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Fig. 1. Given multi-view images (top), our framework alternates the modeling step for our statistical model using tracked meshes and texture maps, and the
tracking step from prediction provided by the model, and achieves resistance to drift, significant robustness to fast motion and massive parallelization with
high-fidelity (bottom).

In this paper, we present an incremental learning framework for efficient
and accurate facial performance tracking. Our approach is to alternate the
modeling step, which takes tracked meshes and texture maps to train our
deep learning-based statistical model, and the tracking step, which takes
predictions of geometry and texture our model infers from measured images
and optimize the predicted geometry by minimizing image, geometry and
facial landmark errors. Our Geo-Tex VAE model extends the convolutional
variational autoencoder for face tracking, and jointly learns and represents
deformations and variations in geometry and texture from tracked meshes
and texture maps. To accurately model variations in facial geometry and tex-
ture, we introduce the decomposition layer in the Geo-Tex VAE architecture
which decomposes the facial deformation into global and local components.
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We train the global deformation with a fully-connected network and the
local deformations with convolutional layers. Despite running this model on
each frame independently – thereby enabling a high amount of paralleliza-
tion – we validate that our framework achieves sub-millimeter accuracy
on synthetic data and outperforms existing methods. We also qualitatively
demonstrate high-fidelity, long-duration facial performance tracking on
several actors.
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1 INTRODUCTION
The human face communicates surprisingly various emotions through
a subtle range of facial expressions.Many non-verbal signals through
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facial expressions are recognized independently of cultures, lan-
guages and society. Thus, capturing such dynamic details rich in
subtle motion is crucial for developing engaging experiences and
interactions in movies, video games, and virtual/augmented reality
(VR/AR), and enables to not only add lifelike realism to charac-
ters but also tell an appealing and immersive story via verbal and
non-verbal cues.

Tracking with such high fidelity still remains challenging despite
significant recent progress [Beeler et al. 2011; Fyffe et al. 2014, 2017;
Klaudiny and Hilton 2012]. Complex subtle facial expressions and
large deformations requires tracking to be very robust to occlusions
and appearance changes. This is challenging evenwhen capturing an
actor with a multi-view camera setup. It is common to add temporal
information or constraints in attempts to mitigate these problems,
however, this does not completely resolve the drift issue (i.e., error
accumulation over a sequence). Moreover, temporal constraints
require tracking methods to be processed in a sequential manner,
typically resulting in huge computational cost.
In this paper, we present an incremental learning framework

for efficient and accurate facial performance tracking from multi-
view images. We alternate the modeling step, which takes tracked
meshes and baked-in texture maps to train our deep learning-based
statistical model, and the tracking step, which takes predictions of
geometry and texture our model infers from measured images as
initialization and optimizes the predicted geometry by minimizing
image and geometric errors. Key to our approach is Geo-Tex VAE, a
convolutional variational autoencoder (VAE) [Kingma and Welling
2014] designed for face tracking. Geo-Tex VAE jointly learns and
represents deformation and variations in geometry and texture from
tracked meshes and texture maps. Trained Geo-Tex VAE can pre-
dict mesh and texture map that are close to target images to be
tracked enought to satisfy the brightness constancy assumption,
and enables the tracking step to be free from any temporal depen-
dency. This achieves high resistance to drift, significant robustness
to very fast motion, occlusions and appearance changes, and mas-
sive parallelization on a compute server, enabling long-duration
facial performance tracking. Additionally, the tracking step does
not consider any regularization based on the model, and thus poten-
tially produces mesh and texture that cannot be expressed by the
model. The incremental learning framework could further improve
the models, and accordingly tracking quality.
Geo-Tex VAE has important properties over conventional VAE

for the purpose of high-fidelity face tracking. Following the obser-
vation that geometry and baked-in texture show strong correlation
such as wrinkles and creases, Geo-Tex VAE learns geometric de-
formation and texture variations jointly. This allows us to predict
geometry and texture at runtime and makes the tracking optimiza-
tion much more accurate. Inspired by the conventional graphics
pipeline – which combined traditional blendshapes with corrective
blendshapes – we introduce a Decomposition Layer in our VAE that
decomposes facial deformation in geometry and texture into global
and local deformations. The global deformation is modeled with a
fully-connected network and local deformations are modeled with
non-linear convolutional layers. Taking the predicted geometry and
texture as initialization, the tracking step directly optimizes vertex

locations and surface orientations by minimizing differences of im-
ages, geometry, and facial landmarks between measurements and
predictions, together with conventional geometric regularization.
We demonstrate that our framework achieves sub-millimeter accu-
racy on average over more than one thousand frames of a synthetic
sequence, and also demonstrate the effectiveness and efficiency of
our method with real data. Our method also qualitatively outper-
forms state-of-the-art tracking methods.

The technical contributions of this paper are summarized as:
• an incremental learning framework for high-fidelity facial
performance tracking;

• joint representation and learning of geometry and texture to
learn their correlation;

• effective convergence in Geo-Tex VAE training by decompos-
ing geometry and texture deformations into global and local
ones;

• highly precise and accurate mesh tracking with capabilities
of drift resistance and parallelization.

These capabilities enable long-duration facial performance tracking
(Fig. 1), and potentially open up a range of interesting research
directions on speech animation [Karras et al. 2017; Taylor et al.
2017] and social interaction modeling for social VR/AR.

2 RELATED WORK
Our method consists of modeling and tracking steps. Here, we dis-
cuss existing work on face tracking and modeling, and clarify the
novelty of our approach.

3D Face Tracking. Most face tracking methods can be catego-
rized into two types based on a camera configuration: Multi-view
approaches fully utilize strong geometric cues from calibrated im-
ages and thus does not rely on a face model, while single-view
approaches (e.g., a single color/depth/RGB-D camera) rely on a face
model because geometric cues are noisy or unavailable.
For a multi-view setup, scene flow, 3D motion estimation tech-

niques for every pixel or vertex, is widely used to update the 3D
position of each vertex from one frame to another [Basha et al. 2013;
Valgaerts et al. 2010; Vedula et al. 2005]. However naive sequen-
tial tracking based on scene flow is susceptible to drift because of
occlusions and appearance changes. Drift correction is required
after scene flow computation, such as texture alignment in a UV
space [Bradley et al. 2010], or minimizing differences between mea-
sured images and images rendered with a tracked mesh [Valgaerts
et al. 2012]. More recent works are focused on non-sequential track-
ing by dividing a sequence into short segments based on image
and/or geometry similarity. This enables tracking to run on each
segment individually, thus limiting drift effects and reducing com-
putational time via parallelization. Beeler and colleagues [2011]
detect anchor frames based on image similarity to a neutral expres-
sion, and apply sequential tracking between consecutive anchor
frames. Klaudiny and Hilton [2012] compute a minimum spanning
tree based on geometric similarity among each pair of frames, and
run tracking from the root node to each leaf node. Fyffe and col-
leagues [2014] introduce a performance flow graph, a similarity graph
among static scans and every frame in a sequence. Most similar to
our approach is Fyffe and colleagues’ method [2017] that achieves
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registration from a template face mesh to each frame independently
by optimizing 3D landmark positions and then optical flow-based
appearance correspondences. This approach yields most minimal
drift and massive parallelization among non-sequential methods, re-
gardless of length of a sequence. Our method qualitatively achieves
higher precision and accuracy than their methods, thanks to our
VAE model that can predict both geometry and texture for tracking
initialization.

For a single-view setup, a 3D face model plays an important role
to compensate for noisy or absent geometric cues as mentioned
earlier. Holistic linear models such as linear blendshape [Lewis et al.
2014] and principal component analysis (PCA) models are empiri-
cally known to have a reasonable capacity to represent various facial
deformation. Many existing approaches use holistic linear models
for real-time facial tracking, which optimize rigid head pose and
model coefficients by minimizing facial landmarks, depth and/or im-
age differences [Cao et al. 2014a, 2013; Thies et al. 2015, 2016; Weise
et al. 2011]. Region-based linear models [Tena et al. 2011; Weise
et al. 2009; Wu et al. 2016] has a higher model capacity, and there-
fore allows more accurate tracking. Other recent work has captured
wrinkle-level details jointly with holistic deformations based on a
regression model from an image to wrinkle map [Cao et al. 2015] or
from holistic model parameters to detail maps [Ichim et al. 2015], or
by using image-based shading cues [Garrido et al. 2013, 2016; Shi
et al. 2014; Suwajanakorn et al. 2014]. Huang and colleagues [2011]
leverage high-resolution face scans for high-fidelity facial perfor-
mance tracking from sparse motion capture markers. One major
issue of the above approaches is that a model is trained during a
preprocessing step and fixed during tracking: If a facial expression
lies outside of a model space, tracking will fail. This issue was miti-
gated by alternating blendshape model refinement and tracking [Li
et al. 2010], or incrementally learning correctives [Bouaziz et al.
2013; Li et al. 2013]. Our method also employs incremental learning
for the Geo-Tex VAE model, and progressively learns correlation of
geometry and texture as more data are tracked.

Parametric Face Models. While many existing methods focused
on parametric representations of face geometry only, such as blend-
shapes [Lewis et al. 2014], PCA models [Weise et al. 2009], multilin-
ear model [Vlasic et al. 2005] or a facial rig consisting blendshapes,
joints and correctives [Li et al. 2017], modeling correlation between
geometry and appearance is gathering more attention recently,
such as regression from an image to 2D/3D facial landmark po-
sitions [Cao et al. 2013, 2014b; Saragih et al. 2011], to low-resolution
face mesh [Booth et al. 2017], to a wrinkle map [Cao et al. 2015],
or inferring a high-frequency albedo map from facial geometry
and a low-frequency albedo map [Saito et al. 2017]. To the best
of our knowledge, joint representation and modeling of geometry
and texture, which is the core of our modeling method, has not
been explored sufficiently. Blanz and colleagues introduced a linear
morphable model [Blanz and Vetter 1999] for 3D face synthesis, and
Matthews introduced an active appearance model [Matthews and
Baker 2004] for 2D tracking. Tewari and colleagues used a deep
autoencoder network to model geometry and texture morphable
model to infer shape [2018; 2017], which relies on linear models
for geometry and appearance to create training data of codes of
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Fig. 2. Overview of our incremental learning framework. Given tracked
meshes and texture maps from the initial tracking step, we alternate the
model training, prediction and tracking steps until training convergence or
the end of a sequence.

the network. Luan and colleagues [2018] learned a nonlinear 3D
face morphable model from a set of in-the-wild face images without
3D scans. Huynh and colleagues [2018] used a deep learning-based
model to infer mesoscopic structure of a face from a low-resolution
mesh and flat-lit texture. While many of the abovementioned ap-
proaches model identity differences of faces as well as expression-
related deformation, our model, which is person-specific and does
not consider uncontrolled lighting, yet has a strong capacity to
jointly represent, model and predict global and non-linear local
deformations in geometry and texture at high resolution.

3 OVERVIEW
The input data to our tracking method is a sequence of multi-
view images captured by calibrated cameras. Additionally, we run
the PatchMatch-based multi-view stereo method [S. Galliani and
Schindler 2015] and obtain a 3D scan for every frame.

Our approach uses a template mesh that is tracked over the input
sequence. The three requirements for the template mesh are 1) the
template mesh needs to be tightly registered to the first frame of the
sequence, 2) a UV space is defined, and 3) upper and lower eyelids
and upper and lower lips are topologically disconnected. In our
implementation, we use the 3D scan of the first frame as a template,
and create a UV space using commercial graphics software called
ZBrush1.
Fig. 2 illustrates the pipeline of our framework to incremental

learning and tracking of facial performance. Our tracking method
starts with initial tracking based on local linear models, followed
by model-free optimization, for the first batch, i.e., a few hundred
frames in the beginning of the input sequence (Section 5.2). Our
current implementation assumes that the first batch contains facial
deformation. This step could be easily automated by checking vari-
ances of vertex displacements in the tracked meshes. The tracked
mesh and corresponding baked-in texture maps in the batch are

1http://pixologic.com/
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passed to train the Geo-Tex VAE model. The architecture of Geo-Tex
VAE is designed to model global and local deformations in geometry
and texture jointly (Section 4.1). Geo-Tex VAE is trained with the
batch by minimizing differences between tracked and predicted
meshes and texture maps (Section 4.2). Once training is completed,
Geo-Tex VAE is used to predict meshes and texture maps from
images in the next batch (Section 4.3). Taking the predictions as
initialization, we apply our tracking method to tightly register pre-
dicted meshes to measured images and 3D scans (Section 5.1). As
this tracking step is independent of the Geo-Tex VAE model except
for initialization, it potentially yields data that cannot be expressed
by the current model and further improves the Geo-Tex VAE model
through incremental learning. Besides, the tracking does not rely
on any temporal information, and can process each frame inde-
pendently, which yields minimal drift and benefits from massive
parallelization. The incremental learning and tracking framework
is applied until it reaches the end of a sequence or convergence of
Geo-Tex VAE training. Once the model is trained with sufficient
facial expressions, Geo-Tex VAE prediction enables to run only the
tracking step for new sequences of the actor without training the
model, achieving further reduction of computational cost.
The first batch size is set to 350 frames. Geo-Tex VAE from the

first batch may not be able to provide good predictions because
possibly insufficient training data. Therefore, we set the second
batch size to 32 frames, and increase the size by 8 incrementally
until it reaches 128 frames.

4 MODELING AND PREDICTING FACIAL GEOMETRY
AND TEXTURE

A VAE is an unsupervised deep learning technique for feature
learning, and has proved its strong capacity to encode training
data [Kingma and Welling 2014]. We present Geo-Tex VAE, a convo-
lutional VAE that jointly encodes and decodes geometry and texture
deformation of a face. We incrementally train Geo-Tex VAE: Once
the tracking step processes a certain amount of frames, the tracked
meshes together with corresponding baked-in texture maps are used
to train and update Geo-Tex VAE.

4.1 Geo-Tex VAE Architecture
Based on the observation that geometry and baked-in texture are
correlated, we jointly parameterize and model geometry and texture.
We utilize a UV space of the template mesh (512×512 pixels in our
implementation), and project mesh geometry and texture into a
6-channel UV image, 3 channels for a 3D position map S and 3
channels for a texture map T .
The convolution operation in a typical convolutional VAE ex-

hibits a stationarity assumption [Taigman et al. 2014] that does not
hold for facial texture and motion data due to a surprising amount
of variability in expressions. Our preliminary experiments share a
similar observation that a typical convolutional VAE architecture
caused poor training convergence (see Section 6.3). Inspired by ex-
isting graphics pipelines that combine a linear global model (e.g.,
blendshapes) and correctives, we mitigate this problem through the
decomposition layer in the Geo-Tex VAE architecture that decom-
poses entire face deformations in geometry and texture into global

and local deformations, and encodes/decodes these deformations
jointly in the end (Fig. 3a). The decomposition layer is a multilayer
perceptron (MLP) to encode the original deformation and decode
it as global deformations, SG and TG 2, and the reconstruction er-
ror with the MLP is then computed as local deformations, SL and
TL (Fig. 3b). As it is reasonable to assume that the local deformations
satisfy the stationarity assumption of the convolution operation,
the local deformations are encoded/decoded with the convolutional
layers. The convolutional layers consist of four residual blocks [He
et al. 2016], each of which applies two convolutions with rectified
linear units (ReLU) for non-linearity (Fig. 3c). Finally, latent vari-
ables of global and local deformations, zG and zL respectively, are
merged and jointly modeled with another MLP for zwhose posterior
is parameterized with mean µ and variance σ .

4.2 Training Geo-Tex VAE
After tracking a sequence of frames, tracked meshes and corre-
sponding images serve as training data for the Geo-Tex VAE. The
position map S is simply obtained by projecting each vertex into
the UV space and the texture map T is obtained by projecting all
captured images into the UV space and merging them with Poisson
blending [Pérez et al. 2003].

Every position map contains not only facial deformation but also
rigid head motion. Because Geo-Tex VAE is designed to learn a
deformation map, such rigid motion needs to be removed from S . To
rigidly align all S to a reference position map Sref (e.g., S at the first
frame), we design and train a rigid stabilization network (Fig. 4).
The rigid stabilization network applies a learned rigidity confidence
mapW to S and Sref and then the rigid registration layer that solves
head rotation RH and translation tH based onW in a closed-form
manner via singular value decomposition (SVD) [Arun et al. 1987].
This network is analogous to rigid stabilization based on a skull
model for blendshape generation [Beeler and Bradley 2014] but ours
does not require any manual intervention.

For training the rigid stabilization network, we minimize the loss
Lrigid that includes a regularization term to avoid a trivial solution
(i.e., all confidences inW are zero) as well as RH and tH with the
Adam optimizer [Kingma and Ba 2015]

Lrigid = ∥(W ⊙ S) ⊗ (RH, tH) −W ⊙ Sref ∥
2
F

+ λrigidmin
(
ρN − ∥W ∥2F , 0

)
, (1)

where ⊙ is element-wise multiplication, ⊗ is element-wise rigid
transformation, and ∥ · ∥F is the Frobenius norm. N is the total
number of pixels in the UV space, ρ is a proportion of the number
of pixels with nonzero confidence to N (set to 0.4), and λrigid is a
weight for this regularization loss (set to 10). To constrainW to
be always positive, an intermediate variable G is defined so that
W is the sigmoid function on G and ranges from 0 to 1. Note that
there is no parameter in the rigid registration layer because of the
SVD-based closed-form solution.

Now that we obtain rigidly registered positionmaps Saligned for all
training data, the next step is to train Geo-Tex VAE. Unfortunately,
the large number of parameters in MLPs easily causes overfitting

2The output of the MLP is reshaped into image form as shown in Fig. 3b
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Ŝ

BTB

(a) Geo-Tex VAE.

SL
TL

SG
TG

zG

S
T

MLP ( )

MLP ( )BT

B

(b) Decomposition layer.

Type Kernel Stride Output

Re
s. 

Bl
k. conv. 3x3 2x2 64

conv. 3x3 1x1 64

Re
s. 

Bl
k. conv. 3x3 2x2 64

conv. 3x3 1x1 64

Re
s. 

Bl
k. conv. 3x3 2x2 64

conv. 3x3 1x1 64

Re
s. 

Bl
k. conv. 3x3 2x2 64

conv. 3x3 1x1 64

MLP - - 64

(c) Convolutional layers.
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and very poor generalizability. Therefore, instead of optimizing
all parameters, we compute PCA bases B from a training data set
{Saligned,T }. B is used for MLP related to global deformation (i.e.,
MLPs associated with B or BT in Fig. 3), and fixed in the following
Geo-Tex VAE training. The rest parameters are optimized by mini-
mizing the data loss Ldata as well as the Kullback-Leibler divergence
loss with the weight of 10−4 with the Adam optimizer:

Ldata = λS∥Ŝ−Saligned∥
2
F +λL∥L(Ŝ)−L(Saligned)∥

2
F +λT∥T̂−T ∥

2
F , (2)

where L(·) computes surface Laplacian, λS, λL, λT are weights for
reconstruction error in 3D position map S , surface Laplacian map
L(S), and texture map T (set to 10, 105 and 10−3), respectively. We
found the surface Laplacian loss useful to reduce block artifacts
caused by convolutions.

4.3 Predicting Geometry and Texture with Inverse
Rendering

At runtime we use the decoder from the trained Geo-Tex VAE to
predict mesh and texture from a set of multivew images to perform
tracking. This could be considered as an inverse rendering problem,
as we want to infer latent variables z so that images synthesized
from Ŝ and T̂ predicted with z and camera parameters match to the
actual images. Note that we infer baked-in texture maps, rather than
albedo maps [Saito et al. 2017; Tewari et al. 2017].

Because the Geo-Tex VAE is trained only for deformation and
does not handle rigid transformation, we need to optimize z along
with rigid head rotation RH and translation tH. We formulate three
types of losses: the image loss Limg, the geometry loss Lgeo, the
landmark loss Lland and a regularization term on z. We optimize the
parameters by minimizing the total inverse rendering loss LIR:

LIR = λimgLimg + λgeoLgeo + λlandLland + λreg∥z∥2, (3)

where λimg, λgeo, λland and λreg are weights for Limg, Lgeo, Lland
and Lreg (set to 1, 10, 0.1 and 1), respectively.
The image loss Limg considers the sum of pixel-wise intensity

differences between captured images I and synthesized images Î ,
defined as

Limg =
∑
c

∥Ic − Îc (RH, tH, z)∥1, (4)

where c represents a camera. We use the L1 norm for robustness to
outliers such as specularity and appearance changes.

The geometry loss Lgeo computes differences between predicted
geometry and a 3D scan. Similar to the image loss, we render a 3D
position map for each view using the 3D scan and the predicted
geometry, D and D̂, respectively, and compute pixel-wise position
differences, as

Lgeo =
∑
c

∥Dc − D̂c (RH, tH, z)∥1. (5)

The landmark loss computes reprojection errors between mea-
sured and predicted landmarks. We use the convolutional pose
machine method (CPM) [Wei et al. 2016] trained with annotated
facial landmarks:

Lland =
∑
f

������RHŜz(ureff ) + tH − ff
������2 , (6)

where uref is a landmark location in the UV space, f is the 3D
position of a landmark detected in an input image (i.e., projecting
2D landmarks in the input image to the corresponding 3D scan).
uref is obtained by projecting landmarks detected in the reference
image into Sref . Fig. 5 shows example input images for prediction,
meshes and texture maps predicted with the trained model. Subtle
wrinkles as well as holistic expressions are predicted in both meshes
and texture reasonably close to the input images.
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Fig. 5. Example meshes and texture predicted with the Geo-Tex VAE. Subtle
details such as wrinkles highlighted with red arrows as well as holistic
expressions are predicted.

Once the inverse rendering is completed by minimizing Eq. (3)
with the Adam optimizer, we decode z with the decoder of Geo-Tex
VAE to obtain Ŝ and T̂ , and apply the head rigid pose RH and tH to Ŝ .
Then these predictions are used to initialize the tracking step. Note
that there is no temporal dependency in the prediction step, and
therefore we can run this prediction step for each frame in parallel.

5 FACIAL SURFACE TRACKING
Now that Geo-Tex VAE is trained with tracked meshes and cor-
responding textures in previous batches, the next step is to run
face tracking for a next batch. We use the inverse rendering-based
prediction as initialization, and optimize the vertex positions of
the template mesh based on images and 3D scan for each frame in
the next batch individually. Because our tracking formulation does
not include any model-based regularization, tracked meshes could
lie outside of the space spanned by Geo-Tex VAE, and thus could
further improve the Geo-Tex VAE in next batch training.

5.1 Facial Surface Tracking from Prediction
Similar to the prediction step, we synthesize image Î and 3D po-
sition map D̂ for each view based on the prediction for a target
frame, and minimize differences between those and the images I
and the position maps D measured at the target frame. Unlike pre-
vious methods that updates vertex positions via optical flow and
triangulation computed in a sequential manner [Beeler et al. 2011;
Bradley et al. 2010; Fyffe et al. 2014], we directly optimize the 3D
positions X and surface orientation R of all vertices by minimizing
the total objective Etrack:

Etrack = wphoEpho +w
0
phoE

0
pho +wgeoEgeo +wfeatEfeat + Ereg, (7)

where Epho, E0pho, Egeo, Efeat and Ereg are the photo-consistency
term w.r.t. synthesized image, the photo-consistency term w.r.t. the

images at the first frame of a sequence, the geometric consistency
term, the 3D feature distance term and the regularization term,
which are weighted withwpho,w0

pho,wgeo, andwfeat (set to 10, 10,
10 and 50), respectively.

Photo-consistency Terms Epho and E0pho. Typical approaches in op-
tical flow and scene flow computation compares rectangular patches
in image domain. This assumption holds only if the target surface
is frontal parallel. For more accurate photo-consistency, we con-
sider a 3D local tangent plane for each X, and transform a patch
around 2D projection of X between I and Î via a homography H
parameterized with X and R [Hartley and Zisserman 2004]. For
robustness to local brightness changes, we consider enhanced cor-
relation coefficients [Evangelidis and Psarakis 2008]. Accordingly,
Epho is formulated as

Epho =
∑
v

∑
c ∈C(Xv )

ψ

(�����
����� Îc (Pc X̂v )

∥Îc (Pc X̂v )∥
−

Ic (Hc
v (PcXv ))

∥Ic (Hc
v (PcXv ))∥

�����
�����
)
, (8)

where where I is an image patch with mean intensity subtracted,
C(X) is a set of cameras where X is visible, X̂ is the 3D position of a
mesh vertex from the Geo-Tex VAE prediction and Pc is the camera
matrix of camera c .ψ (·) is a robust kernel to handle outliers [Zoll-
höfer et al. 2014], formulated as

ψ (e) = min
ω

(2ω2e2/γ 2 + (1 − ω2)2), (9)

where γ for Epho is set to 0.1
E0pho is the photo-consistency term w.r.t. the images at the first

frame of a sequence. Therefore, this is computed by simply replacing
synthesized images Î and predicted positions X̂ in Eq. (8) to those
at the first frame. We set the patch size to 15×15 pixels for these
photo-consistency terms.

Geometric Consistency Term Egeo. We assume the same local pla-
narity around each vertex for geometry, and compute Euclidean
distance for each 3D position in a patch, as

Egeo =
∑
v

∑
c ∈C(Xv )

ψ
(
∥Rv (D̂(Pc X̂v ) − X̂v ) + Xv − D(Hc

v (PcXv ))∥
)
.

(10)
We set the patch size for Egeo to 7×7 pixels, and γ in the robust
kernel for Egeo is set to 1.

3D Feature Distance Term Efeat. We also consider image-based
features and minimize their 3D distances. In addition to landmarks
detected by CPM, we also detect SIFT features [Lowe 2004]. For the
eyelids, we use eyelid curve fitting [Wen et al. 2017] to improve
and densify eyelid landmarks. For SIFT, we run descriptor-based
matching between images to prune outlier correspondences.
We apply these feature detectors to the measured frontal image,

and get their 3D positions p from the corresponding 3D scan. For
the synthesized frontal image, we similarly detect the same features,
and parameterize their 3D positions q with vertex positions X via
barycentric coordinates in the template mesh. The optimization
minimizes the Euclidean distance between p and q with the robust

ACM Transactions on Graphics, Vol. 37, No. 6, Article 234. Publication date: November 2018.



Deep Incremental Learning for Efficient High-Fidelity Face Tracking • 234:7

Fig. 6. Example image set captured by our multi-view camera setup.

kernelψ :
Efeat =

∑
f

ψ (∥pf − qf (X)∥), (11)

where γ in the robust kernel for Efeat is set to 10.

Regularization Term Ereg. We also consider the regularization
term, mainly for textureless regions and regions that are sometimes
occluded such as regions around eye creases and inner lips. We con-
sider conventional Laplacian and as-rigid-as-possible (ARAP) [Sorkine
and Alexa 2007] regularization terms:

Ereg = wL
∑
v

∥L(Xv ) − L(X̂v )∥2

+wA
∑
v

∑
i ∈N(v)

∥(Xv − Xi ) − Ri (X̂v − X̂i )∥
2, (12)

wherewL andwA are weights for the Laplacian and ARAP regular-
ization terms (set to 100 and 0.5), respectively, and N(v) is a set of
neighbors of vertex v.

Optimization. We solve Eq. (7) via the Gauss-Newton method. To
efficiently optimize the large number of parameters, we use GPU-
based implementation that computes the Jacobian matrix of each
term in parallel and solve parameter updates with preconditioned
conjugate gradient [Zollhöfer et al. 2014]. We run the optimization
in a coarse-to-fine manner with 5 layers for effective convergence.

5.2 Initial Tracking
Our approach, as described thus far, assumes that the Geo-Tex VAE
has already been trained. However, we must run an initial tracking
pass to the first batch for initial training of the Geo-Tex VAE. There-
fore, we first run sequential tracking based on the region-based
blendshape model [Wu et al. 2016], followed by model-free opti-
mization, for the first batch. We added three minor modifications to
the existing method. First, we exclude the anatomical constraint that
parameterizes rigid head pose based on a skull, because 3D scans
from multi-view images resolves the geometric ambiguity. Second,
we consider only the 3D feature distance term Efeat for this model-
based tracking step. We found that thousands of SIFT features are
detectable for high-resolution images, making the optimization over-
constrained. Lastly, we start without any region blendshapes for the
very first frame, and progressively update the region blendshapes

Fig. 7. Result of tracking for the A1-2 sequence with the Geo-Tex VAE model
trained from the A1-1 sequence. Top: images, middle: rendering with a grid
pattern, and bottom: rendering with Phong shading.

by selecting several meshes (10 at most) that are not expressed with
each other based on shape similarity analysis.
The model-free optimization minimizes the objective defined

in Eq. (7) in a sequential manner, and thus all variables denoted with
·̂ in Eqs. (8), (10), (12) are replaced with those at frame t − 1, and
the variables without ·̂ are replaced with those at frame t . Tracked
meshes from this initial tracking step serve as the first batch for
training the Geo-Tex VAE.

6 EXPERIMENTS
We conducted experiments with facial performance data captured
with ourmulti-view camera setup. Our setup consists of 40 hardware-
synchronized machine vision cameras capturing 2560×1920 pixels
resolution at 30 fps with uniformly distributed LED lights around
the capture area. Fig. 6 shows an example image set from this cam-
era setup. We evaluate our framework with synthetic data and real
data captured with this setup.

We implemented themodeling stepwith PyTorch and the tracking
step with C++ and CUDA. For the modeling step, we set the learning
rate to 10−3 and minibatch size to 16. For Adam optimization, the
number of epochs for the first batch of our modeling step is 300,
and the number of epochs for the following batches is 100, with 500
iterations of parameter update. All the template meshes we used
have approximately 3 × 105 vertices.

6.1 Results with Our Datasets
We recorded facial performances of three actors, namely A1, A2 and
A3. A1 performed some speech performance in an exaggerated tone
for ∼2 minutes (3600 frames), and we divided the sequence into two,
namely A1-1 and A1-2. The A1-1 and A1-2 sequences consist of 2500
frames and 1100 frames, respectively. A2 performed range-of-motion
(ROM) for ∼53 seconds (1600 frames) and performed conversational
speech performance for ∼10 minutes, out of which we picked up an
expressive sub-sequence for 28 seconds (840 frames), referred to as
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(a) Tracking result for A2-1 with the complete framework.

(b) Tracking result for A2-2 with the model trained from A2-1.

Fig. 8. Results of tracking for A2 Top: images, middle: rendering with a grid
pattern, and bottom: rendering with Phong shading.

A2-1 and A2-2, respectively. A3 performed ROM for ∼1.6 minutes
(2900 frames) and performed conversational speech performance
for approximately one minutes (1900 frames), referred to as A3-1
and A3-2, respectively.
Figs. 1, 8(a) and 9(a) show several frames of the tracking results

with our complete learning and tracking framework for A1-1, A2-1,
and A3-1, respectively. We render the results with checkerboard
pattern texture to easily check drift. We also refer the readers to
the supplemental video for the tracking results. Despite the fact
that models in early stages are not expected to be trained well, and
the fact that these sequences contain large and quick motion, the

(a) Tracking result for A3-1 with the complete framework.

(b) Tracking result for A3-2 with the model trained from A3-1.

Fig. 9. Results of tracking for A3. Top: images, middle: rendering with a grid
pattern, and bottom: rendering with Phong shading.

results show reasonable holistic facial motion and subtle deforma-
tion such as creases and wrinkles without postprocessing such as
high-resolution detail transfer.
Figs. 7, 8(b) and 9(b) are the tracking results for A1-2, A2-2, and

A3-2, respectively. The models used in these results were trained
from the A*-1 sequences and fixed for these sequence. It is validated
that the tracking results are qualitatively quite similar to the input
images, despite the differences of the content between A*-1 and
A*-2 and noise in images such as dust on the lens as shown in the
supplemental video.
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Fig. 10. Quantitative evaluation on tracking accuracy with synthetic data.
The first 350 frames are tracked by initial tracking, and the rest is tracked
with our incremental learning and tracking framework.

In all the results, minor jitters around eyelids and eyebrows are
observed. These are caused by occlusion and appearance changes
around eye crease, eyelashes and eyebrows. However, it is noted
that it does not cause drift thanks to temporal independency in our
tracking method. Please see Section 7 for more detailed discussions.

6.2 Quantitative Evaluation with Synthetic Data
We created a synthetic data from 1260 frames out of the tracking
result of the A1-1 sequence for quantitative evaluation. We used the
static texture map reconstructed from the first frame, and rendered
the tracked mesh with the texture map under a constant illumina-
tion. Then, we ran the complete framework of our method for this
sequence.
Fig. 10 shows root mean square errors (RMSE) over ∼300k ver-

tices along frames. The average RMSE over frames is 0.23 mm with
standard deviation of 0.11 mm. As expected, the model produces
higher errors at early stages of our pipeline due to an insufficient
amount of data. These errors become smaller as the model is trained
on more data. Besides, it is observed that errors are not accumulated
or propagated to other frames because of the nature of individual
frame registration.

To confirm the effectiveness of predction with our Geo-Tex VAE
model, we compare the geometric errors of prediction and track-
ing from the Geo-Tex VAE model with those from a traditional
PCA model with the same number of embedding dimensions as
the VAE model. Fig. 12 shows the comparisons of the errors based
on the synthetic data. Note that the first 350 frames are excluded
in Fig. 12, because the same sequential tracking was performed for
these frames to get the first batch of training data. The prediction
and tracking errors up to around 750th frame from our method were
similar to those from the PCA model, mainly due to the insufficient
amount of training data for our model. However, with more data
tracked and used for incremental model training (i.e., after around
750th frame), our Geo-Tex VAE model significantly outperformed
the PCA model for prediction. The smaller prediction errors from
our model also achieved the consistently smaller surface tracking
errors, as the surface tracking step requires predictions to be close

to input images and geometry for the brightness constancy assump-
tion in Eq. (8). In contrast, the PCA model has a lower capacity to
encode complex deformations even with more training data and
therefore produces larger prediction errors. These large prediction
errors from the PCA model made the surface tracking more diffi-
cult to converge to good minima, leading to larger tracking errors
compared with our model.

6.3 Evaluation on Geo-Tex VAE Training and Prediction
One of the key components in our framework is the Geo-Tex VAE ar-
chitecture with the decomposition layer. To assess the performance
of this architechure, we compared training errors with alternative
models: one using only the four convolutional layers of Geo-Tex
VAE (covO ) and the other with 13 convolutional layers (covL ), which
follow typical convolutional VAE architecture. We used 3000 frames
from the tracked meshes of the A1’s sequence as a training dataset
for each model and the remaining frames as a testing dataset. Fig. 11
shows how training errors of geometry and texture decrease for all
the three models, and demonstrates that Geo-Tex VAE converges
quickly and achieves the lowest training error. The average testing
errors for geometry and texture after the training convergence are
0.23 and 0.047 for our model, 0.32 and 0.078 for covO , and 0.41 and
0.082 for covL , respectively, indicating that our model has the lowest
testing error.
As it is challenging to obtain ground truth on real data, we

compared only the prediction accuracy of our model with that of
covL , covO and PCA on the real data same as above. In detail, we
trained these four models with the same 3000 frame training dataset
and computed predictions using the inverse rendering optimiza-
tion Eq. (3) for each model on the testing dataset. Fig. 13 shows
RMSE of vertex positions for each model over frames and validates
that the Geo-Tex VAE-based prediction achieved the highest predic-
tion accuracy.

6.4 Comparisons with Existing Methods
We applied our method to the data from Fyffe and colleagues [2017],
and performed comparison with their result. We used the half of
their data to run the complete learning and tracking framework,
and used the other half, for which their tracking results are avail-
able, to run our tracking method with the Geo-Tex VAE model fixed.
To assess the quality of the tracking results, we reconstructed a
texture map for each frame based on the tracked meshes, normal-
ized each texture map to remove the effect of brightness changes,
and computed temporal standard deviation for intensity of each
pixel in the UV space. Fig. 14 shows comparison of the standard
deviation between our and their methods. Our method achieves
substantially lower standard deviation, specifically around the fore-
head, cheeks and mouth, than the existing method. This can be also
observed in the accompanying video where per-frame texture maps
are visualized. While the texture maps from the existing method
has noticeable sliding artifacts around the mouth, those from our
method has better alignment in the UV space.
We also compare our method with the method of Beeler and

colleagues [2011]. As the data they release is too short (∼340 frames)
to run our complete framework, we applied the initial tracking step
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Fig. 11. Comparisons of training errors among Geo-Tex VAE, covL and covO . Our model achieves quickest convergence and lowest training errors in geometry,
texture and total.
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Fig. 12. Comparison of prediction and tracking errors of our method (green
and blue, respectively) with those of the PCA model (purple and red, respec-
tively) on synthetic data.

(Section 5.2) for this comparison. Fig. 15 shows the comparison of
temporal standard deviation of intensities in the per-frame texture
maps reconstructed with tracked meshes, Our method achieves
lower standard deviation particularly around the mouth and the
cheeks than the existing method, indicating that the initial tracking
step can provide reasonable tracked meshes and corresponding
texture maps as the first batch for training a Geo-Tex VAE model.

6.5 Performance Timings
We ran all the above experiments on an NVIDIA DGX compute
server with eight Tesla V100 graphics cards. Each Tesla V100 card
has 16 GB memory.

To train the rigid stabilization network and Geo-Tex VAE with the
size of 1024 meshes and texture maps, it took ∼20 seconds and ∼1
minutes per epoch, respectively. The Geo-Tex VAE prediction took
∼2 minutes, and the tracking using the prediction took ∼1 minute.
Note that the prediction and tracking steps are parallelizable, and
we can process eight frames simultaneously with the DGX compute
server. The major bottleneck in our framework is the model training
step. However, as demonstrated in Section 6.1, we do not need the
training step once the model is trained with facial performances
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Fig. 13. Comparisons of prediction accuracy among our model, covL , covO
and PCA. Our model achieves the highest prediction accuracy.

containing various expressions. This indicates that, if we want to
process many sequences, perhaps wewill need to apply the complete
framework for a few, very expressive sequences, and the rest will be
processed only with the prediction and tracking steps, taking much
less time than existing methods.

7 DISCUSSION
We presented a deep incremental learning framework that alternates
between training a model with tracked meshes and texture maps
and then initializing the tracking step using predicted meshes. To
effectively model expressive facial performance, we introduced Geo-
Tex VAE, which jointly models geometry and texture and consists
of MLPs for global deformation and convolutional layers for local
deformation. The tracking step directly optimizes mesh vertex posi-
tions and surface orientations by minimizing image, geometry and
feature error together with conventional geometric regularization
terms. We performed qualitative evaluation with real data captured
with our setup, and quantitative evaluation with synthetic data that
showed that our framework achieves sub-millimeter accuracy. We
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Fig. 14. Temporal standard deviation of texture maps reconstructed from
the meshes by (a) our method and (b) Fyffe and colleagues’ method [2017].

also did convergence analysis and assessed effectiveness of Geo-Tex
VAE. Our method enables long-duration facial performance tracking
as demonstrated in this paper, and perhaps introduces interesting
research directions to statistically learn how people communicate
each other through facial expressions.

While we showed high-fidelity results, there are a few limitations.
We need a long, expressive sequence(s) such as range-of-motion
to train Geo-Tex VAE that achieves sufficiently high performance.
Because the major bottleneck in terms of runtime performance is
the training step, as described in Section 6.5, one might consider
this as a major limitation. With the data parallelism feature recently
introduced in PyTorch, multiple GPUs can be utilized to accelerate
the training. Our initial test shows that one epoch training time for
the Geo-Tex VAE can be reduced from ∼1 minutes to ∼16 seconds
with 8 Tesla V100 GPUs. Besides, as demonstrated in Section 6.1,
we only need to perform the prediction and tracking steps once
the model is trained with a sufficient amount of data. These steps
are highly parallelizable, and accordingly the runtime performance
becomes reasonably fast.
Another limitation is the limited amount of GPU memory. The

current GPU memory size restricts us to use low-resolution UV
maps (512×512 in our current implementation). The more memory
on GPU, the higher UV map resolution we can utilize and possibly
the better prediction from the Geo-Tex VAE.
Concave geometry under a chin and rolled-out lower lip causes

significantly less visibility, and accordingly some sliding artifacts
around those regions. More cameras observing from further lower
viewpoints would help mitigate this issue.

One might be concerned about jitters around eyelids and sparse
hair regions such as eyelashes and eyebrows. It is well known that
eyelids and hair are difficult to track because of occlusion and appear-
ance changes related to eye creases and hair reflectance property.
Some tracking methods dedicated to eyelids [Bermano et al. 2015]
and hair reconstruction [Beeler et al. 2012], or Geo-Tex VAE spe-
cialized for those regions, would be necessary to mitigate this issue.
On the other hand, it is important to note that the capability of our
method to register a template mesh to each frame independently suc-
cessfully prevents such errors from being accumulated/propogated
over other frames.

Currently, we do not consider a sophisticated appearance model
such as albedo or subsurface scattering. We designed our framework

(a) (b) 0.4

0.0

Fig. 15. Temporal standard deviation of texture maps reconstructed from
the meshes by (a) our initial tracking method and (b) Beeler and colleagues’
method [2011].

for tracking purposes, so more sophisticated appearance models
are out of the scope of our tracking framework: Rendering a mesh
with baked-in texture map can synthesize an image pretty close to
a real image captured under the same lighting condition and thus
produce reasonable predictions. It would be an interesting research
direction to estimate, for example, albedo maps in the tracking step,
and model them together with tracked meshes in the modeling step.
This would open up various applications such as modeling dynamic
appearance changes, relighting and high-fidelity facial performance
tracking in the wild.
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