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ABSTRACT
Transfer learning is critical for efficient information transfer across
multiple related learning problems. A simple yet effective transfer
learning approach utilizes deep neural networks trained on a large-
scale task for feature extraction; the extracted representations are then
used to learn related downstream tasks. In this paper, we investigate
the transfer learning capacity of audio representations obtained from
neural networks trained on a large-scale sound event detection dataset.
We evaluate these representations across a wide range of other audio
tasks by training simple linear classifiers for them, and show that
such a simple mechanism of transfer learning is already powerful
enough to achieve high performance on the downstream tasks. We
also provide insights into the properties of the learned sound event
representations that enable such efficient information transfer.

Index Terms— transfer learning, representation learning, sound
events, linear classifier, audio

1. INTRODUCTION

Building task-agnostic representations that can generalize across mul-
tiple learning problems has been critical in advancing and applying
machine learning techniques in a variety of domains. However, often
the design of neural networks are driven by low-level tasks in a given
problem domain. For instance, a variety of robust deep networks for
low-level tasks like visual object recognition, co-segmentation, etc.,
have been designed and thoroughly evaluated. While these carefully
designed networks are very successful on such low-level tasks, the
need for computational frameworks and algorithmic procedures that
combine and transfer information across multiple low-level tasks to
help tackle higher-level tasks (like multi-sensory scene parsing, activ-
ity understanding, etc.) remains a challenging problem. Moreover,
this notion of combining or sharing knowledge is helpful for training
systems under limited and noisy-labeled data as well [1, 2].

Transfer learning is possibly the best suited framework for build-
ing such shareable representations, and has been studied compre-
hensively in the domains of computer vision and natural language
processing [3, 4, 5]. Take vision as an example: transfer learning has
been applied to a wide range of tasks such as scene understanding and
action summarizing [6, 7, 8], few shot learning and noisy label learn-
ing [1, 2]. Systems trained on low-level vision tasks such as object
detection and classification serve as the source task from which the
knowledge is transferred. This is mainly because of the availability
of large-scale weakly or fully annotated datasets for such tasks.

In acoustics, specifically, in audio machine learning, transfer
learning has been studied to a relatively lesser extent. One possible
reason is the less obvious choice of low-level source task. Neverthe-
less, transfer learning has gained traction in recent times in audio
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machine learning. It has been studied in isolated contexts such as
sound event detection (SED) [9, 10, 11], music tagging [12] and
emotion recognition [13]. Nevertheless, we do not yet understand the
nuances of generalized representations that capture structural similar-
ity between source and target audio tasks. While prior works have
employed transfer learning for different audio tasks, knowledge trans-
fer from a single low-level audio task to a variety of other audio tasks
has not been studied comprehensively. This forms the key motivation
of this paper. Clearly, the capability of shareable representations may
depend entirely upon the choice of the tasks used for evaluation. We
hypothesize that SED representation have substantial capabilities to
generalize to other related audio tasks. We choose SED as the source
task for two reasons: first, sound event datasets are among the largest
available audio datasets, thereby providing a large enough database
for learning “robust” representations; second, learning sound events
implicitly entails learning low-level acoustic phenomena, which, in
principle, amounts to capturing a significant amount of information in
an audio snippet. We refer to SED as the source task and explore its
generalization power to other audio target tasks. Besides benchmark-
ing capabilities of SED representations for audio transfer learning,
we also aim to provide interesting insights into the target tasks and
the relationship between the source and target tasks.

Keeping the above motivations in mind, we standardized the
transfer learning process in the following way. We train neural net-
works for a large scale SED task and transfer the representations
obtained from these networks for any given audio to the target tasks.
To reduce the bias in the design of the SED model itself, we train and
analyze results through two separate state-of-the-art networks. We
constrain ourselves to training linear classifiers for each target task
using the representations obtained from the SED networks. Linear
classifiers allow a simple and grounded way to evaluate the efficacy
of these audio representations for knowledge transfer. Even using a
simple non-linear mapping for transfer limits us from disentangling
the power of sound event representations vs. the power of non-linear
transfer itself. Finally, we consider a variety of target tasks to help to
better understand the effectiveness as well as the limitations of these
audio representations obtained from SED models.

In Section 2 we introduce the networks used for SED, and Sec-
tion 3 discusses the target tasks. We evaluate the transfer of sound
event representations in Section 4, and provide insights with some
visualizations in Section 5. Section 6 concludes the paper.

2. SOURCE TASK & AUDIO REPRESENTATIONS

As said above, the source task is sound event detection, and represen-
tations are obtained from two state-of-the-art deep networks trained
on the AudioSet [14] corpus, which contains 2 million training record-
ings of 527 types of sound events. The two models, TALNet [15] and
WEANet-SUSTAIN [16], are briefly summarized below.



2.1. TALNet

TALNet [15] is a deep convolutional recurrent network for SED. The
network takes logmel spectrograms as input; the logmel spectrograms
have 40 frames per second and 64 frequency bins. The input features
are passed through 10 convolutional layers, 5 pooling layers, and one
bidirectional GRU layer. The output of the GRU layer has 10 frames
per second, each being a 1, 024-dimensional vector. These vectors
are further processed by a fully connected layer to calculate the
probability of each type of sound event at each frame, and these
probabilities are aggregated over an entire recording using a linear
softmax pooling function to yield global event probabilities. We
extract the 1, 024-dimensional output of GRU layer (averaged over
time) as the learned transferable representation for any given input
audio. Before using these representations to train linear classifiers,
we first normalize them to have zero mean and unit variance across
the training data, then normalize each vector to have unit l2-norm.

2.2. WEANet-SUSTAIN

The second network we use is WEANet-SUSTAIN [16]. This net-
work also takes 64-dimensional logmel spectrograms as input, but
the frame rate is 100 frames per second. The network is a fully con-
volutional neural network with a class-specific attention layer. The
input is first processed by 4 blocks of layers (B1 to B4); each block
consists of 2 convolutional layers followed by max pooling. These
blocks are followed by 4 more blocks (B5 to B8) of only convo-
lutional layers. At this stage we get segment-level outputs, which
are then combined through a class-specific attention mechanism to
produce a recording-level output. The network is trained using a se-
quential self-teaching approach leading to robust generalization. We
use WEANet’s 2, 048-dimensional hidden representation from the
output of block B5 (average/max pooled over time and l2-normalized)
for transferring to target tasks.

3. TRANSFER LEARNING TO TARGET TASKS

Our motivation here is to understand the knowledge transfer from
SED to a variety of downstream audio tasks, including sounds, ac-
tions, and music, with both small- and large-scale datasets. The
representations from TALNet and WEANet are used to train linear
classifiers for these tasks. Below is a list of the target tasks.

3.1. Sound Event Classification

Although SED on AudioSet is our source task, we also consider
sound event classification on 3 other datasets as target tasks: ESC-
50 [17], Urbansound [18] and FSDKaggle2019 [19]. The domain
mismatch between these datasets and AudioSet makes transfer learn-
ing non-trivial. The FSDKaggle2019 dataset, in particular, is more
challenging. Unlike the other two, FSDKaggle2019 is a multi-label
dataset, where each recording can have more than one label. It also
consists of a “curated” set and a “noisy label” set: the former contains
audio recordings carefully labeled by humans, whereas the latter can
have wrongly labeled audio examples. An estimated 60% of all the
labels are wrong, making it a very challenging task.

3.2. Acoustic Scene Classification

Acoustic scenes are often composed of a mixture of sounds, thereby
exhibiting complex acoustic characteristics. While this implicit rela-
tionship between sound events and acoustic scenes can provide some
nuanced understanding of acoustic scenes, it remains to be seen if
representations based on SED can capture enough information for

Method MAP MAUC
Ford et. al [26] 0.380 0.970
TALNet [15] 0.386 0.971

WEANET-SUSTAIN [16] 0.398 0.972

Table 1. Comparison with state-of-the-art methods on AudioSet

good scene classification performance. Here we evaluate the transfer-
ability of SED to acoustic scene classification using Task 1a of the
2019 DCASE challenge [20].

3.3. Music Tagging

This target task aims at tagging audio recordings with different
music genres, instruments, moods, etc. It adds to the variability
of target labels considered in this work. We use the well-known
MagnaTagATune dataset [21] for evaluation. This is a multi-label
dataset, where each recording can belong to a genre class as well as
multiple instrument classes at the same time. We use the top 50 tags
of this dataset in our experiments.

3.4. Human Action Classification Using Audio

The goal of this task is to recognize human actions such as “ice skat-
ing” and “playing guitar” in video recordings. We use the most recent
version of the Kinetics dataset (Kinetics700), a widely used bench-
mark for action classification [22]. It is a large-scale dataset with
over 550k 10-second clips from 700 action classes. This problem
has been primarily tackled from a visual perspective, although some
multimodal approaches have also been proposed [23, 24].

In this paper, we explore audio-only recognition of human actions.
This is interesting in several aspects. To the best of our knowledge,
this is perhaps the first work that explicitly tries to link human actions
and sound events. In principle, similar to ImageNet [25] based pre-
trained models being used for visual-driven action classification,
we hypothesize that pre-trained SED models on AudioSet would
help advance the state of audio-driven action classification. Further,
being a large-scale dataset with over 550k clips, transferring SED
representations to this task via linear classifiers helps characterize the
efficacy of direct classification of actions vs. event-induced action
classification with respect to sounds.

4. EXPERIMENTS

4.1. Datasets and Setup

For fair comparison, we adopt the standard training/validation/test
split and performance metrics defined for each dataset. When such
information is unavailable, we follow the most prevailing setup from
previous works. For ESC-50 and Urbansound, we perform 5-fold and
10-fold cross-validation following the predefined folds, and report
the average accuracy across all folds. For FSDKaggle2019, we use
the “public” test set for validation. For MagnaTagATune, we use
the 12 : 1 : 3 split for training, validation and testing, as was done
in several prior works [29, 30, 31]. For Kinetics700, we set aside
20, 525 examples from the training set as validation data. All models
are implemented in PyTorch, and hyperparameters are tuned using
the validation sets.

4.2. AudioSet Models

The details of the TALNet and WEANET models trained on Au-
dioSet can be found in [15] and [16] respectively. Table 1 shows
the performance of the two models on AudioSet. In this work, we



Task Dataset # Classes Metric TALNet WEANET Prior Work (Uses TL?)

Sound Events

ESC-50 50 Accuracy 91.0 94.1 94.7 [11] 3
Urbansound 10 Accuracy 85.2 85.2 85.1 [27] 3

FSDKaggle2019 80 lwlrap Curated 72.0 72.8 54.2 [19]
7Noisy 51.0 50.3 31.2 [19]

Acoustic Scenes DCASE2019 10 Accuracy 65.8 68.0 58.9 [11] 3

Music Tagging MagnaTagATune 50 MAUC 91.5 91.5 90.2 [12] 3

Human Actions Kinetics700 700 Accuracy Top-1 15.9 18.0 21.9 [28]
7Top-5 30.5 33.0 36.9 [28]

Table 2. Summary of the target tasks and the performance of TALNet and WEANET-SUSTAIN, compared with some previous works.

re-trained TALNet applying SpecAugment [32] to the inputs. More
precisely, we masked out one frequency band of at most 16 bins, and
one time interval of at most 2 seconds. This improved the the mean
average precision (MAP) from 0.359 in [15] to 0.386, and the mean
area under the curve (MAUC) from 0.966 to 0.971.

4.3. Results

Table 2 summarizes results for all target tasks. For brevity, we also
show performance from prior works that most closely relate to the
proposed approach. To our knowledge, no such transfer learning
work exists for FSDKaggle2019 and Kinetics700 (shown by 7 under
the “Uses TL?” column); for the other tasks, the reported baselines
are from prior works using transfer learning.

For the several sound event classification tasks, the linear classi-
fiers built upon TALNet and WEANet representations give similar
performance to prior transfer learning works on ESC-50 and Urban-
sound. These numbers also come close to the state of the art on
these datasets. Note that [27] transfers knowledge from networks
pre-trained on images. On FSDKaggle2019, we compare with the
baseline approach in [19], and our results are 34% and 63% superior.

For the target task of acoustic scene classification, audio repre-
sentations from TALNet and WEANet give 6.9% and 9.1% better
performance compared to [11], which is also trained on AudioSet.
Note, however, that these performances are inferior to state-of-the-art
numbers on this dataset by a considerable margin1.

On the music tagging task, TALNet- and WEANet-based rep-
resentations leads to better performance compared to the transfer
learning proposal from [12]. Interestingly, [12] uses a large-scale
music tagging task as the source task (the Million Song Dataset [33]),
which is very similar to the target task. While AudioSet also contains
a fairly large number of music examples, this clearly shows that it
is possible to construct good representations for music tagging via a
more general-purpose source task like SED.

For Kinetics700, the performance of linear classifiers with audio
representations from TALNet and WEANet is inferior to training an
Xception model from scratch [28]. This is expected for a large-scale
dataset such as Kinetics700. But it is noteworthy that these audio
representations can give competitive results with just linear classifiers,
illustrating the shared information between the two tasks – this has
not been previously studied or observed. Some action classes, such as
“rolling eyes” and “peeling banana”, do not exhibit specific acoustic
signatures and are hard to detect through any audio-only approach.
The action “playing bagpipes” achieves the highest top-1 accuracy
of 87.5% (using WEANet features). This is not surprising because
the “bagpipes” event gets the highest performance on the source
AudioSet task as well. In Sec. 5.2 we will provide some qualitative
interpretation of the relationship between the source SED task and
the target task of Kinetics700.

1http://dcase.community/challenge2019/task-acoustic-scene-classification-results-a

5. ANALYSIS AND VISUALIZATION

The results on the target tasks have shown that, in most cases, simple
linear classifiers built upon TALNet and WEANet representations can
give competitive, or marginally better, results compared to previously
published numbers on the target datasets. To bring further insights,
we provide some more analysis and visualizations here.

We first show that the representations can capture semantics-
driven proximity relationships among the target labels. We show this
through the weights of the linear classifier learned for each class in
the target tasks. We also analyze the correlation between the target
task labels and the source task sound events, and illustrate that we can
explain to a certain extent which sound events contribute to specific
target labels. Keeping the page limit in mind, we present the analysis
for TALNet-based representations only; similar results and analysis
were obtained for WEANet representations.

5.1. Clustering of Target Labels

The weight matrix of the linear model learned for a target task is
essentially a condensed representation of the target labels’ semantics.
We denote this as W ∈ RC×D , where C is the number of target
classes and D is the dimensionality of the audio representations.

Consider the music tagging task with TALNet representations
as an example. The learned weight matrix W has a size of 50 ×
1, 024; each 1, 024-dimensional row vector essentially represents a
music tag. If the TALNet representations do allow for learning the
semantics of the music tags, then in this 1, 024-D space, semantically
similar tags should be close to each other. Given this hypothesis,
we perform a hierarchical clustering in this space. The resultant
dendrogram is shown in Fig. 1. It clearly shows the hypothesized
semantically meaningful grouping of classes. In particular, we see
that synonymous tags such as “woman”, “female”, “female vocal”,
and “female voice” are clustered together. Similarly, instruments of
classical music (e.g. “violin” and “harp”) form a cluster, and so do
words describing vibrant music (e.g. “drums”, “beat”, and “dance”).
This shows that our setup and source task are robust in learning
general task-agnostic (abstract) information about audio and sounds.

We performed a similar analysis for the human action recogni-
tion task, and the resulting dendrogram is shown in Fig. 2. Given the
rather large number of action types in Kinetics700, we only show a
few action names. Observe that we can recognize semantic clusters at
both macro and micro levels. At the macro level, one can summarize
each large cluster (marked by colors) with a few words. For exam-
ple, most of the actions in teal are housework, and most actions in
purple are sports on land. At a finer level of resolution, we can see
small clusters representing ball sports and track-and-field sports form
within the large purple cluster. Surprisingly, action classes such as
massaging head, neck, back, legs, and feet, which do not correspond
to sound signals, are also well clustered. A possible explanation is
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Fig. 1. Hierarchical clustering dendrogram of the MagnaTagATune
music tags.
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Fig. 2. Hierarchical clustering dendrogram of the Kinetics700 actions.
To avoid clutter, action names are only shown for some small clusters.

that these actions often come with audio tracks containing relaxing
music, and the audio representations are able to exploit such acoustic
cues to support the recognition of visual actions. Fig. 3 provides an
alternative view by running t-SNE [34] on the learned class represen-
tations. The color coding follows the dendogram coloring scheme.
Once again, we notice that closely related events cluster together.
In summary, deep audio representations learned from a large scale
SED task may be directly used to learn semantic relationships among
human actions using a linear classification transfer methodology.

5.2. Correlation Between Target Labels and Sound Events

While we have shown that the audio representations from our source
task contain adequate information for recognizing music tags and
actions, it is hard to interpret and rationalize the evidence that the
transfer learning models use to predict a target label. To address this,
we study the correlation between target labels and sound events, and
demonstrate that predictions of target labels are often supported by
the existence of certain sound events.

We compute the cosine similarity between the following two sets
of vectors: 1, 024-D representations of music tags and actions, taken
from the rows of the weight matrices of the two linear classifiers; and
the 1, 024-D representations of the 527 AudioSet sound events, taken
from the rows of the weight matrix of the final fully connected layer
of TALNet. Before computing the cosine similarity, we subtract the
average music tag / action / sound event representation, and normalize
each vector to have an Euclidean norm of 1.

A part of the resulting cosine similarity matrix is shown in Fig. 4.
Rows represent sound events, and columns represent music tags
and actions. The rows and columns are sorted according to the
dendrograms produced by hierarchical clustering, so that similar

Fig. 3. t-SNE plot of the Kinetics action classes.
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harpsichord
harp

pizzicato
zither

violin fiddle
string section

bowed string instrument
cello

double bass
male singing
child singing

female singing
bouncing

basketball bounce
crunch

chewing mastication
biting

ambient music
new age music

stir
frying food

sizzle

0.1

0.0

0.1

0.2

0.3

Fig. 4. Cosine similarity between some AudioSet sound events (rows)
and MagnaTagATune music tags / Kinetics700 actions (columns).

music tags, actions, and sound events are next to each other. We can
immediately recognize blocks of high similarity values (often ≥ 0.2),
manifesting themselves in yellow and light green cells. Considering
that two random vectors in a high-dimensional space are usually
nearly orthogonal, cosine similarity values above 0.2 are remarkably
large. This figure demonstrates that many music tags or actions
can be explained by a single or a few sound events, and transfer
learning is able to discover such correspondences. For example,
various actions of cooking exhibit high similarity to sound events like
“sizzle”; actions of eating are characterized by “chewing”. Actions
like massaging are often accompanied by relaxing music such as
“new age music”, although the similarity is not as high. Overall,
the correlation analysis provides a quantifiable way to interpret the
correspondences between music tags, actions, and sound events.

6. CONCLUSION

We have demonstrated that it is possible to transfer knowledge from
a sound event detection (SED) task to a wide range of other audio
tasks, including acoustic scene classification, music tagging and hu-
man action recognition. Using a simple linear classifier on audio
representations obtained from SED models, we are able to achieve
performance that is comparable or better than the state of the art on
several datasets. The linear classification system also provides a lucid
way to interpret the suitability of these representations for target tasks.
By visualizing the representations learned for target tasks, we have
found meaningful structures that reflect the proximity relationships
among music genres, instruments, moods, as well as various human
actions. Lastly, we have shown it possible to identify the unique
sound events that contribute to the learning of downstream tasks.
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