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Abstract
We propose a novel framework to identify sub-
goals useful for exploration in sequential decision
making tasks under partial observability. We utilize
the variational intrinsic control framework (Gre-
gor et.al., 2016) which maximizes empowerment –
the ability to reliably reach a diverse set of states
and show how to identify sub-goals as states with
high necessary option information through an in-
formation theoretic regularizer. Despite being dis-
covered without explicit goal supervision, our sub-
goals provide better exploration and sample com-
plexity on challenging grid-world navigation tasks
compared to supervised counterparts in prior work.

1 Introduction
A common approach in reinforcement learning (RL) is to de-
compose an original decision making problem into a set of
simpler decision making problems – each terminating into an
identified sub-goal. Beyond such a decomposition or abstrac-
tion being evident in humans (e.g. adding salt is a sub-goal in
the process of cooking a dish) [Hayes-Roth and Hayes-Roth,
1979], sub-goal identification is also useful from a practi-
cal perspective of constructing policies that transfer to novel
tasks (e.g. adding salt is a useful sub-goal across a large num-
ber of dishes one might want to cook, corresponding to dif-
ferent ‘end’ goals).

However, identifying sub-goals that can accelerate learn-
ing while also being re-usable across tasks or environments
is a challenge in itself. Constructing such sub-goals often re-
quires knowledge of the task structure (supervision) and may
fail in cases where 1) dense rewards are absent [Pathak et al.,
2017], 2) rewards require extensive hand engineering and do-
main knowledge (hard to scale), and 3) where the notion of
reward may not be obvious [Lillicrap et al., 2015]. In this
work, we demonstrate a method for identifying sub-goals in
an “unsupervised” manner – without any external rewards or
goals. We show that our sub-goals generalise to novel par-
tially observed environments and goal-driven tasks, leading to
comparable (or better) performance (via. better exploration)
on downstream tasks compared to prior work on goal-driven
sub-goals [Goyal et al., 2019].

Figure 1: Left: The VIC framework Gregor et al. [2016] in a navi-
gation context: an agent learns high-level macro-actions (or options)
to reach different states in an environment reliably without any ex-
trinsic reward. Right: IR-VIC identifies sub-goals as states where
necessary option information is high (darker shades of red) for an
empowered agent. Identification of unsupervised sub-goals leads to
improved transfer to novel environments.

We study sub-goals in the framework of quantifying the
minimum information necessary for taking actions by an
agent. van Dijk and Polani [2011] have shown that in the
presence of an external goal, the minimum goal information
required by an agent for taking an action is a useful measure
of sub-goal states. Goyal et al. [2019] demonstrate that for
action A, state S and a goal G, such sub-goals can be ef-
ficiently learnt by imposing a bottleneck on the information
I(A,G|S). We show that replacing the goal with an intrin-
sic objective admits a strategy for discovery of sub-goals in a
completely unsupervised manner.

Our choice of intrinsic objective is the Variational Intrin-
sic Control (VIC) formulation [Gregor et al., 2016] to learn
options Ω that maximize the mutual information I(Sf ,Ω),
referred to as empowerment, where Sf is the final state in a
trajectory [Salge et al., 2013]. To see why this maximizes
empowerment, notice that I(Sf ,Ω) = H(Sf ) − H(Sf |Ω),
whereH(.) denotes entropy. Thus, empowerment maximizes
the diversity in final states Sf while learning options highly
predictive of Sf . We demonstrate that by limiting the infor-
mation the agent uses about the selected option Ω while maxi-
mizing empowerment, a sparse set of states emerge where the
necessary option information I(Ω, A|S) is high – we inter-
pret these states as our unsupervised sub-goals. We call our
approach Information Regularized VIC (IR-VIC). Although
IR-VIC is similar in spirit to Goyal et al. [2019]; Polani et
al. [2006], it is important to note that we use latent options Ω
instead of external goals – removing any dependence on the
task-structure.



To summarize our contributions,
• We propose Information Regularized VIC (IR-VIC), a

novel framework to identify sub-goals in a task-agnostic
manner, by regularizing relevant option information.
• Theoretically, we show that the proposed objective is a

sandwich bound on the empowerment I(Ω, Sf ) – this is
the only useful upper bound we are aware of.
• We show that our sub-goals are transferable and lead

to improved sample-efficiency on goal-driven tasks in
novel, partially-observable environments. On a chal-
lenging grid-world navigation task, our method outper-
forms (a re-implementation of) Goyal et al. [2019].

2 Methods
2.1 Notation
We consider a Partially Observable Markov Decision Pro-
cess (POMDP), defined by the tuple (S,X ,A,P, r), s ∈ S
is the state, x ∈ X is the partial observation of the state
and a ∈ A is an action from a discrete action space. P :
S × S × A denotes an unknown transition function, repre-
senting p (st+1|st, at) : st, st+1 ∈ S, At ∈ A. Both VIC
and IR-VIC initially train an option (Ω) conditioned policy
π(at|ω, xt), where ω ∈ {1, · · · , |Ω|}. During transfer, all ap-
proaches (including baselines) train a goal-conditioned policy
π(at|xt, gt) where gt is the goal information at time t.

Following standard practice [Cover and Thomas, 1991], we
denote random variables in uppercase (Ω), and items from the
sample space of random variables in lowercase (ω).

2.2 Variational Intrinsic Control (VIC)
The option Ω in VIC is a global latent variable underlying
a trajectory τ = {S0, A0, · · · , Sf} (Figure 2). To encour-
age the agent to reach a diverse set of states reliably, VIC
proposes maximizing the mutual information between Ω and
final state Sf given s0, i.e. I(Sf ,Ω | S0 = s0). Informally,
this maximizes the empowerment for an agent, i.e. its inter-
nal options Ω have a high degree of correspondence to the
states of the world Sf that it can reach. VIC formulates a
variational lower bound on this mutual information. Specifi-
cally, let p(ω | s0) = p(ω) be a prior on options (we keep the
prior fixed as per Eysenbach et al. [2018]), pJ(sf | ω, s0) is
defined as the (unknown) terminal state distribution achieved
when executing the policy π(at | ω, st), and qν(ω | sf , s0)
denote a (parameterized) variational approximation to the
true posterior on options given Sf and S0. Then:

I(Ω, Sf | S0 = s0)

≥ E Ω∼p(ω)

Sf∼pJ (sf |Ω,S0=s0)

[
log

qν(Ω | Sf , S0 = s0)

p(Ω)

]
(1)

= JV IC(Ω, Sf ; s0)

2.3 Information Regularized VIC (IR-VIC)
We identify sub-goals as states where the necessary option
information required for deciding actions is high. Formally,
this means that at every timestep t in the trajectory, we mini-
mize the mutual information I(Ω, At|St, S0 = s) , resulting

Figure 2: Illustration of VIC for 2 timesteps. L: Given a start
state S0, VIC samples option ω and follows policy π(at | Ω =
ω, st) and infers Ω from the terminating state (S2), optimizing a
lower bound on I(S2,Ω | S0). R: IR-VIC considers a particular
parameterization of π and imposes a bottleneck on I(At,Ω|St).

in a sparse set of states where this mutual information remains
high despite the minimization. Intuitively, this means that
on average (across different options), these states have higher
relevant option information that other states (e.g. the regions
with darker shades of red in Figure 1). Overall, our objective
is to maximize:

JV IC(Ω, Sf ; s0)− β
∑
t

I(Ω, At | St, S0 = s0) (2)

where β > 0 is a trade-off parameter. Thus, this is saying
that one wants options Ω which allow the agent to have a
high empowerment, while utilizing the least relevant option
information at each step.

Interestingly, Equation 2 has a clear, principled interpreta-
tion in terms of the empowerment I(Ω, Sf |S0) from the VIC
model. We state the following lemma (which follows from
recursively applying the chain rule of mutual information and
the data-processing inequality Cover and Thomas [1991]):

Lemma 2.1. Let At be the action random variable at
timestep t and state St following an option-conditioned pol-
icy π(at|st, ω). Then, I(Ω, At|St, S0) i.e. the conditional
mutual information between the option Ω and actionAt when
summed over all timesteps in the trajectory, upper bounds
the conditional mutual information I(Ω, Sf |S0) between Ω
and the final state Sf – namely the empowerment as defined
by Gregor et al. [2016]:

I(Ω, Sf |S0) ≤
f∑
t=1

I(Ω, At|St, S0) = UDS(τ ,Ω, S0) (3)

Implications: With this lens, one can view the optimization
problem in Equation 2 as a Lagrangian relaxation of the fol-
lowing constrained optimization problem:

maxJV IC s.t. UDS ≤ R (4)

where R > 0 is a constant. While upper bounding the em-
powerment does not directly imply one will find useful sub-
goals (meaning it is the structure of the decomposition eq. (3)
that is more relevant than the fact that it is an upper bound),
this bound might be of interest more generally for represen-
tation learning [Achiam et al., 2018; Gregor et al., 2016].
Targeting specific values for the upper bound R can poten-
tially allow us to control how ‘abstract’ or invariant the la-
tent option representation is relative to the states Sf , leading
to solutions that say, neglect unnecessary information in the
state representation to allow better generalization. Note that



most approaches currently limit the abstraction by constrain-
ing the number of discrete options, which (usually) imposes
an upper bound on I(Ω, Sf ) = H(Ω) − H(Ω|Sf ), since
H(Ω) ≥ H(Ω|Sf ) and H ≥ 0 in the discrete case. How-
ever, this does not hold for the continuous case, where this
result might be more useful. Investigating this is beyond the
scope of this current paper, however, as our central aim is to
identify useful sub-goals, and not to scale the VIC framework
to continuous options.

2.4 Algorithmic Details
Upper Bounds for I(Ω, At | St, S0). Inspired by In-
foBot [Goyal et al., 2019], we bottleneck the information in
a statistic Zt of the state St and option Ω used to parameter-
ize the policy π(At | Ω, St) (fig. 2 right). This is justified by
the the data-processing inequality (DPI) [Cover and Thomas,
1991] for the markov chain Ω, St ↔ Zt ↔ At, which implies
I(Ω, At | St, S0) ≤ I(Ω, Zt | St, S0). We can then obtain
the following upper bound on I(Ω, Zt | St, S0): 1

I(Ω, Zt | St, S0 = s)

≤ E Ω∼p(ω)

St∼pJ (st|Ω,S0=s)
Zt∼p(zt|St,Ω)

[
log

p(Zt | Ω, St)
q(Zt)

]
(5)

where q(zt) is a fixed variational approximation (set to
N (0, I) as in InfoBot), and pφ(zt | ω, st) is a parameterized
encoder. As explained in section 1, the key difference be-
tween eq. (5) and InfoBot is that they construct upper bounds
on I(G,At | St, S0) using information about the goal G,
while we bottleneck the option-information. One could use
the DIAYN objective [Eysenbach et al., 2018] (see more be-
low under related objectives) which also has a I(At,Ω|St)
term, and directly bottleneck the action-option mutual infor-
mation instead of eq. (5), but we found that directly imposing
this bottleneck often hurt convergence in practice.

We can compute a Monte Carlo estimate of Equation 5 by
first sampling an option ω at s0 and then keeping track of all
states visited in trajectory τ . In addition to the VIC term and
our bottleneck regularizer, we also include the entropy of the
policy over the actions (maximum-entropy RL [Mnih et al.,
2016]) as a bonus to encourage sufficient exploration. We fix
the coefficient for maximum-entropy, α = 10−3 which works
well for our approach as well as baselines which have such a
term. Overall, the IR-VIC objective is:

max
θ,φ,ν

J̃(θ, φ, ν) = E Ω∼p(ω)
τ∼π(·|ω,S0)
Zt∼pφ(zt|St,Ω)

[
log

qν(Ω | Sf , S0)

p(Ω)

−
f−1∑
t=0

(
β log

pφ(Zt | St,Ω)

q(Zt)
+ α log πθ(At | St, Zt)

)]
(6)

1Similar to VIC, pJ here denotes the (unknown) state distribution
at time t from which we can draw samples when we execute a policy.
We then assume a variational approximation q(zt) (fixed to be a unit
gaussian) for p(zt|St). Using the fact thatDKL(p(zt|st)||q(zt)) ≥ 0
we get the derived upper bound.

where θ, φ and ν are the parameters of the policy, latent vari-
able decoder and the option inference network respectively.
The first term in the objective promotes high empowerment
while learning options; the second term ensures minimality in
using the options sampled to take actions and the third pro-
vides an incentive for exploration.
Related Objectives. Eysenbach et al. [2018] (DIAYN) at-
tempts to learn skills (similar to options) which can control
the states visited by agents while ensuring that all visited
states, as opposed to termination states, are used to distin-
guish skills. Thus, for an option Ω and every state St in
a trajectory, they maximize

∑
t I(Ω, St) − I(At,Ω|St) +

H(At|St), as opposed to I(Ω, Sf ) − β
∑
t I(At,Ω|St) +

H(At|St) in our objective. With the sum over all timesteps
for I(Ω, St), the bound in lemma 2.1 no longer holds true,
which also means that there is no principled reason (unlike
our model) to scale the second term with β.

The most closely related work to ours is InfoBot [Goyal et
al., 2019], which maximizes

∑
tR(t) − βI(Zt, G|St) for a

goal (G) conditioned policy π(at|St, G). They define states
where I(Zt, G|St) is high despite the bottleneck as “decision
states”. The key difference is that InfoBot requires extrinsic
rewards in order to identify goal-conditioned decision states,
while our work is strictly more general and scales even in the
absence of extrinsic rewards.

Further, in context of both these works, our work provides a
principled connection between action-option information re-
qularization I(At,Ω|St) and empowerment of an agent. The
tools from Lemma 2.1 might be useful for analysing these
previous objectives which both employ this technique.

2.5 Transfer to Goal-Driven Tasks
In order to transfer sub-goals to novel environments, Goyal
et al. [2019] pretrain their model to identify their goal-
conditioned decision states, and then study if identifying sim-
ilar states in new environments can improve exploration when
training a new policy πγ(a|s, g) from scratch. Given an envi-
ronment with reward Re(t), goal G, κ > 0, and state visita-
tion count c(St), their reward is:

Rt = Re(t) +
κ√
c(St)

I(G,Zt|St)︸ ︷︷ ︸
Pretrained, Frozen

(7)

The count-based reward2 decays with square root of c(St)
to encourage the model to explore novel states, and the mu-
tual information between goal G and bottleneck variable Zt
is a smooth measure of whether a state is a sub-goal, and is
multiplied with the exploration bonus to encourage visitation
of state where this measure is high.

We use an almost identical setup, replacing their decision-
state term from supervised pretraining with necessary option
information from IR-VIC pretraining:

Rt = Re(t) +
κ√
c(St)

I(Ω, Zt|St, S0)︸ ︷︷ ︸
Pretrained, Frozen

(8)

2Visitation counts have several limitations including the require-
ment of a discrete state space and a state table for maintaining visit
counts in POMDPs. This is not a limitation of our model as one
could alternatively use a technique similar to Burda et al. [2018]
where the incentive is to learn to distill a trained encoder network.
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Figure 3: Heatmaps of necessary option information
I(Ω, Zt|St, S0) (normalized to have maximum value 1) at
visited states on simple environments – 4-Room (top) and maze
(bottom). First column depicts environment layout, second and third
show results for IR-VIC for β = 1e−3 and β = 1 respectively, and
the fourth column shows DIAYN. * denotes lower bound (Eq. 1) on
empowerment.

I(·) is computed with eq. (5) with a frozen parameter-
ized encoder p(zt | ω, st) during transfer. Thus, we incen-
tivize visitation of states where necessary option information
is high.

2.6 IR-VIC for Transfer
Options with partial observability: The methods we have
described so far have assumed the true state s ∈ S to be
known – the VIC framework with explicit options has only
been shown to work in fully obervable MDPs [Gregor et al.,
2016; Eysenbach et al., 2018]. However, since we are primar-
ily interested improved exploration in downstream partially-
observable tasks, we adapt the VIC framework to only use
partially-observable information for the parts that we use
during transfer. We design our policy (including the en-
coder p(Zt | Ω, St) used for computing the reward bonus
I(Ω, Zt | St, S0) during transfer) to take as input partial ob-
servations x ∈ X while allowing the option inference net-
works (of IR-VIC and DIAYN) to take as input the global
(x, y) coordinates of the agent (assuming access to the true
state s ∈ S . Note that this privileged information is made
available for a single environment in order to discover sub-
goals transerable to multiple novel environments (whereas
supervised methods such as InfoBot [Goyal et al., 2019] re-
quire global (x, y) coordinates as goal information across
all training environments). Please refer to Algorithm 1 for
details about training the policy and inference networks dur-
ing option-learning and transfer to goal-driven tasks.
Preventing Option Information Leak: We parameter-
ize p(at|zt, st) fig. 2(right) using just the current state st,
whereas the encoder p(zt|Ω, (s1, · · · , st)) uses all previous
states since a sequence of state observations (s1, · · · , st)
could potentially be very informative of Ω being followed,
which if provided directly to p(at|·) can lead to a leakage of
the option information to the actions, rendering the bottleneck
on option information imposed via zt useless. Hence, in our
implementation we remove recurrence over partial observa-
tions for p(at|zt, st) while keeping it in p(zt | Ω, st).
3 Experiments
Environments. We pre-train and test on grid-worlds from the
MiniGrid [Chevalier-Boisvert et al., 2018] environments. We

Algorithm 1 IR-VIC
Require: A parameterized encoder pφ(zt | ω, xt), policy π(at | ω, xt)
Require: A parameterized option inference network qν(ω | s0, sf )
Require: A parameterized goal-conditioned policy πγ(at|xt, g)
Require: A prior on discrete options p(ω) = 1

|Ω| and integer H - the length of each
option trajectory.

Require: A variational approximation of the option-marginalized encoder q(zt)
Require: A regularization weight β and max-ent coefficient α
Require: A set of training environments ptrain(E) and transfer environments
ptransfer(E)
Unsupervised Discovery
Sample training environmentEtrain ∼ ptrain(E)
for episodes = 1 to max− episodes do

Sample a spawn location S0 ∼ p(s0|Etrain) and an option Ω ∼ p(ω)
Unroll a state-action trajectory τ under πθ(at|xt, zt) for H steps with
reparametrized Zt ∼ pφ(zt|xt, ω)
Infer Ω from qν(ω|so, sf )
Update the parameters θ, ν and φ based on Eqn. 6

end for
Transfer to Goal-Driven Tasks
Sample transfer environmentEtransfer ∼ ptransfer(E)
for episodes = 1 to max− episodes do

Sample a goalG ∼ p(g|Etransfer)
Unroll a state-action trajectory under the goal-conditioned policy πγ(at|xt, g)
Update policy parameters γ to maximize the reward given by Eqn. 8

end for

first consider a set of simple environments – 4-Room and
Maze (see Fig. 3) followed by the MultiRoomNXSY also
used by Goyal et al. [2019]. The MultiRoomNXSY envi-
ronments consist of X rooms of size Y, connected in random
orientations. We refer to the ordering of rooms, doors and
goal as a ‘layout’ in the MultiRoomNXSY environment –
pre-training of options (for IR-VIC and DIAYN) is performed
on a single fixed layout while transfer is performed on several
different layouts (a layout is randomly selected from a set ev-
ery time the environment is reset). In all pre-training environ-
ments, we fix the option trajectory length H to 30 steps.

We use Advantage Actor-Critic (A2C) for all experiments.
Since code for InfoBot [Goyal et al., 2019] was not public, we
report numbers based on a re-implementation of InfoBot, en-
suring consistency with their architectural and hyperparam-
eter choices. We refer the readers to our code3 for further
details.
Baselines. We evaluate the following on quality of ex-
ploration and transfer to downstream goal-driven tasks with
sparse rewards: 1) InfoBot (our implementation) – which
identifies goal-driven decision states by regularizing goal in-
formation, 2) DIAYN – whose focus is unsupervised skill ac-
quisition, but has an I(At,Ω|St) term which can be used for
the bonus in Equation 8, 3) count-based exploration which
uses visitation counts as exploration incentive (this corre-
sponds to replacing I(Ω, Zt|St, S0) with 1 in Equation 8), 4)
a randomly initialized encoder p(zt | ω, xt) which is a noisy
version of the count-based baseline where the scale of the re-
ward is adjusted to match the count-based baseline 5) how
different values of β affect performance and how we choose
a β value using a validation set, and 6) a heuristic baseline
that uses domain knowledge to identify landmarks such as
corners and doorways and provide a higher count-based ex-
ploration bonus to these states. This validates the extent to
which necessary option information is useful in identifying a
sparse set of states that are useful for transfer vs. heuristically

3https://github.com/nirbhayjm/irvic

https://github.com/nirbhayjm/irvic


Method MultiRoomN3S4 MultiRoomN5S4 MultiRoomN6S25
pφ(Zt|St,Ω) pretrained on MultiRoomN2S6 MultiRoomN2S6 MultiRoomN2S10

InfoBot [Goyal et al., 2019] 90% 85% N/A

InfoBot (Our Implementation) 99.6%±0.2% 98.9%±0.8% 90.9%±1.2%

Count-based Baseline 99.8%±0.2% 71.4%±28.1% 86.8.4%±2.2%

DIAYN 99.7%±0.2% 99.7%±0.2% 0.1%±0.1%

Random Network 100%±0% 98.8%±0.7% 79.5%±5.2%

Heuristic Baseline N/A N/A 85.9%±3.0%

Ours (β = 10−2) 100%±0% 71.1%±28.1% 92.9%±1.2%

Table 1: Success rate (mean ± standard error) of the goal-
conditioned policy when trained with different exploration bonuses
in addition to the extrinsic reward Re(t). We report results at
5 × 105 timesteps for MultiRoomN3S4, MultiRoomN5S4 and at
×107 timesteps for MultiRoomN6S25. We also report the perfor-
mance of InfoBot for completeness. Note that for rooms of size 4
(MultiRoomN3S4, MultiRoomN5S4), incentivizing to visit corners
and doorways (Heuristic Sub-goals) is equivalent to count-based ex-
ploration.
determined landmarks.

3.1 Qualitative Results
Grid Worlds: Figure 3 shows heatmaps of necessary option
information I(Ω, At|St, S0) on 4-Room and maze environ-
ments where the initial state is sampled uniformly at random.
Stronger regularization (β = 1) leads to poorer empowerment
maximization and in some cases not learning any options (and
I(Ω, At|St, S0) collapses to 0 at all states). At lower values
of β = 1e-3, we get more discernible states with distinctly
high necessary option information. Finally, for maze we see
that for a similar value of empowerment4, IR-VIC leads to a
more peaky distribution of states with high necessary option
information than DIAYN.

3.2 Quantitative Results
Transfer to Goal-Driven Tasks. Next, we evaluate Equa-
tion 8, i.e. whether providing visitation incentive propor-
tional to necessary option information at a state in addition
to sparse extrinsic reward can aid in transfer to goal-driven
tasks in different environments. We restrict ourselves to
the point-navigation task [Goyal et al., 2019] transfer in the
MultiRoomNXSY set of partially-observable environments.
In this task, the agent learns a policy π(at|gt, st) where gt is
the vector pointing to the goal from agent’s current location
at every time step t. The initial state is always the first room,
and has to go to a randomly sampled goal location in the last
room and is rewarded only when it reaches the goal. Goyal
et al. [2019] test the efficacy of different exploration objec-
tives 5 and show that this is a hard setting where efficient ex-
ploration is necessary. They show that InfoBot outperforms
several state-of-the art exploration methods in this environ-
ment.

Concretely, we 1) train IR-VIC to identify sub-goals
(Equation 2) on MultiRoomN2S6 and transfer to a goal-
driven task on MultiRoomN3S4 and MultiRoomN5S4
(similar to Goyal et al. [2019]), and 2) train on

4Since DIAYN maximizes the mutual information with every
state in a trajectory, we report the empowerment for the state with
maximum mutual information with the option.

5While our focus is on identifying and probing how good sub-
goals from intrinsic training are, more broader comparisons to ex-
ploration baselines are in InfoBot [Goyal et al., 2019].

Figure 4: Transfer results on a test set of MultiRoomN6S25 environ-
ment layouts after unsupervised pre-training on MultiRoomN2S10.
Shaded regions represent standard error of mean over 10 seeds.

MultiRoomN2S10 and transfer to MultiRoomN6S25,
which is a more challenging transfer task i.e. it has a larger
upper limit on room size making efficient exploration crit-
ical to find doors quickly. For IR-VIC and DIAYN (the
two methods that learn options), we pre-train on a single lay-
out of the corresponding MultiRoom environment for 106

episodes and pick the checkpoints with highest empowerment
values across training. For InfoBot (no option learning re-
quired), we pre-train as per Goyal et al. [2019] on multiple
layouts of the MultiRoom environment. Transfer perfor-
mance of all methods is reported on a fixed test set of mul-
tiple MultiRoom environment layouts and hyperparameters
across all methods, e.g. β for IR-VIC and InfoBot are selected
using a validation set of MultiRoom environment layouts.
Overall Trends. Table 1 reports success rate – the % of times
the agent reaches the goal and Figure 4 reports the average
return when learning to navigate on test environments. The
MultiRoomN6S25 environment provides a sparse decaying
reward upon reaching the goal – implying that when compar-
ing methods, higher success rate (Table 1) indicates that the
goal is reached more often, and higher return values (Fig-
ure 4) indicate that the goal is reached with fewer time steps.

First, our implementation of InfoBot is competitive
with Goyal et al. [2019]6. Next, for the MultiRoomN2S6
to N5S4 transfer (middle column), baselines as well as sub-
goal identification methods perform well with some mod-
els having overlapping confidence intervals despite low suc-
cess means. In MultiRoomN2S10 to N6S25 transfer, where
the latter has a large state space, we find that IR-VIC (at
β = 10−2) achieves the best sample complexity (in terms
of average return) and final success, followed closely by In-
foBot. Moreover, we find that the heuristic baseline which
identifies a sparse set of landmarks (to mimic sub-goals) does
not perform well – indicating that it is not easy to hand-
specify sub-goals that are useful for the given transfer task.
Finally, the randomly initialized encoder as well as DIAYN
generalize much worse in this transfer task.
β sensitivity. We sweep over β in log-scale from
{10−1, · · · , 10−6}, as shown in Figure 5 (except β = 10−1

6We found it important to run all models (inlcuding InfoBot) an
order of magnitude more steps compared to Goyal et al. [2019], but
our models also appear to converge to higher success values.



Figure 5: Evaluation of average return on a held-out validation set of
MultiRoomN6S25 environment layouts. For each value of β, pre-
traning is performed over 3 random seeds with the best seed being
picked to measure transfer performance over 3 subsequent random
seeds. Shaded regions represent standard error of the mean over the
3 random seeds used for transfer.

which does not converge to > 0 empowerment) and also re-
port β = 0 which recovers a no information regularization
baseline. We find that 10−2 works best – with performance
tailing off at lesser values. This is intuitive, since for a really
large value of β, one does not learn any options (as the em-
powerment is too low), while for a really small value of β,
one might not be able to target necessary option information,
getting large “sufficient” (but not necessary) option informa-
tion for the underlying option-conditioned policy.

We pick the best model for transfer based on the perfor-
mance on the validation environments, and study generaliza-
tion to novel test environments. Choosing the value of β
in this setting is thus akin to model selection. Such design
choices are inherent and unavoidable in general in unsuper-
vised representation learning (e.g. with K-means and β-VAE
Higgins et al. [2017]).

4 Related Work
Intrinsic Control and Intrinsic Motivation. Learning how
to explore without extrinsic rewards is a foundational prob-
lem in Reinforcement Learning [Pathak et al., 2017; Gregor
et al., 2016; Schmidhuber, 1990]. Typical curiosity-driven
approaches attempt to visit states that maximize the surprise
of an agent [Pathak et al., 2017] or improvement in predic-
tions from a dynamics model [Lopes et al., 2012]. While
curiosity-driven approaches seek out and explore novel states,
they typically do not measure how reliably the agent can
reach them. In contrast, approaches for intrinsic control [Ey-
senbach et al., 2018; Achiam et al., 2018; Gregor et al., 2016]
explore novel states while ensuring those states are reliably
reachable. Gregor et al. [2016] maximize the number of final
states that can be reliably reached by the policy, while Eysen-
bach et al. [2018] distinguish an option at every state along
the trajectory, and Achiam et al. [2018] learn options for en-
tire trajectories by encoding the sequence of states at regular
intervals. Since we want to learn to identify useful sub-goals
which one can reach reliably acting in an environment rather
than just visiting novel states (without an estimate of reach-
ability), we formulate our regularizer in the intrinsic control

framework, specifically building on the work of Gregor et al.
[2016].
Default Behavior and Decision States. Recent work in
policy compression has focused on learning a default policy
when training on a family of tasks, to be able to re-use be-
havior across tasks. In [Teh et al., 2017], default behavior is
learnt using a set of task-specific policies which then regular-
izes each policy, while Goyal et al. [2019] learn a default pol-
icy using an information bottleneck on task information and a
latent variable the policy conditions on, identifying sub-goals
which they term as “decision states”. We devise a similar in-
formation regularization objective that learns default behav-
ior shared by all intrinsic options without external rewards so
as to reduce learning pressure on option-conditioned policies.
Different from these previous approaches, our approach does
not need any explicit reward specification when learning op-
tions (ofcourse, since we care about transfer we still need to
do model selection based on validation environments).
Bottleneck states in MDPs. There is rich literature on iden-
tification of bottleneck states in MDPs. The core idea is
to either identify all the states that are common to multiple
goals in an environment [McGovern and Barto, 2001] or
use a diffusion model built using an MDP’s transition ma-
trix [Machado et al., 2017]. The key distinction between bot-
tleneck states and necessary-information based sub-goals is
that the latter are more closely tied to the information avail-
able to the agent and what it can act upon, whereas bottleneck
states are more tied to the connectivity structure of an MDP
and intrinsic to the environment, representing states which
when visited allow access to a novel set of states [Goyal et
al., 2019]. However, bottleneck states do not easily apply to
partially observed environments and when the transition dy-
namics of the MDP are not known.
Information Bottleneck in Machine Learning. Since the
foundational work of Tishby et al. [1999]; Chechik et al.
[2005], there has been a lot of interest in making use of
ideas from information bottleneck (IB) for various tasks
such as clustering [Strouse and Schwab, 2017; Still et al.,
2004], sparse coding [Chalk et al., 2016], classification us-
ing deep learning [Alemi et al., 2016], cognitive science and
language [Zaslavsky et al., 2018] and reinforcement learn-
ing [Goyal et al., 2019; Strouse et al., 2018]. We apply an
information regularizer to an RL agent that results in a set
of sparse states where necessary option information is high,
which correspond to our sub-goals.

5 Conclusion

We devise a principled approach to identify sub-goals in an
environment without any extrinsic reward supervision using a
sandwich bound on the empowerment of Gregor et al. [2016].
Our approach yields sub-goals that aid efficient exploration
on external-reward tasks and subsequently lead to better suc-
cess rate and sample complexity in novel environments (com-
petitive to supervised sub-goals of Goyal et al. [2019]). All
our code and environments will be made publicly available.
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