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Abstract

In this work, we present a new operator, called Instance
Mask Projection (IMP), which projects a predicted Instance
Segmentation as a new feature for semantic segmentation.
It also supports back propagation so is trainable end-to-
end. By adding this operator, we introduce a new paradigm
which combines top-down and bottom-up information in se-
mantic segmentation. Our experiments show the effective-
ness of IMP on both Clothing Parsing (with complex lay-
ering, large deformations, and non-convex objects), and
on Street Scene Segmentation (with many overlapping in-
stances and small objects). On the Varied Clothing Pars-
ing dataset (VCP), we show instance mask projection can
improve 3 points on mIOU from a state-of-the-art Panop-
tic FPN segmentation approach. On the ModaNet clothing
parsing dataset, we show a dramatic improvement of 20.4%
absolutely compared to existing baseline semantic segmen-
tation results. In addition, the instance mask projection op-
erator works well on other (non-clothing) datasets, provid-
ing an improvement of 3 points in mIOU on Thing classes of
Cityscapes, a self-driving dataset, on top of a state-of-the-
art approach.

1. Introduction
This paper addresses producing pixel-accurate semantic

segmentations. This is relevant for a wide range of applica-
tions, from self-driving, where predicting accurate localiza-
tions of objects, buildings, people, etc, (as illustrated in the
Cityscapes dataset [7]), will be necessary for producing safe
autonomous vehicles, to commerce, where accurate seg-
mentations of the clothing items someone is wearing [43]
will form a foundational building block for applications like
visual search. Many other potential applications can be en-
visioned, especially in real-world scenarios where intelli-
gent agents are using vision to perceive their surrounding
environments, but for this paper we focus on two areas,
street scenes and fashion outfits, as two widely differing set-
tings to demonstrate the generality of our method.

We propose combining top-down information from de-
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Figure 1: Example of Instance Mask Projection: An In-
stance Mask Projection operator takes the instance mask as
the input (Class, Score, BBox, Mask) and projects the re-
sults as a feature map for semantic segmentation prediction.
In this example, the “Dress” is detected in the Instance De-
tection pipeline, then is projected to the feature layer.

tection results, bounding box and instance mask predic-
tion,as in Mask R-CNN [16]. The core of our approach is a
new operator, Instance Mask Projection (IMP), that projects
the predicted masks (with uncertainty) from Mask R-CNN
for each detection into a feature map to use as an auxil-
iary input for semantic segmentation, significantly increas-
ing accuracy. Furthermore, in our implementations the se-
mantic segmentation pipeline shares a trunk with the detec-
tor, as in Panoptic FPN [19], resulting in a fast solution.

This approach is most helpful for improving semantic
segmentation of objects for which detection works well,
movable foreground objects (things) as opposed to regions
like grass (stuff). Using the instance mask output from a
detector allows the approach to make decisions about the
presence/absence/category of an object as a unit, and to ex-
plicitly estimate and use the scale of a detected object for
aggregating features (e.g. in roi-pooling). In contrast, se-
mantic segmentation must make the decision about object
type over and over again at each location using a fixed scale
for spatial context. The semantic segmentation prediction
deals better with concave shapes than the instance mask pre-
diction, in addition to offering high-resolution output.

As part of validating the effectiveness of this approach
we demonstrate several new results:
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• The object masks predicted by Mask R-CNN [16] are
sometimes more accurate than semantic segmentation
for some objects. See Sec. 4.1 and 4.2.

• Following this insight we design the Instance Mask
Projection (IMP) operator to project these masks as a
feature for semantic segmentation, see Sec. 3.1.

• Segmentation results with IMP significantly improve
on the state of the art for semantic segmentation on
clothing segmentation. Showing the best results on
ModaNet [43], improving mean IOU from 51% for
DeepLabV3+ to 71.4%. See sec. 4.2.

• Across three datasets, using features from IMP im-
proves significantly over a Panoptic segmentation
baseline (the same system without IMP) and produces
state of the art results. See Sec. 4.3.

2. Related Work
Our work builds on current state-of-the-art object detec-

tion and semantic segmentation models which have ben-
efited greatly from recent advances in convolution neural
network architectures. In this section, we first review re-
cent progress on object localization and semantic segmen-
tation. Then, we describe how our proposed model fits in
with other works which integrate both object detection and
semantic segmentation.

2.1. Localizing Things
Initially, methods to localize objects in images mainly

focused on predicting a tight bounding box around each ob-
ject of interest. As the accuracy matured, research in object
localization has expanded to not only produce a rectangular
bounding box but also an instance segmentation, identifying
which pixels corresponding to each object.
Object Detection: R-CNN [14] has been one of the most
foundational lines of research driving recent developments
in detection, initiating work on using the feature representa-
tions learned in CNNs for localization. Many related works
continued this progress in two-stage detection approaches,
including SPP Net [18], Fast R-CNN, [13] and Faster R-
CNN [32]. In addition, single-shot detectors YOLO [31],
SSD [26] have been proposed to achieve real-time speed.
Many other recent methods have been proposed to improve
accuracy. R-FCN [9] pools position-sensitive class maps to
make predictions more robust. FPN [22] and DSSD [12]
add top-down connections to bring semantic information
from deep layers to shallow layers. FocalLoss [23] reduces
the extreme class imbalance by decreasing influence from
well-predicted examples.
Instance Segmentation: Compared to early instance seg-
mentation works [8, 21], Mask R-CNN [16] identifies the
core issue for mask prediction as ROI-pooling box mis-
alignment and proposes a new solution, ROI-Alignment us-
ing bilinear interpolation to fix quantization error. Path
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Figure 2: From left to right, images, results of Panoptic-
FPN, results of Mask R-CNN-IMP, results of our final
model, Panoptic-FPN-IMP. Figure 2b, Figure 2c and 2d
show Mask R-CNN-IMP generates cleaner results than
Panoptic-FPN. Figure 2a shows combing semantic segmen-
tation features and IMP can fix problems happened in both.
Figure 2b shows Mask R-CNN-IMP causes less false posi-
tives. The visualization images are not from either Varied
Clothing Dataset nor ModaNet [43] to avoid potential copy-
right questions. All images shown are licensed. See more
examples in Figure 6.



Aggregation Network [25] pools results on multiple layers
rather than one to further improve results.
2.2. Semantic Segmentation

Fully Convolutional Networks (FCN) [35] has been the
foundation for many recent semantic segmentation models.
FCN uses convolution layers to output semantic segmenta-
tion results directly. Most current semantic segmentation
approaches can be roughly categorized into two types, di-
lated convolution, or encoder-decoder based methods. We
describe each, and graphical model enhancements below.
Dilated Convolution: Dilated convolution [39, 4] increases
the dilated kernels to learn larger receptive fields with fewer
convolutions, producing large benefits in semantic segmen-
tation tasks where long range context is useful. Thus, many
recent approaches [6, 41, 40, 34] have incorporated dilated
convolution. Deformable Convolution Network [10] takes
this idea one step further, learning to predict the sampling
area to improve the convolution performance instead of us-
ing a fixed geometric structure.
Encoder-Decoder Architecture: SegNet [36] and U-
NET [33] proposed adding a decoder stage, to upsample
the feature resolution and produce higher resolution se-
mantic segmentations. Encoder-decoder frameworks have
also been widely adopted in other localization related ar-
eas of computer vision, such as Facial Landmark Predic-
tion [17], Human Key Point Detection [28], Instance Seg-
mentation [30], and Object Detection [22, 12] .
Graphical Models: Although deep learning approaches
have improved semantic segmentation results dramatically,
the output result is often still not sharp enough. One com-
mon approach to alleviate these issues is to apply a CRF-
based approach to make the output more aligned with the
color differences. Fully connected CRF [6, 5], and Domain
Transform [3] are two such approaches that can be trained
with neural networks in an end-to-end manner. Soft Seg-
mentation [1] fuses high-level semantic information with
low-level texture and color features to carefully construct
a graph structure, whose corresponding Laplacian matrix
and its eigenvectors reveal the semantic objects and the soft
transitions between them. Soft segments can then be gen-
erated via eigen decomposition. Although using graphical
models can make the prediction boundary align with the
color differences, it cal also cause small objects to disappear
due to excessive smoothing. Additionally, these methods all
rely on good semantic segmentation results.

2.3. Combined Detection & Semantic Segmentation
In part due to newly released datasets, such as COCO-

Stuff [2], research efforts toward integrating object detec-
tion/instance segmentation and semantic segmentation in a
single network have increased. Panoptic Segmentation [20]
proposed a single evaluation metric to integrate instance
segmentation and semantic segmentation. Following these

efforts, Panoptic FPN [19] showed that the FPN architec-
ture can easily integrate both tasks in one network trained
end-to-end. Earlier work, Blitznet [11], also demonstrated
that both tasks can be improved in multitask training. One
related improvement on Panoptic FPN is UPSNet [38]. This
uses a projection like our instance mask projection for a dif-
ferent purpose. UPSNet [38] uses projected instance masks
stacked with semantic segmentation outputs to make deci-
sion about which type of prediction (an instance mask or
semantic segmentation) to use at each location. This de-
cision is made using softmax (without learning). Instead
our approach uses the projected instance masks as features
to improve semantic segmentation, as orthogonal improve-
ment.

Although we use Mask R-CNN [16] / Panoptic FPN [19]
architectures for producing instance segmentation and se-
mantic segmentation predictions, our mask project operator
is general and could alternatively make use of other instance
and semantic segmentation methods as baseline models.
Our method can easily take advantage of future develop-
ment on both tasks to provide better combined results.

3. Model
Our goal is to develop a joint instance/semantic seg-

mentation framework that can directly integrate predictions
from instance segmentation to produce a more accurate se-
mantic segmentation labeling. Our model is able to take
advantage of recent advances in instance segmentation al-
gorithms like Mask R-CNN [16] as well as advancements
in semantic segmentation models [19]. In this section, we
first explain the proposed Instance Mask Projection (IMP)
operator (Sec 3.1). Next we describe how this is used to
augment and improve various base models (Sec 3.2).

3.1. IMP: Instance Mask Projection
The Instance Mask Projection operator projects the seg-

mentation masks from an instance mask prediction, defined
on a detection bounding box, onto a canvas defined over the
whole image. This canvas is then used as an input feature
layer for semantic segmentation1.

Each predicted instance mask has a Class, Score, BBox
location, and h×w Mask2. First the score for each pixel in
the Mask is scaled by the object Score for the Class. Then
locations in the canvas layer for the Class are sampled from
the scaled mask. Note that the canvas is updated only if the
scaled mask value is larger than the current canvas value.
This is illustrated in Figure 1 where a “dress” is detected
by Mask R-CNN and then projected onto the canvas in its
detected BBox location. The projected layer shows the low
resolution Instance mask which predicts outline of the dress,
while the next step of semantic segmentation uses some of

1The resolution of the canvas can be chosen according to which feature
layer is attached.

2The resolution of Mask is 28×28 in Mask R-CNN
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Figure 3: Variants of models we used in the experiments. (a)
Mask R-CNN-IMP Uses the IMP to generate the semantic
segmentation prediction directly without any learning pa-
rameters. (b) Panoptic-P2 uses the P2 layer in FPN to gener-
ate semantic segmentation, which is the minimal way to add
semantic segmentation in FPN architecture. (c) Panoptic-
P2-IMP demonstrates how to apply IMP on Panoptic-P2.
(d) Panoptic-FPN combines the features layers {P2, P3, P4,
P5} for semantic segmentation. See Figure 4 for Panoptic-
FPN-IMP.

the FPN feature layers as well as the canvas as features and
will produce a more accurate parse.

The IMP operator can be implemented efficiently us-
ing custom CUDA kernels, see Algorithm 1. The in-
put parameters are Instance Segmentation results, Class
C:[N ], Probability P :[N ], Mask M :[N, 28, 28], and BBox
B:[N ], where N is the number of masks. For each

Algorithm 1: CUDA impelmentation of Forward of
IMP

Input: (C,P,M,B): Mask R-CNN Results, Class
C:[N], Probability P :[N ], Mask
M :[N ,28,28], and BBox B:[N ], where N is
the number of detections

Output: (F ):The projected feature map denoted by
F :[D,H ,W ], where D is the number of
Class, and H ,W present the height and width
of the feature map

Function IMP(C,P,M,B):
for cell ci ∈Mask : [N, 28, 28] do in parallel

ni,maskhi,maskwi ← DecodeIndexes(ci);
vi = M [ni,maskhi,maskwi] ∗ P [ni];
xmin, ymin, xmax, ymax ←
ProjectRegion(B[ni],maskhi,maskwi);

foreach pixel
pj ∈ F [C[ni], ymin : ymax, xmin : xmax] do

pj ← atomicMax(pj , vi);

return F ;

cell ci in Mask M , it first identifies its indices in the
Mask using the DecodeIndexes function and then obtains
projected value vi by multiplying its value and probabil-
ity P [ni]. The projected region xmin, ymin, xmax, ymax

can be calculated using BBox location B[ni] and its in-
dexes maskhi,maskwiin Mask. In the projected region
F [C[ni], ymin : ymax, xmin : xmax], we use the atomicMax
operation to update the value of each pixel. Each cell runs
concurrently in CUDA kernel and the atomicMax operation
guarantees only the max value will be kept when multiple
cells project to the same pixel.

We concatenate the IMP canvas with the feature layer(s)
(either P2 or P2-5) to let the network use this as a strong
prior for object location, allowing the semantic segmenta-
tion part of the model to focus on making improvements to
the instance predictions during learning.

3.2. Adding IMP to Base Models
Mask R-CNN-IMP
Figure 3a illustrates Mask R-CNN-IMP which uses Mask
R-CNN as a base model and adds IMP to project the in-
stance masks to a canvas used as an approximate semantic
segmentation. This does not involve any learning or addi-
tional processing for semantic segmentation after projection
and already performs well for some objects.

Panoptic-P2, Panoptic-P2-IMP, Semantic-P2
Next we consider lightweight versions of Panoptic FPN [19]
as the base model. Panoptic FPN extends the Mask R-CNN
network architecture to predict both instance segmentation
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Figure 4: Architecture: Panoptic-FPN-IMP: Our full model contains four parts. The first part is FPN + Mask R-CNN
which is used for Object/Instance Detection. The Instance Mask Projection Module takes the output of instance detection
to generate the feature layer(1xCx1/4). For the Semantic Segmentation Moduel, we adopts the Panoptic FPN [19] which
upsamples and transforms {P2, P3, P4, P5} to 1x128x1/4 and sums them. Then we concatenate the results of instance mask
projection and semantic segmentation module and forward to the semantic segmentation prediction head. See Figure 3 for
other models.

and semantic segmentation. The added semantic segmen-
tation head takes input from multiple layers of the Feature
Pyramid Network (FPN) [22] used in Mask R-CNN. We
perform some experiments with a lightweight version we
call Panoptic-P2 that only takes features from the P2 layer
of the FPN for use by the semantic prediction head (and
does not use group norm) shown in Figure 3b. When we
also remove the RPN and bounding box prediction heads
from Panoptic-P2, leaving just the semantic head attached
to P2 we call the network Semantic-P2. We experiment
with adding instance mask projection to Panoptic-P2, and
call this Panoptic-P2-IMP (illustrated in Figure 3c).

Panoptic-FPN, Panoptic-FPN-IMP, Semantic-FPN

Next, we experiment with adding IMP to the full Panop-
tic FPN [19] calling this Panoptic-FPN-IMP shown in
Figure 4. We also experiment with two ablated versions,
Panoptic-FPN alone (see Figure 3d ) and Semantic-
FPN which drops the RPN and bounding box heads from
Panoptic-FPN.

Figure 4 illustrates Panoptic-FPN-IMP which uses the
conv3x3(128) + GroupNorm [37] + ReLU + Bilinear up-
sampling(2x) as the upsampling stage. For P3(scale/8),
P4(scale/16), P5(scale/32) layers, we first upsample each
to (1/4) scale. For the P2 layer, we apply conv3x3 to re-
duce the dimension from 256 to 128. Then, we sum these
4 layers to (128× H/4 ×W/4) and concatenate with the In-
stance Mask projected layer to form the feature layer((128
+ C) × H/4 × W/4). Finally, we apply 4 conv3x3 and 1
conv1x1 layers to generate semantic segmentation predic-
tions. In contrast to FPN-P2 networks, all conv3x3 use
Group Norm.

3.3. Training
We adopt a two stage training solution, first training a

Mask R-CNN detection/instance segmentation model then
using this as an initial prediction for training our full model.
Pre-training is incorporated for practical reasons to reduce
training time (without pre-training the IMP will vary signif-
icantly over training iterations, making convergence slow).
In the first stage, we follow the Mask R-CNN training set-
tings but adjust the parameters for 4 GPU machines (Nvidia
1080 Ti) by following the Linear Scaling Rule [15]. For im-
plementation we use PyTorch v1.0.0 [29] and base our code
on the maskrcnn-benchmark repository [27].

4. Experiments
We evaluate our proposed model on two different tasks:

clothing parsing and street scene segmentation.

4.1. Varied Clothing Dataset
The Varied Clothing Dataset is for clothing parsing –

where the goal is to assign an apparel category label (e.g.
shirt, skirt, sweater, coat, etc) to each pixel in a picture con-
taining clothing. This is an extremely challenging segmen-
tation problem due to clothing deformations and occlusions
due to layering. The dataset depicts 25 clothing categories,
plus skin, hair, and background labels, with pixel-accurate
polygon segmentations, hand labeled on 6k images. The
dataset covers a wide range of depictions, including: real-
world pictures of people, layflat images (clothing items ar-
ranged on a flat surface), fashion-runway photos, and movie
stills. Special care is taken to sample clothing photos from
around the world, across varied body shapes, in widely var-
ied poses, and with full or partial-bodies visible.

Since this dataset was initially collected for clothing
parsing, a single garment may be split into multiple seg-



Model BBox Mask
Semantic

mIOU mAcc

1 Mask R-CNN-IMP 29.9 26.7 43.91 56.93
Pure Semantic Segmentation
2 Semantic-P2 NA NA 37.00 48.57
3 Semantic-FPN NA NA 42.66 55.19
+Multitasking Training
4 Panoptic-P2 29.8 26.4 37.14 48.82
5 Panoptic-P2-IMP 30.6 26.8 46.59 59.24
+Adding IMP
6 Panoptic-FPN 29.6 26.7 45.01 57.08
7 Panoptic-FPN-IMP 30.4 26.8 47.03 61.52

Table 1: Ablation Study on Varied Clothing Dataset. The
backbone network is ResNet-50. We train the model with
different settings, Panoptic-P2 v.s. Panoptic-FPN, w/wo In-
stance Mask Projection(IMP), w/wo BBox/Mask prediction
head. For the BBox, and Mask, we use the COCO evalua-
tion metric. For the semantic segmentation metric, we use
meanIOU and mean Accuracy.

ments (e.g. a shirt worn under a buttoned blazer may ap-
pear as a segment at the neck, plus 2 shirt cuff segments
at each wrist). To convert the semantic segmentations into
instance annotations, each segment (connected component)
is treated as an instance with corresponding bounding box.
This definition is slightly different than COCO [24] or
Cityscapes [7] and produces more small instances. How-
ever, we experimentally observe benefits to this approach
over combining all segments from a garment into a single
instance/BBox because it doesn’t require the model to make
long range predictions across large occlusions.

In our experiments, the train and validation sets con-
tain 5493 and 500 images respectively and all images are
1280×720 pixels or higher. For training the first stage, we
use an ImageNet Classification pre-trained model, with pre-
diction layer weights initialized according to a normal dis-
tribution(mean=0, standard derivation=0.01). We set batch
size to 8, learning rate to 0.01, and train for 70,000 itera-
tions, dropping the learning rate by 0.1 at 40,000 and 60,000
iterations. We also use this setting for training the second
stage (including the semantic segmentation branch). For the
input image, we resize the short side to 800 pixels and limit
the long side to 1333.
Ablation Study:Effectiveness of different settings: Ta-
ble 1 shows the performance of our models under differ-
ent settings with ResNet-50 as the backbone network. First,
we report the performance of baseline instance (row 1) and
semantic segmentation models (rows 2-3). Next, we show
results on Panoptic models that integrate instance and se-
mantic segmentation (Panoptic-P2 and Panoptic-FPN, rows
4 and 5). Adding our proposed IMP operator significantly
increases semantic segmentation performance when incor-
porated into each of these base models (rows 6 and 7),

improving absolute performance of Panoptic-P2 by 9.45
mIOU and 1.42 in mAcc, and improving Panoptic-FPN by
2.02 mIOU and 4.44 in mAcc. For reference, we also ex-
periment with adding IMP to the base Mask R-CNN model
(row 1), and achieve semantic segmentation performance
better than Semantic-FPN and Panoptic-P2, and compara-
ble to Panoptic-FPN without requiring any dedicated se-
mantic segmentation branch.

Semantic-FPNMask R-CNN-IMP
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Figure 5: Analysis of mask accuracy for pixels within
varying distances to the boundary. In this Figure, we use
Panoptic FPN as the backbone network and show 4 mod-
els, Semantic-FPN, Mask R-CNN-IMP, Panoptic-FPN, and
Panoptic-FPN-IMP to show mIOU and mAccuracy with re-
spect to L2 distance to boundary in pixels (X Axes).

Ablation Study:Accuracy near the boundary: Another
question we consider is how much this method helps re-
fining object boundaries, since producing an accurate ob-
ject contour may be necessary for applications like visual
search or virtual clothing try-on. In Figure 5, we analyze the
mIOU/mAccuracy of pixels within 10-400 L2 distance from
the boundary. Generally, we observe that for pixels close
to the boundary, semantic and instance/semantic methods
all perform much better than Mask-R-CNN-IMP and this
gap decreases for larger distances. This is because Mask R-
CNN generates 28×28 instance masks. Therefore, once we
project the instance segmentation results on the canvas, the
boundary will not be sharp, but pixels near the center of the
object will be labeled correctly. We also generally observe
larger improvements of the IMP operator on pixels near the
boundary, with benefits dropping off for central pixels.
Qualitative results:In Figure 2, we show some qualita-
tive examples. In some cases, 2b, 2d, Mask R-CNN-IMP
already produces a better semantic segmentation than the
Panoptic-FPN architecture. We also observe that often,
when an object is small (tie, watch), or plain and cover-
ing a large area, IMP enhanced methods generally perform
better. In Figure 2a, by combining the semantic segmenta-



Model mean bag belt boots foot- outer dress sun- pants top shorts skirts head scarf&wear glasses wear tie
FCN-32 [35] 35 27 12 32 33 36 28 25 51 38 40 28 33 17
FCN-16 [35] 37 26 19 32 38 35 25 37 51 38 40 23 41 16
FCN-8 [35] 38 24 21 32 40 35 28 41 51 38 40 24 44 18
FCN-8satonce [35] 38 26 20 31 40 35 29 36 50 39 38 26 44 16
CRFasRNN [42] 41 30 18 41 39 43 32 36 56 40 44 26 45 22
DeepLabV3+ [6] 51 42 28 40 51 56 52 46 68 55 53 41 55 31
Ours:
R50 Panoptic-P2-IMP 69.7 74.8 57.4 59.7 59.4 69.2 64.2 68.5 77.2 67.7 71.9 62.7 75.3 97.5
R50 Panoptic-FPN-IMP 71.1 77.1 58.1 57.9 59.1 72.2 68.2 68.4 80.4 68.7 72.5 67.9 76.2 97.9
R101 Panoptic-FPN-IMP 71.4 77.9 59.0 58.8 59.4 72.0 68.3 68.6 79.3 69.1 74.1 67.8 76.4 97.9

Table 2: Comparison to the baseline models provided by ModaNet on IOU metric. Our model shows 20.4% absolutely
improvement for mean IOU. For certain categories, especially those whose size is quite small such as belt, sunglasses,
headwear and scarf & tie, our models show dramatic improvement. For simplicity, we use R50 and R101 to represent
ResNet0-50 and ResNet-101.

tion features and IMP, our model fixes category confusions
occuring on different regions of an object. Although most
training images in the Varied Clothing Datasetonly contain
one person per image, we see that our model generalizes
well to complicated examples containing multiple people
(Figure 2c).

4.2. ModaNet
ModaNet [43] is a large clothing parsing dataset, con-

taining annotations for BBox, instance-level masks, and se-
mantic segmentations. It contains 55k images (52,377 im-
ages in training and 2,799 images in validation), sampled
on an existing fashion focused dataset of images from the
Chictopia website. The ModaNet data is relatively low res-
olution (640x480 or smaller) compared to the Varied Cloth-
ing Dataset data, sampled to generally contain a single
full-body depiction of a standing person, centrally located
in the image. 13 clothing categories are labeled (without
skin, hair, or background) at relatively high fidelity (but less
pixel-accuracy than the Varied Clothing Dataset).

We use a similar two-stage ImageNet classification pre-
training method as for the Varied Clothing Dataset, training
for 90k iterations, dropping the learning rate at 60k and 80k
iterations. Here, we resize the input image to limit its short
side to 600 and long side to 1000. During training, we use
multi-scale training by randomly changing the short side to
{400, 500, 600, 700, 800}.

Table 3 shows experimental results demonstrating the
addition of the IMP operator. We evaluate baseline models,
Semantic-P2 and Panoptic-P2, 64.60% and 65.93% mIOU,
respectively. Compared to these models, we see that Mask
R-CNN-IMP can generate better results on semantic seg-
mentation without a dedicated semantic segmentation head.
This also matches our previous experiments on the Varied
Clothing Dataset. Adding IMP to Panoptic-P2, Panoptic-
P2-IMP achieves a semantic performance of 69.65%, out-
performing Panoptic-P2 by 3.72% mIOU and Panoptic-
FPN-IMP even further improves mIOU to 71.41%.

Model BBox Mask Semantic
(mIOU)

Semantic-P2 NA NA 64.60
Panoptic-P2 57.2 55.5 65.93
Mask R-CNN-IMP 57.2 55.5 66.23
Panoptic-P2-IMP 58.0 55.9 69.65
Panoptic-FPN-IMP 57.8 55.6 71.41

Table 3: Results on ModaNet with ResNet-50 as the back-
bone model. Panoptic-P2-IMP and Mask R-CNN-IMP both
provide improvements on semantic segmentation compared
to Semantic-P2 and Panoptic-P2.

In Table 2, we also train our final model, Panoptic-
FPN-IMP with ResNet-101 and compare to the baseline
results provided by ModaNet [43]. First, our model
achieves 20.4% absolutely mIOU improvement compared
to the best performing semantic segmentation algorithm,
DeepLabV3+, provided by ModaNet. Plus, we achieve
more consistent results, scoring over 50% IOU for each
class. Compared to the baseline results, our model does
extremely well on small objects, e.g. belt, sunglasses, head-
wear, scarf&tie (on scarf&tie we achieve 97.9% mIOU). We
have some speculations about these improvements. Com-
pared to semantic segmentation methods which tend to base
their predictions on fixed scale local regions, object de-
tection takes context from the dynamically chosen region
around the object, providing an advantage for segmenta-
tion. We also observe improvements on confusing classes,
e.g. the bottom part of a dress is visually similar to a skirt.
Purely semantic segmentation methods may not be able to
differentiate ambiguous cases as well as methods that ex-
ploit context determined by object detection.

4.3. Cityscapes
We also experiment on Cityscapes [7], an ego-centric

self-driving car dataset. All images are high-resolution
(1024×2048) with 19 semantic segmentation classes, and
instance-level masks for 8 thing-type categories. The



Type Stuff class Things class
Model road side-

walk

build-

ing

wall fence pole traffic

light

traffic

sign

vegeta-

tion

terrain sky person rider car truck bus train motor-

cycle

bicycle

Without all the Data Augmentation
97.7 81.7 91.2 41.2 51.7 58.8 67.3 74.6 91.6 59.3 93.8 81.2 60.3 93.6 61.4 80.4 63.2 57.0 76.1

IMP 97.6 81.5 91.2 39.6 52.0 59.2 66.6 74.9 91.5 59.7 93.8 81.9 64.7 93.8 63.9 81.6 74.0 63.5 76.7
With all the Data Augmentation

97.7 82.5 91.7 45.0 56.4 61.4 69.6 77.1 91.7 60.1 94.3 82.4 64.0 94.7 74.5 84.5 77.6 62.9 77.9
IMP 97.9 83.6 91.4 38.3 55.9 62.0 69.9 77.5 91.9 59.8 94.5 83.5 69.1 95.1 83.9 91.4 83.1 67.2 78.7

Table 4: Comparisons of per Class IOU with and without IMP on Cityscapes. We show two scenarios without (top) and with
(bottom) data augmentation. We see Instance Mask Projection(IMP) improves both scenarios. For Thing classes, we see
4.2/3.2 mIOU improvement with/without all data augmentation.

collection contains two sets, fine-annotation and coarse-
annotation sets. We focus our experiments on fine-
annotation, containing 2975/500/1525 train/val/test images.

For Cityscapes, we use the COCO model as the pre-
trained model, reusing the weights in the prediction layer
for all classes except “Rider” which does not exist in
COCO (weights are randomly initialized). Then, the in-
put is resized to 1024×2048 , or 800×1600 randomly.
We follow Panoptic FPN [19] to add three data augmen-
tations: multi-scaling, color distortion, and hard boostrap-
ping. For multi-scaling, the short side of the input image
is resized to {512, 724, 1024, 1448, 2048} randomly and
cropped to 512×1024. The color distortion randomly in-
creases/decreases brightness, contrast, and saturation 40%,
and shifts the Hue {-0.4, 0.4}. Hard boostrapping selects
the top 10, 25, 50 percent of pixels for the loss function.
In contrast to Varied Clothing Dataset and ModaNet, we
skip the first-stage training, since the pretrained model from
COCO already provides strong enough performance. We
set batch size to 16, learning rate to 0.005, and train for
130,000 iterations, dropping the learning rate by 0.1 at
80,000 and 110,000 iterations. For Cityscapes, we focus
evaluations on the FPN-Panoptic network. The detailed ab-
lation study of parameter choice can be found in Appendix.

Compared to the Varied Clothing Dataset and ModaNet,
we observe less dramatic overall improvement from IMP.
However, one reason is that only 8 of 19 classes are ”thing”
like categories where we expect our method to be most help-
ful. In Table 4, we show two comparison sets (with and
without data augmentation) for each Cityscapes class. For
the Stuff classes, the difference are minor, except ‘Wall‘
(-1.6/-6.7). For the Thing classes, certain classes are im-
proved dramatically, especially those that have fewer train-
ing instances or that are smaller, i.e. Rider, Truck, Bus,
Train, Motorcycle. In fact, over all Thing classes we ob-
serve a mIOU increase of 4.2/3.2, with and without data
augmentation respectively.

Besides ResNet-50, we also train our final model,
Panoptic-FPN-IMP with ResNet-101 and ResNeXt-
101-FPN to compare with state-of-the-art methods on

Cityscapes val set (Table 5). Our method is still better
than Panoptic FPN [19], though the improvements are
reduced when using more complex models. We still see
our simple model can achieve similar performance to those
models using heavily engineering methods.

Method Backbone mIOU
PSANet101 [41] ResNet-101-D8 77.9
Mapillary [34] WideResNet-38-D8 79.4
DeeplabV3+ [6] X-71-D16 79.6
Panoptic FPN [19] ResNet-101-FPN 77.7

ResNeXt-101-FPN 79.1
Ours:Panoptic-FPN-IMP ResNet-50-FPN 77.5

ResNet-101-FPN 78.3
ResNeXt-101-FPN 79.4

Table 5: Comparisons on Cityscapes val set. Our mod-
els obtain 0.6 and 0.3 mIOU improvement over Panoptic-
FPN [19] on the same backbone architectures.

4.4. Inference Speed Analysis
Due to the different number of instance classes and in-

put resolutions, the speed performance of models can vary.
In experiments, we find the results are quite consistent and
very efficient, adding IMP only costs 1∼2 ms in inference
on top of each baseline model. The inference time of all
the models used in the experiments could be found in Ap-
pendix.

5. Conclusion
In this work, we propose a new operator, Instance Mask

Projection, which projects the results of instance segmenta-
tion as a feature representation for semantic segmentation.
It easily combines the top-down and bottom-up scenarios in
semantic segmentation. This operator is simple but power-
ful. Experiments adding IMP to Panoptic-P2/Panotpic-FPN
show consistent improvements, with negligible increases in
inference time. Although we only apply it on the Panoptic-
P2/Panoptic-FPN, this operator can generally be applied to
other architectures as well.
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Appendix

Resolution Backbone Model Speed(ms)

Varied Clothing Dataset

800× 1333 R50

Mask R-CNN 92
Mask R-CNN-IMP 94
Semantic-P2 76
Semantic-FPN 103
Panoptic-P2 109
Panoptic-FPN 110
Panoptic-P2-IMP 110
Panoptic-FPN-IMP 111

ModaNet

600×1000 R50 Panoptic-FPN-IMP 72
R101 Panoptic-FPN-IMP 87

Cityscapes

1024×2048

R50 Mask R-CNN 151
Panoptic-FPN 194
Panoptic-FPN-IMP 195

R101 Panoptic-FPN-IMP 243
X101 Panoptic-FPN-IMP 401

Table 6: Speed performance analysis. In this table, we
show the speed performance for each model. For sim-
plicity, we use the following abbreviations:R50:ResNet-50.
R101:ResNet-101. X101:ResNeXt-101

Varied Clothing DatasetClasses

Class Super Class # Train # Val Area(x2)
Hair Body 7,260 635 192
Skin Body 34,795 3,074 119
Top/T-shirt G-Top 4,364 424 221
Sweater/Cardigan G-Top 1,906 148 266
Jacket/Blazer G-Top 2,360 183 261
Coat G-Top 1,597 161 279
Shirt/Blouse G-Top 2,650 244 229
Vest G-Top 266 20 220
Pants/Jeans G-Bottom 2,763 217 261
Tights/Leggings G-Bottom 930 116 214
Shorts G-Bottom 532 60 203
Socks G-Bottom 803 80 174
Skirt G-Bottom 1,281 114 262
Dress G-Whole 2,728 241 340
Jumpsuit G-Whole 273 31 370
Shoes Footwear 6,619 591 118
Boots Footwear 1,801 109 142
Hat/Headband Accessories 983 111 192
Scarf/Tie Accessories 909 88 274
Watch/Bracelet Accessories 2,627 206 86
Bag Accessories 3,284 263 186
Gloves Accessories 431 41 210
Necklace Accessories 1,711 134 131
Glasses Accessories 1,329 129 89
Belt Accessories 1,035 95 110

Table 7: Varied Clothing Dataset Class Definition and
statistics.

Table 7 shows the class definition and statistics of the

Varied Clothing Dataset. Because we convert each seg-
ment(connected component) of semantic segmentation into
an instance annotation, the number of training instance
is much more than usual. The details can be found in
Sec. 4.1 in the main submission. Another is the diverse
classes. In contrast to ModaNet [43], in Varied Clothing
Dataset, the confusing classes are not grouped. For exam-
ple, Jacket/Blazer to Coat. This makes it more challenging
for semantic segmentation approaches to generate clean re-
sults.

In Figure 6, we show more qualitative examples besides
Figure 2. We use ResNet-50-FPN as the backbone model
and train the model on the Varied Clothing Dataset. Fig-
ure 6 contains more diverse photos, such as vintage pho-
tos, layflat photos and images with full or half-bodies vis-
ible. Although Mask R-CNN-IMP can generate cleaner
results than Panoptic-FPN, Mask R-CNN-IMP also incurs
poor performance on boundaries of large objects which was
caused by the low resolution output of Mask R-CNN3. Our
final model Panoptic-FPN-IMP can generate sharp seman-
tic segmentation results but also makes labeling of pixels
from the same objects consistent.

class Difference #Instances Total area
DA

Person 0.7 1.1 17,395 64,901,113
Rider 4.4 5.1 1,660 7,169,330
Car 0.2 0.4 26,180 380,112,819

Truck 2.5 9.4 466 14,657,648
Bus 1.2 6.9 350 12,684,337

Train 9.8 5.5 158 11,643,940
Motorcycle 6.5 4.3 705 5,037,718

Bicycle 0.6 0.8 3,433 14,646,908
Average 3.2 4.2

Table 8: Analysis of Semantic Segmentation classes which
are also Instance Segmentation. There is a correlation if the
class has fewer instances and area, it gets more improve-
ment from Instance Mask Projection. DA: with Data Aug-
mentation.

5.1. Ablation Study on Cityscapes datasets.

For Cityscapes, we focus evaluations on the FPN-
Panoptic network (ablation study in Table 9) and shows the
effectiveness of each component. Color Jitter shows the
marginally improvement in Table 9a. For Hard Boostrap-
ing, we see consistent improvements when setting the lower
ratio in Table 9b. Multi-scale Training definitely helps a lot
and also reduce overfitting on BBox/Mask prediction in Ta-
ble 9c. Instance Mask Projection provides around 1.35/1.5
improvement without any data augmentation and with all
data augmentations.

328×28



CJ BBox Mask mIOU
36.9 32.7 72.74

Y 36.8 32.8 73.12

(a) Color Jitter: Adding Color
Jitter shows slightly better per-
formance.

BS Box Mask mIOU
0.50 37.8 34.0 73.81
0.25 38.4 34.1 73.93
0.10 38.7 34.7 74.94

(b) Hard Boostraping: Lower
Bootstrapping provides the better
accuracy. Color Jitter is used.

MS Box Mask mIOU
38.7 34.7 74.94

Y 40.7 36.5 76.11

(c) Multi-scale training: con-
sistently improves three different
measures. Color Jitter is used and
Bootstrapping is set as 0.10

IMP Box Mask mIOU
Without all the Data Augmentation

36.9 32.7 72.74
Y 36.9 32.5 74.09

With all the Data Augmentation
40.7 36.5 76.11

Y 39.8 35.8 77.49

(d) IMP:improves the two sce-
narios with and without data aug-
mentation. See Table 4 for more
details.

Table 9: Performance Analysis of each module used on
Cityscapes val set. For simplicity, we use the follow-
ing abbreviation: MS:multi-scale training, CJ:Color Jitter,
BS:Hard Boostraping, IMP:Instance Mask Projection,

More discussions on Cityscapes dataset.

Table 8 shows the mIOU difference of Thing classes of
Cityscapes with and without the data augmentation. This
Table is part of Table 4 but adds number of instances and
area information. We found out the improvement is also
similar to the clothing datasets. First, the classes with less
examples are improved more. See Train(#158), Bus(#350),
Truck(#466), and Motorcycle(#705). Another is the im-
provement among the confusing classes. Although Rider
contains enough examples, its similarity to Person, makes
its mIOU lower. Our model is useful to distinguish these
cases and increases the mIOU of Rider significantly.

Figure 7 shows the visualization examples of results of
our models. We found that the qualitative results are also
similar to the clothing datasets. Our final model, Panoptic-
FPN-IMP, provides leaner results. See the better results of
segments of Bus and Truck in Figure 7a and 7b. Another
interesting case is Rider which means the person on the mo-
torcycle or bicycle. The top part of Rider of Panoptic-FPN
in Figure 7c and 7d are misclassified as Person. But with
Instance Mask Projection, our final model shows correct la-
beling of all pixels of Rider.

Preliminary results on Pascal VOC dataset

In order to demonstrate the generalization of the pro-
posed method in the general object dataset and properly
utilize the instance segmentation results, here we add new
results on the dataset from PASCAL in Detail Challenge

at CVPR’17. 4, This version of PASCAL VOC contains
4,996(train), and 5,104(val) images which include both se-
mantic segmentation and instance segmentation labeling.
As the evaluation server is not available, we train on the
training set and report preliminary results on the validation
set. Table 10 shows the respective performance improve-
ment from multitask training and IMP operator. As we can
see, the improvement is not trivial. The IMP operator im-
proves 2.74% absolutely improvement for mean IOU. The
improvement due to IMP is similar to the other datasets.

Model Instance IMP
Semantic
(mIOU)

Semantic-FPN 55.85
Panoptic-FPN Y 63.34
Panoptic-FPN-IMP Y Y 66.06

Table 10: Ablation study of semantic segmentation ac-
curacy on the PASCAL in Detail Challenge dataset from
CVPR’17. We use the same models which were proposed
in Section 3 . The backbone network is ResNet-50.

4https://sites.google.com/view/pasd/dataset?
authuser=0
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Image Panoptic-FPN Mask R-CNN-IMP Panoptic-FPN-IMP

skin hair hat tie glasses necklace shoes boots pants leggings jumpsuit

t-shirt shirt dress jacket coat

Figure 6: This Figure is an extension of Figure 2. From left to right, images, results of Panoptic-FPN, results of Mask
R-CNN-IMP, results of our final model, Panoptic-FPN-IMP. The proposed method, IMP, works well on different types of
clothing parsing examples, from vintage images, layflat images, street-fashion examples, fashion-runway photos, and photos
with full or partial-bodies visible.



Image Panoptic-FPN Panoptic-FPN-IMP GroundTruth

(a) Truck

(b) Bus

(c) Rider

(d) Rider

Figure 7: From left to right, images, results of Panoptic-FPN, Panoptic-FPN-IMP and GroundTruth. With the Instance Mask
Projection, our final model, shows cleaner results on Truck(a), Bus(b), and Rider(c,d) classes.


