the allocation for any other job post k, after adjusting the
allocation to k by the factor Bi

Bk
.

An interesting extension of the CEEI application to fair allocation of content would be to more directly guarantee
fairness on both sides of the market. In particular, CEEI gives a one-sided fairness guarantee: it only requires that
content creators receive a fair share of the set of recommendations. Ideally, we would also like users being shown
recommendations to also get explicit fairness guarantees. Mehrotra et al. [2018] describe this problem in the context
of music recommendations motivated by Spotify. A naive content recommendation approach based on relevance
prediction will typically allocate the majority of recommendations to a small set of superstar musicians. Instead, the
platform would like to recommend music in a way that more equitably recommends songs by less famous artists. At
the same time, there is a clear tradeoff in that user satisfaction is extremely important. Mehrotra et al. [2018] study a
group fairness notion where musicians are each assigned one out of K “popularity bins,” and they measure fairness
as

∑K
k=1

√
|Ak | where |Ak | is the number of artists from bin k assigned a recommendation. This yields a form of

regularization towards fair treatment of each artist bin, though it does not yield the kind of per-artist fairness that
market equilibrium guarantees.

Let us brieflymention that amarket-equilibrium-based allocation is not the only possible approach towards achieving
more diverse recommendations. A very related approach is to use a linear programming (LP) approach that maximizes
total social welfare, but ensures that each content creator is allocated at least some minimum amount of utility. Such
an approach can be adapted to an online setting by adding a Lagrange multiplier on each utility lower bound. This
multiplier can be tuned over time using a control algorithm, based on whether the creator is receiving the right amount
of utility. In a certain sense, these two approaches can be viewed as equivalent: by the second welfare theorem we
know that any Pareto-efficient allocation can be implemented in market equilibrium by an appropriate redistribution of
budgets. However, in practice the two approaches are calibrated very differently. The LP approach requires us to specify
an exact utility lower bound for each content creator. On the one hand this gives us very concrete utility guarantees,
but on the other hand it may be hard to pick appropriate utility lower bounds, especially if we do not know the exact
market composition ahead of time. Some choices of utility lower bounds may even lead to infeasibility. By using a
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market-equilibrium approach one can instead specify the budgets of funny money for each content creator. This is
always guaranteed to be feasible, and is akin to instead specifying a fractional share of the market that we would like
to allocate to each content creator.

4.2 More Connections to Large-Scale Internet Applications

Besides fair content recommendation systems, allocations based on market equilibria apply to several other problems
that are related to large-scale internet applicationswhere no realmoney is involved. In the robust content review problem,
we are faced with the task of filtering several types of harmful social media content (e.g., fake news, impersonation, hate
speech, . . . ). Let us consider n categories of harmful content, each with some forecasted amount of content to review
in each time period. We also have m review groups, which are groups of reviewers (typically in different geographic
locations) that have been trained to handle a certain subset of harmful content categories. Each review group has some
total amount of reviewing capacity that can be provided during each time period. The goal is to allocate review time
to the content categories in a way that satisfies all forecasted review amounts, and then allocate the excess reviewing
capacity across the content types to be robust to variations from the forecast. Allouah et al. [2021] show that this
problem can be formulated as a variation of the Fisher market equilibrium problem.

Another fair allocation problem that is a component of large-scale internet applications is recommending donation
opportunities to people who previously registered as being interested in donating blood [McElfresh et al., 2020].
Opportunities arise from requests by blood centers, temporary events such as blood drives, and emergency situations
where blood is needed to save lives. The opportunities are submitted to a social network or a donation-specific app,
and the recommendation system has to decide what set of users to offer the donation suggestion to. The goal is to
optimally allocate suggestions in a way that maximizes the total amount of blood donated, while also treating each
donation opportunity equitably.

4.3 Historical Notes

The CEEI solution concept was introduced by Varian et al. [1974]. Assigning course seats to students fairly via
market equilibrium was studied by Budish [2011]. Goldman and Procaccia [2015] created an online service called
spliddit.org which has a user-friendly interface for fairly dividing many things such as estates, rent, fares, and
others. The motivating example of fair recommender systems, in which we fairly divide impressions among content
creators via CEEI was suggested in Kroer et al. [2019], Kroer and Peysakhovich [2019], Murray et al. [2020a].2
The robust content review problem was introduced by Allouah et al. [2021], where they also show that extensions
of CEEI lead to desirable properties. The blood donations problem was introduced by McElfresh et al. [2020]. A
comprehensive overview of recent fair division work was given by Freeman and Shah [2020]. There are also interesting
fair division problems related to large-scale internet settings where CEEI is not the preferred solution method. An
interesting example of this is the sharing a large set of compute resources such as cloud computing infrastructure or a
large compute cluster [Parkes et al., 2015, Ghodsi et al., 2018].

2 See also Murray et al. [2020b].
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5 Computing Large-Scale Market Equilibria

In Section 2 we pointed out that one can compute equilibria of Fisher markets solving the Eisenberg-Gale convex
program (EG). In this section we discuss the practical considerations of solving this problem for large instances.

This EG formulation can be solved with off-the-shelf software, though it requires the ability to solve convex
programs involving exponential cones. For small instances these can be handled with open-source solvers such as
SCS [O’Donoghue et al., 2016], and are readily expressed using the CVXPY interface [Diamond and Boyd, 2016].
However, in our experience, open-source solvers quickly run into numerical issues for solving EG (around 120 buyers
and goods). For moderate-to-large problems, we can rely on the commercial conic solver Mosek [Mosek, 2010]. If
the model is such that the interior-point method in Mosek is able to perform iterations then this is typically the best
approach. Mosek is very fast, and has industrial-grade capacity for dealing with numerical issues.

However, for extremely large-scale problems such as fair recommender systems or admarkets, interior-point methods
encounter difficulties. This is because the linear system solved at each iteration becomes too slow since the solver does
not take sufficient advantage of sparsity, or due to memory usage. To address this and keeping in mind that the purpose
of the market formulations discussed throughout this chapter was being able to find equilibria, we now discuss methods
suitable for large-scale problems. The approach we describe consists of two complementary elements. First, we will
discuss first-order methods (FOMs), also known as gradient-based methods, for computing market equilibrium. The
key selling point of such family of methods is that each iteration of the algorithm can be computed in roughly linear
time, and storage costs are low. Second and as a complement to FOMs, we will discuss abstraction methods. The goal
is to abstract a large Fisher market a smaller one that can be solved efficiently without a big loss in accuracy. Indeed,
we propose a way to do this so the equilibria resulting from a reduced-size instance are at approximate equilibrium in
the original market. This is crucial in cases where the original market instance is so large that we cannot efficiently
store even the explicit iterates. Furthermore, abstraction methods can be used to deal with missing data by leveraging
low-rank models.

5.1 Convex Programming Formulations for Fisher Markets

We will cover two different algorithms for computing market equilibria of a standard Fisher market model. We will
then describe how these can be extended to handle quasilinear utilities. The methods will be based on the EG convex
program, as well as its dual convex program:

max
x≥0,u

gEG(u) :=
n∑
i=1

Bi log(ui)

s.t. ui ≤
m∑
j=1

xi jvi j, i ∈ N,

n∑
i=1

xi j ≤ 1, j ∈ M,

min
p≥0,β≥0

m∑
j=1

pj −

n∑
i=1

Bi log(βi)

s.t . pj ≥ vi j βi, i ∈ N, j ∈ M .

The convex program on the left is the linear-utility version of the EG program [Eisenberg and Gale, 1959]; see
Section 2.1 for the general case and Section 3.1.2 for the quasi-linear utility case in the context of FPPE. The dual of
EG is also of interest so we included it on the right. An interesting note on the dual of EG is that it optimizes over
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prices of goods pj , and per-buyer utility prices βi . At market equilibrium, βi is exactly the rate at which buyer i derives
utility, i.e., βi = Bi

ui
.

The convex program below is called the Shmyrev formulation and it looks very different from EG. It optimizes over
the spends bi j (the amount of money that buyer i spends on good j) instead of over allocations directly.

max
b≥0,p

fsh(b, p) :=
n∑
i=1

m∑
j=1

bi j log vi j −
m∑
j=1

pj log pj

s.t .
n∑
i=1

bi j = pj, j ∈ M ,

m∑
j=1

bi j = Bi, i ∈ N .

The first constraint ensures that spends sum to the price of each good, while the second constraint ensures that each buyer
spends their budget exactly. The objective is a value-weighted linear combination of spends plus an unscaled entropy
regularizer on prices. While the Shmyrev convex program was introduced by Shmyrev [2009] as a new formulation
for computing equilibria in Fisher markets, it turns out to be intimately related to EG. Cole et al. [2017] show that
the Shmyrev program can be recovered from EG by first taking the dual of EG, applying a change of variables, and
then taking the dual again. Despite this equivalence, we shall see that interesting and different algorithms result from
solving each convex program.

5.2 First-Order Methods

We now describe two simple and scalable algorithms that arise from the convex programs mentioned above. The first
algorithm we will describe is the proportional response (PR) algorithm. The PR algorithm is an iterative algorithm that
can be viewed as a dynamic updating scheme between buyers and the seller. The buyers see current prices on goods
and update their bids, while the seller sees these bids and in turn update the price. This can be summarized as follows:

Algorithm 2: Proportional response (PR)
1 Each buyer i submits a bid bt=1

i j ∈ R
m
+ for each good j.

2 for every time step t = 1, . . . do
3 Given the bids, a price ptj =

∑
i bti j is computed for each good.

4 Each buyer is assigned an allocation xti j =
bt
i j

pt
j
of each good.

5 Each buyer submits a next bid on good j proportionally to the utility they received from good j in round t:

bt+1
i j = Bi

xti jvi j∑
j′ xti j′vi j′

.

As it is evident from the price and bid updating schemes, these updates are designed such that they alternatively
correspond to each of the constraints in the Shmyrev program. The next theorem provides a convergence rate for this
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algorithm as a function of the size of the instance and the time period. It shows that PR has a reasonably attractive 1/T
rate of convergence.

Theorem 7 The iterates of the PR algorithm converge at the rate of fsh(b∗, p∗) − fsh(bt, pt ) ≤ (log nm)/t, where b∗

and p∗ denote any optimal solution to the Shmyrev convex program.

From a practical perspective, the PR algorithm converges very rapidly to a medium-accuracy solution for most
numerical examples. Thus, it is a very useful method in practice, since it has a very simple and lightweight imple-
mentation, requires no parameter tuning, and can be used for very large instances. This is especially the case if the
valuations are sparse: we only need a variable bi j corresponding to a buyer-good pair (i, j) if vi j > 0.

While we have not described the mirror descent algorithm in this chapter, it is worth making a few comments
on the equivalence between the PR and mirror descent algorithms. While this is not immediately apparent from the
description of the algorithm, the PR algorithm is a first-order method because it is an application of mirror descent to a
convex program. Even though there is no step size in PR (whereas FOMs, including mirror descent, typically have step
sizes), the PR dynamics correspond to choosing a step size of one in mirror descent. This turns out to be a valid choice
due to a strong connection between the unscaled entropy on prices in the Shmyrev objective, and the way distances
are measured when using the negative entropy on the bids as a distance measure. A reader familiar with the typical
convergence rates achieved by mirror descent would expect that one must average the iterates across all time steps
in order to get convergence, and then this would typically converge at a rate of 1/

√
T . Theorem 7 gives a guarantee

on the last iterates bt, pt of PR without averaging, and the rate guarantee is of the order of 1/T . From a theoretical
perspective a rate improvement of 1/

√
T is very strong, and from a practical perspective the last iterate convergence

is quite attractive. Both of these properties are again a consequence of the strong connection between the unscaled
entropy on prices in the Shmyrev objective and the negative entropy distance measure.

As stated above, PR is a great algorithm for converging to medium-accuracy solutions. However, if one wants
higher-accuracy solutions, then a method with a faster asymptotic rate of convergence is necessary. We now describe
how this can be achieved via a projected gradient descent (PGD) algorithm. PGD operates on the original EG problem.
It iterates the following update:

xt+1 = ΠX(xt−1 − γt∇gEG(xt )),

where X = {x ∈ Rn×m+ :
∑

i xi = s} is the set of feasible allocations that fully utilize every good3, ΠX is the projection
operator onto X, and γt is the step size. Gao and Kroer [2020] show that PGD on EG converges at a linear rate (1− δ)t

for a small constant δ. Thus, theoretically, the PGD algorithm should be preferred to PR when higher accuracy is
needed. This result does come with some caveats however: first, the base of the exponent, 1− δ, can be close to 1 as the
term δ depends on some hard-to-compute constants, such as the Hoffman constant which makes δ very small. Second,
the cost per iteration for PGD is slightly higher than for PR: it requires projecting ontoX, which can be done via sorting
but leads to a per-iteration cost of nm log n, as opposed to nm for PR. Here too the projection can take advantage of
sparsity, thereby becoming much faster in the case where only a few buyers are interested in each good. Gao and Kroer
[2020] also show numerically that PR is faster than PGD for medium-accuracy solutions, whereas PGD is faster when
higher levels of accuracy are desired.

Both PR and PGD algorithms can also be extended to the case of quasilinear utilities, such as those used when
modeling budget-smoothing in first price auctions as a market equilibrium problem. For PGD, this relies on extending

3 Every optimal solution to EG must lie in this set, assuming that every good j has some i such that vi j > 0; if this does not hold then that
good can simply be preprocessed away.
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EG to the quasilinear case, which was shown by Chen et al. [2007], Cole et al. [2017]. Gao and Kroer [2020] show
how to apply PGD to achieve a linear rate.

In this chapter, we focused on simple and scalable first-order methods for computing market equilibria. We believe
these algorithms are very suitable for practical use, due to their easy implementation requirements and cheap per-
iteration complexity. Beyond the algorithms covered here, there is a long history of theory-oriented polynomial-time
algorithms for computing equilibria of Fisher markets. This line of work started with Devanur et al. [2008] who give
a primal-dual algorithm. Later work offered simpler algorithms, e.g., Bei et al. [2019] put forward an algorithm with
a linear rate that can be interpreted as a form of ascending-price auctions. However, these methods typically do not
have cheap per-iteration complexity, and are thus less suitable for the market sizes considered in this chapter. Another
interesting line of extensions studies algorithms for new utility classes such as, e.g., spending constraint utilities, which
are additively separable utilities that have piecewise-linear utility per good [Vazirani, 2010, Birnbaum et al., 2011].

5.3 Market Abstractions

So far we have described scalable first-order methods for computing market equilibria. Still, these algorithms make
a number of assumptions that may not hold in practice. To use the PR or PGD algorithms, one must be able to
store the iterates which take nm space. If both the number of buyers and goods are of the order of 100,000, writing
down an iterate using 64-bit floats requires about 80 GB of memory (assuming no sparsity). For applications in large
internet companies such as ad markets, we might expect n, and especially m, to be even larger than that. Thus efficient
computation is important but not enough. We may need to find a way to compress the instances to be solved down to
some manageable size where we can at least hope to store iterates efficiently. Furthermore, we may not have access to
all valuations vi j . For instance, we may only have some samples and those values may be noisy. This means that we
also need to somehow infer the remaining valuations. In a setting where we do not know all the true valuations, or we
only have noisy estimates, it is important to understand how these misspecifications degrade the quality of computed
equilibria.

The issues mentioned earlier motivated Kroer et al. [2019] to consider abstraction methods to solve those problems.
For the purposes of abstraction, it will be useful to think of the set of valuations vi j as a matrix V , where the i’th
row corresponds to the valuation vector of buyer i. We will be interested in the outcome of computing a market
equilibrium using a valuation matrix Ṽ ≈ V , where Ṽ would typically be obtained from an abstraction method. The
goal is establishing that the market equilibria corresponding to V and Ṽ are similar, which could be quantified by
‖Ṽ − V ‖F . That would enable us to compute one equilibrium to approximate the other. Let us enumerate a couple of
reasons why one might prefer to compute a market equilibrium for Ṽ rather than V .

Low-rank markets: When there are missing valuations, we need to impute the missing values. Of course, if there
is no relationship between the entries of V that are observed and those that are missing, then we have no hope of
recovering V . However, in practice this is typically not the case. Valuations are often assumed to (approximately)
belong to some low-dimensional space. A popular model is to assume that the valuations are low rank, meaning that
every buyer i can be represented by some d-dimensional vector φi , every good j can also be represented by some
d-dimensional vector ψj , and the valuation of buyer i for good j is ṽi j = 〈φi, ψj〉. One may interpret this model as
every good having an associated set of d features, with ψj describing the value for each feature, and φi describing the
value that i places on each feature. In a low-rank model, d is expected to be much smaller than min(n,m), meaning
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that V is far from full rank. If the real valuations are approximately of rank d (meaning that the remaining spectrum
of V is very small), then Ṽ will be close to V .
This model can also be motivated via the singular-value decomposition (SVD). Assume that we wish to find the
matrix of rank d that is closest to V :

min
Ṽ

‖V − Ṽ ‖2F :=
∑
i j

(vi j − ṽi j)
2

s.t . rank(Ṽ) ≤ d .

The optimal solution to this problem can be found easily via SVD. Letting σ1, . . . , σd be the first d singular values
of V , ū1, . . . , ūd the first left singular vectors, and v̄1, . . . , v̄d the first right singular vectors, the optimal solution is
Ṽ =

∑d
k=1 σk ūk v̄Tk . If the remaining singular values σk+1, . . . are small relative to the first k singular values, then

this model captures most of the valuation structure.
In practice, since the matrixV might not be known exactly, we cannot solve this problem to get Ṽ . Instead, we search
for a low-rank model that minimizes some loss on the observed entries OBS, e.g.,

∑
i, j∈OBS(vi j − 〈φi, ψj〉)

2 (this
objective is typically also regularized by the Frobenius norm of the low-rank matrices). Under the assumption that
V is generated from a true low-rank model via some simple distribution, it is possible to recover the original matrix
with only samples of entries by minimizing the loss on observed entries. In practice this approach is also known
to perform extremely well, and it is used extensively at tech companies. The hypothesis is that in practice data is
approximately low rank, so one does not lose much accuracy from a rank-d model.

Representative Markets: It is also convenient to generate a smaller set of representative buyers, where each original
buyer i maps to some particular representative buyer r(i). Similarly, we may generate representative goods that
correspond to many non-identical but similar goods from the original market. These representative buyers and
goods may be generated using clustering techniques. In this case, our approximate valuation matrix Ṽ has as row
i the valuation vector of the representative buyer r(i). This means that all i, i′ such that r(i) = r(i′) have the same
valuation vector in Ṽ , and thus they can be treated as a single buyer for equilibrium-computation purposes. The
same grouping can also be applied to the goods. If the number of buyers and goods is reduced by a factor of q, then
the resulting problem size is reduced by a factor of q2, since we have n × m variables.

We now analyze what happens when we compute a market equilibrium under Ṽ rather than V . Throughout this
subsection we will let (x̃, p̃) be a market equilibrium for Ṽ . We use the error matrix ∆V = V − Ṽ to quantify the solution
quality, and we measure the size of ∆V using the `1-`∞ matrix norm ‖∆V ‖1,∞ = maxi ‖∆vi ‖1. We will also use the
norm of the error vector for an individual buyer ‖∆vi ‖1 = ‖vi − ṽi ‖1.

The next proposition turns out to be useful in proving guarantees on the approximate equilibrium. It establishes that
under linear utility functions the change in utility when going from vi to ṽi is linear in ∆vi .

Proposition 1 If 〈ṽi, xi〉 + ε ≥ 〈ṽi, x ′i 〉 then 〈vi, xi〉 + ε + ‖∆vi ‖1 ≥ 〈vi, x ′i 〉

This proposition can be used to immediately derive bounds on envy, proportionality, and regret (how far each buyer
is from achieving the utility of their demand bundle). For example, we know that under Ṽ , each buyer i has no envy
towards any other buyer k: 〈ṽi, x̃i〉 ≥ 〈ṽi, x̃k〉. By Proposition 1 each buyer i has envy at most ‖∆vi ‖1 under V when
using (x̃, p̃). All envies are thus bounded by ‖∆V ‖1,∞. Regret and proportionality can be bounded similarly which
implies guarantees under Ṽ .
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Market equilibria also guarantee Pareto optimality. Unfortunately, we cannot give any meaningful guarantee on how
much social welfare improves under Pareto-improving allocations for Ṽ . The following real and abstracted matrices
provide an example of it:

V =

[
1 ε ε
0 1 ε

]
, Ṽ =

[
1 ε 0
0 1 ε

]
.

If we set B1 = B2 = 1, then for supply-aware market equilibrium, we end up with competition only on good 2, and
we get prices p̃ = (0, 2, 0) and allocation x̃1 = (1, 0.5, 0), x̃2 = (0, 0.5, 1). Under V this is a terrible allocation, and we
can Pareto improve by using x1 = (1, 0, 0.5), x2 = (0, 1, 0.5), which increases overall social welfare by 1

2 − ε , in spite of
‖∆V ‖1 = ε .

On the other hand, we can show that under any Pareto-improving allocation, some buyer i improves by at most
‖∆V ‖1,∞. To see this, note that for any Pareto improving allocation x, under Ṽ there existed at least one buyer i such
that 〈ṽi, x̃i − xi〉 ≥ 0, and so this buyer must improve by at most ‖∆vi ‖1 under V .

5.4 Historical Notes

The proportional response (PR) algorithm was introduced by Wu and Zhang [2007]. It was later shown to be effective
for BitTorrent sharing dynamics [Levin et al., 2008], and it was eventually shown to be an instantiation of the mirror
descent algorithm by Birnbaum et al. [2011], who also show the last-iterate 1

T rate. Birnbaum et al. [2011] also show
how mirror descent can be applied to the Shmyrev formulation. For a general introduction to mirror descent, see e.g.,
Bubeck [2015] or the lecture notes of Ben-Tal and Nemirovski [2001]. Alternatively, the lectures notes from Kroer
[2020] also cover this derivation, as well as the general duality derivations required to obtain Shmyrev from EG.

Abstraction in the context of Fisher market equilibrium was introduced by Kroer et al. [2019]. However, abstraction
has been applied in other related problems. Candogan et al. [2016] consider replacing sets of agents in trading networks
with representative buyers, in order to do comparative statics. There has also been work on abstraction for non-market-
based allocation problems [Walsh et al., 2010, Lu and Boutilier, 2015, Peng and Sandholm, 2016], where the results
largely center around good abstraction of LP or MIP-based allocation problems. Abstraction has also been studied in
the computation of game-theoretic equilibria, where it has been used extensively in practice [Gilpin et al., 2007, Brown
et al., 2015, Brown and Sandholm, 2018], and studied from a theoretical perspective [Lanctot et al., 2012, Kroer and
Sandholm, 2014, 2016, 2018].

A brief introduction to low-rank models can be found in Udell [2019]. Udell et al. [2016] gives a more thorough
exposition and describes more general model types. Beyond these papers, there is a large theory of low-rank models
that show a number of interesting results. There is a class of nuclear-norm-regularized convex optimization problems
that can recover the original matrix with only a small number of entry samples [Candès and Recht, 2009, Recht, 2011].
One might think that this would then be the preferred method in practice, but surprisingly non-convex models are often
preferred instead. These non-convex methods also have interesting guarantees on statistical recovery under certain
assumptions. An overview of non-convex methods is given in Chi et al. [2019]. Low-rank market equilibrium models
were also studied in Kroer and Peysakhovich [2019], where it is shown that large low-rank markets enjoy a number of
properties not satisfied by small-scale markets.
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6 Conclusion

We have described how market models can be used to generate insights and compute solutions that are relevant to
internet platforms. We have given examples in the context of ad auctions, recommendation systems and fair division
problems. The general area is very rich and there is ample research published about these applications. For additional
context on online advertising, particularly as it relates to display ads, we direct the reader to a survey by Choi et al.
[2020]. For some context on market equilibrium in electricity markets, see Azizan et al. [2020] and references therein.
A somewhat dated overview of work in the theoretical computer science community on computing market equilibrium
can be found in Nisan et al. [2007]. The references in Section 5.4 provide some examples of more recent work. For
more context on fair division, we recommend several surveys covering various aspects of this problem. Aleksandrov
and Walsh [2020] gives a very recent overview of online fair division, a problem highly related to the topics covered
here. For more general fair division coverage, see, e.g., Procaccia [2013], Brandt et al. [2016], Walsh [2020].

To use the ideas discussed in this chapter in practice, it is important to feed models with the right input. Some
data may be available from historical information, logs, and other measurements, while other data may need to be
estimated. To do the latter, one can rely on several statistical and machine learning techniques. In relation to advertising,
clustering, recommender systems, and particularly to calibrate values of goods to buyers, we refer the reader to the
chapter by Bastani et al. [2021] in this volume about the interplay between machine learning and operations.

To conclude wemention some open problems and directions, as of this article. For the general problem of computing
market equilibrium, there are several interesting open questions. While the general Fisher market equilibrium can be
computed efficiently, as discussed in earlier chapters, the refinement of market equilibria that is needed for SPPE is
harder to handle. It was shown by Conitzer et al. [2018] that maximizing various objectives over the set of SPPE
equilibria is NP-complete, but the complexity of finding any SPPE is currently unknown. In a similar vein, one might
investigate the existence of approximate methods for finding SPPE, even if exact SPPE are hard to find. A related
question is how to reconcile these potential hardness results with the fact that under independence assumptions,
Balseiro and Gur [2019] show that it is possible to have buyers converge to an SPPE-like equilibrium in an online
setting. Understanding the exact boundaries of what can be learned online is an important practical question.

Another interesting line of work would be to generalize pacing equilibria to more realistic allocation mechanisms.
In practice, each item is not sold via independent first or second price auctions. Instead, the number of items sold per
auction is the number of slots available in a given impression, and a single ad is typically only allowed to win one of
those slots. This breaks the correspondence with market equilibrium, but an appropriate notion of pacing still exists. It
would be interesting to understand which, if any, results from market equilibrium carry over to this setting. There is a
rich space of possible questions to ask for this problem, based on the type of multi-item allocation mechanism being
run, the presence of reserve prices, and so on.

Finally, we mentioned in the introduction that various mechanisms have been used in practice to allocate goods to
buyers. It would be interesting to further explore the relations between the models presented in this chapter on market
mechanisms and their underlying situations in the technology industry to bond auctions, supply function equilibria,
and other market approaches.
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