NORESQA: A framework for Speech Quality Assessment using Non-Matching References

Pranay Manocha¹, Buye Xu², Anurag Kumar²

¹ Princeton University ² Facebook Reality Labs Research Neural Information Processing Systems (NeurIPS) 2021 ¹

Motivation

Rate the audio quality of a recording:

1. With its clean-`matching' reference

2. Without a reference

3. Non-matching reference!

Related works

Full reference metrics:

Traditional Metrics: PESQ [Flessner '17], VISQOL [Hines '15]

Complex hand-crafted metric; invariant to perceptual transformations; Need a matching clean reference; Non-differentiable

Learned Metrics: DPAM and CDPAM [Manocha '20 and '21]

Learned from human annotated data; differentiable; need to exact same matching reference

			3

Related works

No-reference metrics:

Traditional Metrics: ITU and SRMR [Flessner '17], VISQOL [Hines'15]

Complex hand-crafted metric; Non-differentiable

Learned Metrics Quality-Net [Fu '18], DNSMOS [Reddy '20]

Learned from objective or MOS ratings; generalization to unseen perturbations; large variance (noisy labels) in MOS ratings -> challenge in training robust model

Related works

No-reference metrics:

• Challenge due to lack of a reference

Learn the distribution of clean references that are used by human listeners.

- 1. Varied, d/o past experiences, mood
- 2. Difficult, especially when large label noise in ratings.

Our idea

- SQA using non-matching references (NMRs) (of known quality)
- Relative assessments are easier than absolute ratings
- Inspired by human behavior: can also compare quality when diff. speakers, languages etc.

Features

- Usable in real world where no references exist.
- Addresses the problem of lack of a reference
- Does not require any labeled dataset

Broad Framework Overview

2 inputs

Processing pipeline

- Feature Extraction
- Temporal Aggregation
- Multi-task and multi-head learning head:
 - Preference and quantification task
 - Relative SNR and SI-SDR prediction
- 2 tasks; 2 objectives

Feature Extraction

Temporal Aggregation

9 /

Multi-task learning

Preference and Quantification task

Multi-objective learning SNR and SI-SDR prediction

Training Procedure

Loss

Preference Task (L_P)

• Cross Entropy loss

Quantification Task (L_Q)

- Pose as classification, but take into consideration inter-class relationships
- Gaussian smoothed labels (for both SNR and SI-SDR)
- k-equal intervals,
- $L_Q = L_{SNR} + L_{SDR}$

Final Loss

• L_P + L_Q

Usage

NORESQA Score:

- Pref. task shows 'sign'
- Quantification task shows magnitude
- Aggregated over all k classes

$$\text{NORESQA}_{x_{test}, x_{ref}} = \sum_{k=1}^{K} d_{x_{test}, x_{ref}}^{k} \mu^{k}$$

Absolute Quality:

• Averaging over a set of *n* non-matching references

$$ext{NORESQA}_{x_{test},x_{ref}}^{avg} = rac{1}{n} \sum_{i=1}^{n} ext{NORESQA}_{x_{test},x_{ref}^{i}}$$

Datasets

DNS Challenge

FSDK50

ESC-50

TIMIT

- Clipping
- •Frequency Masking
- Reverberation
- •Gaussian Noise
- •Mu-law and MP3 compression

Evaluation Datasets

- •Synthesis tasks (VoCo, FFTnet)
- •Speech Enhancement (*Dereverberation, Noizeus, HiFi-GAN*)
- •Voice Conversion (VCC-2018)
- •Speech Source Separation (*PEASS*)
- •Telephony Degradations (TCD-VoIP)
- Bandwidth Expansion (BWE)
- •General Degradations

Baselines

Full reference metrics:

- *PESQ*: hand-crafted, complex
- *CDPAM*: learned metric on *JND* ratings

No-reference metric:

• DNSMOS: learned metric on *MOS* ratings

Our proposed NORESQA:

• Entirely trained using simulated data

Results

- 1. Objective evaluation
- 2. Subjective Evaluation
- 3. Use as a 'differentiable' loss

- 1. Performance on preference and quantification tasks
- 2. Invariance to language
- 3. Commutativity and indiscernibility of identicals
- 4. Quality based retrieval

		18

Performance on preference and quantification tasks

Invariance to language and gender

• Given \mathbf{x}_{test} , doesn't matter the language or gender of NMRs

Commutativity

$$\mathcal{N}(x_{test}, x_{ref}) = \mathcal{N}(x_{ref}, x_{test})$$

$$\mathcal{N}(x_{test}, x_{test})$$

Quality based retrieval

PCA visualization of embeddings capturing audio quality information

MOS correlations (n=100)

Type	Name	VoCo	VoCo [65]		Dereverb [66]		AN [67]	FFTnet [68]	
-//*		PC	SC	PC	SC	PC	SC	PC	SC
E-II f	PESQ	0.68	0.43	0.86	0.85	0.72	0.7	0.51	0.49
r ull-rei.	CDPAM	-	0.73	-	0.93	-	0.68	-	0.68
Non-Int.	DNSMOS		0.48	0.7	0.73	0.93	0.88	0.59	- 0.53 -
	Paired	0.64	0.6	0.46	0.65	0.59		- 0.46	0.47
NODESOA	Unpaired	$0.88 {\pm} 0.01$	0.41 ± 0.06	0.63 ± 0.01	0.75 ± 0.02	0.63 ± 0.01	0.71 ± 0.01	0.46 ± 0.01	0.51 ± 0.02
NUKESQA	+Local-Fixed	$0.89 {\pm} 0.01$	0.44 ± 0.06	0.63 ± 0.01	0.75 ± 0.01	0.61 ± 0.01	0.73 ± 0.01	0.46 ± 0.01	0.51 ± 0.02
	+Global-Fixed	$0.85{\pm}0.01$	$0.68{\pm}0.03$	$0.66{\pm}0.02$	$0.67 {\pm} 0.02$	$0.68{\pm}0.01$	0.78 ± 0.01	$0.33{\pm}0.01$	$0.44{\pm}0.01$
Type	Name	PEASS [69]		VCC-2018 [70]		Noizeus [71]		TCD-VoIP [72]	
Type	. tallie								
		PC	SC	PC	SC	PC	SC	PC	SC
Eull nof	PESQ	PC 0.86	0.71	PC 0.51	SC 0.56	PC 0.43	0.42	PC 0.89	SC 0.90
Full-ref.	PESQ CDPAM	PC 0.86	0.71 0.74	PC 0.51	0.56 0.61	PC 0.43	0.42 0.71	PC 0.89	0.90 0.88
Full-ref. Non-Int.	PESQ CDPAM DNSMOS	PC 0.86 	SC 0.71 0.74 0.21	PC 0.51 	SC 0.56 <u>0.61</u> <u>0.42</u>	PC 0.43	SC 	PC 0.89 	SC 0.90 0.88 0.72
Full-ref.	PESQ CDPAM DNSMOS Paired	PC 0.86 	SC 0.71 0.74 0.21 0.43	PC 0.51 	SC 0.56 	PC 0.43 	SC 0.42 0.59 0.46 	PC 0.89 	SC 0.90 0.88 0.72 0.72 0.44
Full-ref.	PESQ CDPAM DNSMOS Paired Unpaired	PC 0.86 	SC 0.71 0.74 0.21 0.43 0.40±0.01	PC 0.51 	SC 0.56 0.61 0.42 0.39 0.41±0.02	PC 0.43 	SC 0.42 	PC 0.89 	SC 0.90 0.88
Full-ref. Non-Int NORESQA	PESQ CDPAM DNSMOS Paired Unpaired +Local-Fixed	PC 0.86 	SC 0.71 0.74 0.21 0.43 0.40±0.01 0.52±0.06	PC 0.51 	SC 0.56 0.61 	PC 0.43 - 0.41 - 0.47 - 0.47 0.50±0.02 0.45±0.01	SC 0.42 0.71 	PC 0.89 	SC 0.90 0.88 0.72 0.44 0.46±0.02 0.41±0.04

2AFC accuracy

Name	Simulated [6]	FFTnet [68]	BWE [73]	HiFi-GAN [67]
PESQ	86.0	67.0	38.0	88.5
CDPAM	87.7	88.5	75.9	96.5
DNSMOS	49.2	58.8	45.0	62.3
NORESQA	68.7	73.3	53.3	81.6

Results: Ablations

Relative VS Absolute predictions

- Predicting relative quality performs better than absolute rating
- Utility of providing a reference (even NMR) helps

Name	Type	VoCo		Dereverb		HiFi-GAN		FFTnet	
- unit	Type	PC	SC	PC	SC	PC	SC	PC	SC
Abcoluto	Sing. Inp.	0.32	0.31	0.19	0.17	0.19	0.30	0.16	0.15
Absolute	Two Inp.	0.41 ± 0.15	0.35 ± 0.03	0.26 ± 0.08	0.27 ± 0.01	0.42 ± 0.07	0.45 ± 0.06	0.17 ± 0.01	0.09 ± 0.01
NORESQA		0.85±0.01	$\overline{0.68} \pm \overline{0.03}$	-0.66±0.02	0.67 ± 0.02	_ 0.68 ± 0.01 _	0.78 ± 0.01	¯ 0.33±0.01¯	0.44 ± 0.01

				25 /
				i /
				i /
				. /
				i/
				/

Results: Ablations

Multi-objective learning (SNR and SI-SDR)

• Using either head performs worse than using both together

Type	Name	VoCo		Dereverb		HiFi-GAN		FFTnet	
-580		PC	SC	PC	SC	PC	SC	PC	SC
NORESQA	SNR only	0.43	0.39	0.39	0.38	0.49	0.42	0.2	0.1
	SI-SDR only	0.6	0.48	0.48	0.49	0.54	0.65	0.25	0.28
	SNR and SI-SDR	0.85	0.68	0.66	0.67	0.68	0.78	0.33	0.44

Results: Ablations

Number of NMRs (*n*):

- Increasing *n*->1 to 100 improves results by 15%.
- Averaging reduces the std in scores.
- No significant diff. in unpaired local and global -> equally well for any random set of references.

Type	Category	VoCo		Dere	Dereverb		HiFi-GAN		FFTnet	
Type	Category	PC	SC	PC	SC	PC	SC	PC	SC	
and and a state	NMR ₁	0.76 ± 0.1	0.27 ± 0.2	0.57 ± 0.03	0.62 ± 0.04	0.63 ± 0.01	0.70 ± 0.02	0.43 ± 0.10	0.45±0.11	
Unpaired	NMR ₁₀	0.87 ± 0.01	0.43 ± 0.07	0.64 ± 0.01	0.73 ± 0.03	0.63 ± 0.01	0.70 ± 0.01	0.45 ± 0.03	0.48 ± 0.06	
•	NMR ₁₀₀	$0.88 {\pm} 0.01$	0.41 ± 0.06	0.63 ± 0.01	0.75 ± 0.02	0.63 ± 0.01	0.71 ± 0.01	0.46 ± 0.01	0.51 ± 0.02	
	NMR ₁	-0.65±0.23	0.40±0.23	0.33±0.10	0.57±0.15	-0.56 ± 0.08	-0.64±0.08-	0.38±0.10	0.31 ± 0.13	
+Local-Fixed	NMR_{10}	0.79 ± 0.1	0.44 ± 0.2	0.61 ± 0.05	0.69 ± 0.05	0.61 ± 0.02	0.67 ± 0.03	$0.48 {\pm} 0.03$	0.50 ± 0.04	
	NMR ₁₀₀	$0.89 {\pm} 0.01$	0.44 ± 0.06	0.63 ± 0.01	0.75 ± 0.01	0.61 ± 0.01	0.73 ± 0.01	0.46 ± 0.01	$0.51 {\pm} 0.02$	
	NMR ₁	0.79 ± 0.20	0.54±0.20	0.44±0.16	0.41±0.19	0.56 ± 0.08	-0.63±0.10	0.29±0.10	0.36 ± 0.12	
+Global-Fixed	NMR_{10}	$0.84{\pm}0.05$	0.63 ± 0.08	0.62 ± 0.08	0.62 ± 0.09	0.63 ± 0.01	0.71 ± 0.02	$0.33 {\pm} 0.03$	0.41 ± 0.07	
	\mathbf{NMR}_{100}	$0.85{\pm}0.01$	$0.68{\pm}0.03$	$0.66{\pm}0.02$	$0.67{\pm}0.02$	$0.68{\pm}0.01$	$0.78{\pm}0.01$	$0.33{\pm}0.01$	$0.44{\pm}0.02$	

Results: Speech Enhancement

As a Pretraining strategy: consistently improves scores

Туре	Data%	PESQ	STOI	SNRseg	CSIG	CBAK	COVL
Noisy		1.97	91.50	1.72	3.35	2.44	2.63
	-33%	2.22	91.7	8.18	$\bar{3.26}^{-}$	$\bar{2.98}$	2.72
Baseline	66%	2.30	92.23	8.54	3.45	3.04	2.85
	100%	2.39	91.89	8.71	3.55	3.10	2.95
	-33%	2.28	92.30	8.33	$\bar{3.43}$	$\bar{3.03}$	2.83
Pre-trained	66%	2.35	92.90	8.77	3.53	3.1	2.92
	100%	2.46	93.53	8.81	3.59	3.17	2.99

Summary

- 1. Speech Quality assessments using non-matching references (NMRs)
- 2. Addresses a key limitation of no-reference metrics
- 3. Competitive against existing metrics, w/o any training on subjective ratings
- 4. Differentiable metric; good pretraining strategy for Speech Enhancement

