
A Scalable Approach to Control Diverse Behaviors for Physically
Simulated Characters

JUNGDAMWON, Facebook AI Research
DEEPAK GOPINATH, Facebook AI Research
JESSICA HODGINS, Facebook AI Research

Fig. 1. Using a database with many, heterogeneous motion clips, our framework learns a single dynamic controller that generates a large variety of motions.

Human characters with a broad range of natural looking and physically
realistic behaviors will enable the construction of compelling interactive
experiences. In this paper, we develop a technique for learning controllers
for a large set of heterogeneous behaviors. By dividing a reference library
of motion into clusters of like motions, we are able to construct experts,
learned controllers that can reproduce a simulated version of the motions in
that cluster. These experts are then combined via a second learning phase,
into a general controller with the capability to reproduce any motion in the
reference library. We demonstrate the power of this approach by learning
the motions produced by a motion graph constructed from eight hours
of motion capture data and containing a diverse set of behaviors such as
dancing (ballroom and breakdancing), Karate moves, gesturing, walking,
and running.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation; Reinforcement learning; Neural networks.

Additional Key Words and Phrases: Character Animation, Physics-based
Simulation and Control, Reinforcement Learning, Deep Learning, Neural
Network, Locomotion Control

ACM Reference Format:
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable
Approach to Control Diverse Behaviors for Physically Simulated Characters.
ACM Trans. Graph. 39, 4, Article 33 (July 2020), 12 pages. https://doi.org/10.
1145/3386569.3392381

1 INTRODUCTION
Human characters that can move and behave naturally in real-time
are required if we are to create compelling populated virtual worlds.
Because human behaviors are governed by physical laws, we can

Authors’ addresses: Jungdam Won, Facebook AI Research; Deepak Gopinath, Facebook
AI Research; Jessica Hodgins, Facebook AI Research.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3386569.3392381.

ensure physical realism in human motion and interactions with
objects and the environment by incorporating the laws of physics
into the motion generation process through simulation. However,
physics is not a sufficient constraint to guarantee the naturalness of
human behaviors. Learning natural control policies for physically
simulated humanoid characters is challenging because the charac-
ters are under-actuated (there are more degrees of freedom (DOF)
than controllable DOFs) and because there are many physically cor-
rect ways to perform a task or behavior that do not appear natural
(for example, requiring unrealistically high torques or employing
strategies that a human would not use).

Recently, imitation learning approaches that provide an effective
way to generate natural looking motions for physically simulated
humanoid characters have been developed. The core idea is to learn
a control policy that allows a simulated character to successfully
imitate selected motion capture clips. With recent advances in deep
reinforcement learning, these approaches are able to reproduce
realistic and diverse behaviors in a physically realistic and natural
looking manner (see, for example, [Bergamin et al. 2019; Liu and
Hodgins 2017, 2018; Park et al. 2019; Peng et al. 2018]). However,
they are still limited in their ability to scale to large, heterogeneous
datasets. Current approaches only learn from a relatively small
corpus of homogeneous data, where each learned policy is only
effective on a limited set of behaviors. Combining together multiple
learned behaviors to create a character with a broad repertoire of
behaviors is not a solved problem.
In this paper, we propose a control framework for physically

simulated humanoid characters that can scale to model many hours
of human motion data and generate motions that look natural. The
input of our framework is amotion controller, which can be amotion
graph [Kovar et al. 2002; Lee et al. 2002], phase-functioned neural
network (PFNN) [Holden et al. 2017], or any othermotion generation
technique (kinematic or dynamic, data-driven or simulated). The
output is a universal control policy (dynamic controller) that can

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3386569.3392381

33:2 • Won et al.

simulate all the motions generated from the input controller. More
precisely, the output control policy is a dynamic controller that
produces control inputs (e.g., target posture or joint torques) for
the simulated character that allow it to perform the task. First, we
generate a large library of reference motions from the input motion
controller and cluster the motions to group like motions together.
Second, we build dynamic controllers, which we call experts. These
are specialized controllers trained using deep reinforcement learning
to produce the behaviors contained in a single cluster. Finally, we
combine the experts together and learn a single controller by using
a mixture-of-experts method in order to produce the entire library
of reference motions. Our framework is general enough to handle
several different input controller types and can generate a large
variety of different motions from a single combined controller.

To show the power of our approach, we demonstrate a dynamic
controller learned for a large motion graph constructed from eight
hours of motion capture data containing a wide variety of different
behaviors. These experiments demonstrate the ability of our ap-
proach to scale both to larger data sets and to a variety of behaviors.
The behaviors includes not only ordinary behaviors such as walk,
run, standing but also unusual behaviors such as crawling, acting,
breakdancing, Latin dance, and Indian dance. A second dynamic
controller learned from data produced by a PFNN demonstrates that
the framework is agnostic to the input controller. For this second
controller, we show real-time generation of the simulated motion by
using a joystick. Our approach based on motion clustering allowed
us to learn both controllers successfully, while learning from scratch
failed. We also use a suite of experiments to explore the important
design choices and improvements in the RL controllers used in our
approach.

The primary contribution of this paper is a framework for creating
controllers that handle a diverse and heterogeneous set of human
motions. The dataset used to train the controller is significantly
larger than that typically used in prior research on techniques for
physically based characters, we focus on generating motions that
are physically correct and natural. Additional contributions include:

• Learning Experts based onMotionClusters. Tomake the
learning of a general controller feasible, we first divide the
dataset into clusters of like motion and train expert controllers
on those clusters. The experts are then combinedwith a gating
function to train a combined controller. This hierarchical
approach makes the problem of learning a general control
tractable.

• Enhancement toRL-based ImitationLearning.We found
a good combination of existing techniques for RL-based imita-
tion learning, which shows good performance and eliminates
a need for behavior-specific manual tuning.

• Baseline for Future Learned Controllers We learned a
general controller for a large dataset comprised of many dif-
ferent behaviors, so it is possible that our controller can serve
as a warm start for other control system designs in much
the way that models trained on ImageNet have been used to
bootstrap many different classification and labeling problems
in computer vision.

2 RELATED WORK
We review the most closely related literature in deep reinforcement
and imitation learning for character control. Our approach is based
on combining a number of controllers, so we review ensemble meth-
ods including mixture-of-experts approaches that have been used in
other domains. We also explore prior work that forms the founda-
tion for our approach, including kinematic controllers, closed loop
control, open loop control, muscle-based control, and model-based
control. Because one of the advantages of our approach is the ability
to handle a wide variety of behaviors, we also look at work that has
controlled multiple and unusual behaviors.

2.1 Physics-based Character Control
Physics-based control is a popular approach to generating human
motion, because it ensures physical realism in motions of the char-
acter and interactions with the environment. Many different ap-
proaches have been proposed: open-loop control via optimization [Liu
et al. 2010; Mordatch et al. 2012; Sok et al. 2007] and closed-loop
feedback control [Coros et al. 2010; da Silva et al. 2017; Lee et al.
2010; Liu et al. 2016; Mordatch and Todorov 2014; Ye and Liu 2010;
Yin et al. 2007]. Model-based control is an another popular approach,
where simplified physical models such as an inverted pendulum are
used to predict the current and future trajectory and controls are
performed based on that information [da Silva et al. 2008; Hämäläi-
nen et al. 2015; Kwon and Hodgins 2010, 2017; Macchietto et al. 2009;
Mordatch et al. 2010; Tassa et al. 2012]. Although the characters are
typically actuated by joint torques (motors), some studies developed
controllers for muscle-actuated characters to make the characters
move in a natural manner [Geijtenbeek et al. 2013; Lee et al. 2019,
2009, 2014; Nakada et al. 2018; Wang et al. 2012].

2.2 Deep Reinforcement Learning
Since Peng and his colleagues [2016] introduced deep reinforcement
learning (Deep RL) for physics-based characters to the animation
research community, these approaches have gained in popularity
due to their simple formulation and powerful control capability.
Deep RL controllers for various characters have been proposed for
quadrupeds [Peng et al. 2016; Yu et al. 2018], flying creatures [Won
et al. 2017, 2018], deformable underwater creatures [Min et al. 2019],
and humanoids [Berseth et al. 2018; Clegg et al. 2018; Lee et al.
2019; Liu and Hodgins 2017, 2018; Merel et al. 2017; Peng et al. 2018;
Wang et al. 2017; Won and Lee 2019; Yu et al. 2018]. For humanoid
characters, controller design based on imitation learning produces
natural looking results when the reward is computed by comparing
the given motion capture data (reference motion) and the state of
the simulated character. However, these approaches are still limited
in their ability to scale to large, heterogeneous datasets and the
algorithms only converge when used with a relatively small corpus
of data (i.e. each learned policy is only effective on a limited set of
behaviors). Controllers for a large number of motion capture clips
have also been developed. Bergamin et al. [2019] demonstrated a low-
cost and robust controller for Motion Matching which is suitable for
real-time applications such as games. Park et al. [2019] demonstrated
a controller that is tightly coupled with RNN kinematic controller.
Both methods were able to handle 1-2 hours of motion capture

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters • 33:3

Fig. 2. Overview of the system for learning a dynamic controller for a large set of behaviors.

clips that are composed of homogenous behaviors. Chentanez et
al. [2018] proposed a Deep RL formulation with PD controllers, the
gains of which are changed by Deep RL policy on the fly. Merel
et al. [2019b] proposed an architecture called Neural Probabilistic
Motor Primitives for policy transfer of individually learned policies.
Both methods were tested on the complete CMU database. However,
the generated motions still have motion-quality limitations, and
avoid challenging motions, such as breakdancing. In this paper, we
overcome these problems by learning a mixture of expert controllers,
each of which handles a class of motions.

2.3 Ensemble Methods
The ensemble method is in common use in the machine learning
community. The basic idea is to combine several primitive com-
ponents (e.g., basis functions, learned features, experts on specific
task) into a high level component to solve bigger problems. The
primitives can be learned in a hierarchical manner [Frans et al. 2017;
Hausknecht and Stone 2016; Merel et al. 2019a,b], or an end-to-end
manner [Bacon et al. 2017; Sutton et al. 1999; Vezhnevets et al. 2017].
Our controller is based on a hierarchical approach, which uses a
mixture-of-experts, each expert provides effective control over only
part of the desired space of behaviors. We use a weighted sum to
combine actions from the experts [Jacobs et al. 1991] to achieve
control over the whole space. Recently, Peng et al. [2019] proposed
a multiplication method to combine the experts, however, we opted
for the summation instead because it showed better performance
in our experiments. In physics-based character animation research,
there exist earlier studies which focused on composing different
controllers [da Silva et al. 2009; Faloutsos et al. 2001], hierarchical
methods have also been used to solve high-level tasks [Coros et al.
2009; Peng et al. 2019] and locomotion skills [Peng et al. 2016, 2017].

2.4 Kinematic Controllers
The input of our framework is a controller that is used to generate a
large reference library and we use existing kinematic controllers for
this task. Many kinematic controllers have been developed on top of
the motion graph construct [Kovar et al. 2002; Lee et al. 2002], which
builds a graph by treating each pose as a node and providing con-
nections when poses are sufficiently similar. In the game industry,
Motion Matching [Clavet 2016] is often used. This approach is simi-
lar to a motion graph but optimized for real time performance and

Fig. 3. Overview of the run-time system

responsiveness. Recently, controllers based on deep neural networks
(DNN) have been developed, DNN with varying weights [Holden
et al. 2017; Starke et al. 2019; Zhang et al. 2018], RNN [Lee et al.
2018]. To show the generality of our approach, we built two systems,
one uses a motion graph constructed from the entire CMU motion
capture database, and the other one uses a phase-functioned neural
network (PFNN) motion controller [Holden et al. 2017].

3 OVERVIEW
Our framework takes a kinematic controller capable of generating a
broad variety of behaviors as input and creates a universal dynamic
controller that can generate physically simulated motion that is
similar to that of the input controller. Figure 2 illustrates the frame-
work. The first step is to create a library of reference motions. We
do this by generating a large number of long (10 s) sequences by
applying random inputs to a controller such as a motion graph or
PFNN. The goal is to have a library that is large enough to cover the
range of behaviors that that controller can produce. The reference
library is then clustered to group like motions together. Motions
from each cluster are used to train dynamic controllers using deep
reinforcement learning (Deep RL). We call those controllers experts.
The experts are combined together, and a dynamic controller is
trained for the entire reference library by using a mixture-of-experts
(MOE) method.

Figure 3 depicts the run-time system that generates a new motion.
The input kinematic controller is used to create a new reference
motion that should be simulated, based on a random walk or user
input. The dynamic controller (MOE) generates a target posture for
the simulated character while considering the physical state of the

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

33:4 • Won et al.

character and the reference motion. The character is actuated by
joint torques computed from PD servos, and the physical simulation
updates the state of character.
We explain each of these steps in more detail in the next three

sections.

4 REFERENCE MOTION PREPARATION
Given the input kinematic controller, we first create reference mo-
tions from the controller, then cluster them into groups of like mo-
tions. The clustered reference motions will be inputs to the learned
dynamic controller. The framework is agnostic to the form of the
input controller and we test with two: a large motion graph con-
structed from eight hours of data representing a variety of different
behaviors, and an available PFNN model for locomotion [Holden
et al. 2017].

4.1 Motion Graph Construction
We use the CMU motion capture dataset [CMU 2002] included in
the AMASS dataset [Mahmood et al. 2019] to build a motion graph
to serve as one of our input controllers. It has more than nine hours
of motion capture, spanning over 100 subjects. The motions in the
dataset are highly diverse and unstructured because the data were
captured from different subjects and marker setups. We excluded
motions that contained physical interactions with other subjects,
large or heavy objects, or rough terrain in a semi-automatic man-
ner because motions that include significant interaction with the
environment are not realizable in our framework. Approximately
eight hours of motion remained. The AMASS dataset uses the sta-
tistical body shape prior called SMPL+H [Loper et al. 2015], where
the body shape and motions are modeled as separate parameters.
As a result, motions can be retargeted by assigning the same body
shape parameters to all motions. We used a male model whose body
shape parameters are that of the average male. The root joint is
offset based on the minimum height for the contact points in each
motion. This simple algorithm does not fix all the contact errors
caused by retargeting but remaining errors will be fixed through
the dynamic controller.
We then construct a motion graph [Kovar et al. 2002; Lee et al.

2002] from the retargeted motions. The motion graph is represented
as a directed graph structure G =< N,E >, where N, E are a set of
nodes, edges, respectively. A node represents one temporal moment,
for which we use a frame number n by assuming a fixed FPS (frames
per second). The existence of an edge from frame n tom implies that
playing framem after framenwill not result in a visible discontinuity
in the motion. Given motion clips with a total of K frames, we first
create K nodes, then compare each node pair and create an edge
from frame n to framem if the distance D(n,m) is less than the user-
provided threshold δ . We consider several consecutive differences
simultaneously to enforce smoother transitions.

D(n,m) =
∑
k ∈κ

d(n + k,m + k)

d(n,m) = w1
dq

|J |
+w2

dv
|J |
+w3

dee
|F |
+w4droot

(1)

where κ is a temporal window, for which we use {0.0, 0.3, 0.6} sec-
onds. d(n,m) is per-frame difference from frame n to framem that
includes four terms, dq, dv, dee, and droot are joint angle, joint ve-
locity, end-effector positions, and the root joint position differences,
respectively, wi is a relative weight for each difference. J , F are
sets of all joints, end-effectors, whose cardinalities are |J |, |F |.
Normalizing each difference makes tuning the weight values more
intuitive. The four terms are defined as follows

dq =
∑
j ∈J

α j ∥log((qnj)
−1 · qmj)∥2

dv =
∑
j ∈J

α j ∥ω
n
j − ωmj ∥2

dee =
∑
j ∈E

exp
(
− (hnj)

2/σh
)∑

j ∈E exp
(
− (hnj)

2/σh
) ∥pnj − pmj ∥2

droot = ∥p̄n − p̄m ∥2

(2)

where qj ∈ SO(3), ωj ∈ R
3 are the orientation and angular velocity

of j-th joint (both values are represented with respect to the parent
joint), α j is a joint weight value. We use quaternions to represent
orientations, and log is the logarithm of quaternion which maps the
quaternions to an axis-angle representation. pj ∈ R3 is a position of
j-th joint, hj is a height from the ground, and p̄ ∈ R2 is a projection
of the root joint position on the ground. The term dee is not only
encouraging a match between end-effector positions but also in-
ferring contact states of the end-effectors automatically from their
height above the ground. End-effectors that are close to the ground
have a large weight value. This fully automatic inference of contact
states is advantageous for large motion datasets composed of highly
diverse behaviors because manual or semi-automatic contact state
labeling is impractical. Once edge generation is complete, we find
the largest weakly connected component from the graph to prune
dangling nodes. We experimented with using just the strongly con-
nected component as was done by [Lee et al. 2002], but too many
nodes were pruned from the graph because of the diversity of the
behaviors in our graph.

4.2 Motion Generation and Clustering
We generate reference motions from the motion graphG =< N,E >.
The motion is generated by starting from a randomly selected node
n, traversing to an adjacent node m through a random outgoing
edge. The traversal process repeats until the generated motion is a
given length L (10 s in our implementation). Because our graph is a
weakly connected component, a random walk in the graph could
arrive at a dead end, where the current node has no outgoing edge.
When this happens, we backtrace until an unvisited outgoing edge
appears, and repeat the random traversal. If the backtrace reaches
the initial start node, we choose another start node randomly. We
created 8192 reference motions, approximately 23 hours in total.
Motion clustering is used to divide the reference motion library

into groups that contain homogeneous data. The clustering informa-
tion will be utilized to train the experts on groups of like behaviors
and to ensure that the training data for the universal dynamic con-
troller is balanced across the kinds of behaviors in our reference
library. We developed a simple but efficient clustering algorithm

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters • 33:5

inspired by [Onuma et al. 2008]. We first compute a feature vector
c = (K

∥

1 ,K
⊥
1 , E1, · · · ,K

∥

|J |
,K⊥

|J |
, E |J |) for each motion

K ∥ =
1
N

N∑
j

∥v∥

j ∥
2, K⊥ =

1
N

N∑
j

∥v⊥j ∥
2, E =

1
N

N∑
j

∥aj ∥2 (3)

where N is the number of frames, K ∥,K⊥ ∈ R are average kinetic
energies in planar and vertical directions, respectively, E ∈ R is an
approximation of energy expenditure, v∥

j ∈ R2 and v⊥j ∈ R are linear
velocities projected to the ground and to the gravitational direction,
aj ∈ R3 is the acceleration of the j-th joint. Once the feature vectors
are computed, we run a k-means clustering algorithm to create 8
clusters for our experiments.

5 DYNAMIC CONTROLLER LEARNING
We learn a combined dynamic controller for a set of experts, which
are dynamic controllers learned individually for each cluster of
reference motions. The dynamic controller is a universal control
policy that can produce a physically correct version of any reference
motion generated from the input controller. This hierarchical learn-
ing strategy allows the control to learn a large database of diverse
reference motions more efficiently. For our dynamic controllers, we
use non-linear policies represented by deep neural networks, which
are learned by an imitation learning method similar to that used
by [Peng et al. 2018]. We made several improvements so that it can
be applied to a large dataset including diverse and heterogeneous
behaviors. These are described below.

5.1 Reinforcement Learning Formulation
Reinforcement learning is a method that can be used to control
a Markov Decision Process, where the agent interacts with the
environment by performing an action a ∈ A determined by its
policy π : S → A, where S, A are domains of states, actions,
respectively, a state s ∈ S is an observation of the environment from
the agent. Whenever a new action a is performed, the current state s
changes into the new state s′, and the agent gets a reward r (s, a, s′)
which provides information about how desirable the state transition
was. The goal of reinforcement learning is to find the optimal policy
that maximizes the average cumulative rewards

∑∞
i=0 γ

iri , where
γ ∈ (0, 1) is a discount factor that determines how far into the future
is considered by the policy and also makes the sum finite.
The state in our RL formulation has the state of the physically

simulated character, the states from reference motions, and the
state differences between the simulated character and the reference
motions:

s = (ssim, s1
ref , · · · , s

K
ref , s

1
ref ⊖ ssim, · · · , sK

ref ⊖ ssim) (4)

Similar to previous work [Peng et al. 2018], the state of the physi-
cally simulated character ssim = {pj , qj , vj ,ωj }j=1: |J | includes the
position pj ∈ R3, orientation qj ∈ SO(3), linear velocity vj ∈ R3,
and angular velocity ωj ∈ R3, where we assume the index 1 is
the root joint. All values are represented with respect to the fac-
ing transformation (q̄, p̄), which is a projection of the root joint

transformation to the ground.

p̄ = p1 −
p1 · uup

∥uup∥2

q̄ = RotationMatrixToQuaternion
(
(xT , yT , zT)

)
x = y × z, y =

vup

∥vup∥
, z =

z̄
∥z̄∥

z̄ = ufacing −
ufacing · uup

uup · uup

(5)

where q̄, p̄ are the orientation, position of the root joint projected to
the ground (Figure 5), uup is the up-vector direction that is perpen-
dicular to the ground and parallel to the gravity direction, ufacing
is the facing direction of the root joint. The input reference mo-
tions are represented by (s1

ref , · · · , s
K
ref), where we use three sample

points 0.3, 0.6, and 0.9 seconds ahead from the current time t . We
compute each sample point siref in the same manner as ssim. The
state differences between the simulated character and reference
motions (s1

ref ⊖ ssim, · · · , sK
ref ⊖ ssim) are included to increase per-

formance and to accelerate learning speed [Bergamin et al. 2019].
Please note that we use information that can be created automati-
cally from the reference motions (e.g., joint angles and velocities).
The design is similar to [Park et al. 2019], except for the addition
of the state differences as outlined above. This state representation
is advantageous in learning a controller for a large heterogeneous
dataset that includes highly diverse and unstructured behaviors
because it does not require any prior knowledge and manual labels
on input reference motions such as a phase variable [Peng et al.
2018] or the internal state of kinematic controllers [Bergamin et al.
2019]. Furthermore, it enables transfer learning between dynamic
controllers, given that all the dynamic controllers share the same
state representation. The action space of our dynamic controller is
a target posture (q2, q3, · · · , q |J |) excluding the root joint.
Our reward function provides a way to measure the difference

between the simulated character and the current reference motion.
The reward function is a multiplication of five terms

r = rpose · rvel · ree · rcom · rroot (6)

where rpose, rvel measure differences of joint angles, velocities, re-
spectively. The terms ree and rcom reward matches in the positions
of the end-effectors and center-of-mass and are the same as those
used in [Peng et al. 2018]. Because all terms are computed from
relative values measured with respect to the root joint, they only
measure relative differences. To reduce global differences between
the simulated character and the reference motion, we add a final
term rroot

rroot = exp
(
−
wq ∥log(q̄−1

sim · q̄ref)∥
2 +wp ∥p̄sim − p̄ref ∥

2

σroot

)
(7)

where (q̄sim, p̄sim), (q̄ref , p̄ref) are facing transformations as explained
in equation 5,wq ,wp are relative weights for orientations, positions,
respectively, and σroot is a degree of sensitivity on the difference.
The beauty of reinforcement learning is that it can learn com-

plex control policies from a simple scalar-valued reward function.
However, because of that simplicity, the definition of the reward
function can have a significant impact on the resulting control
policy. We tested several reward function designs that had been

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

33:6 • Won et al.

used in prior work for reference motions ranging from simple ones
(standing, walking, and running) to complex ones (ballroom danc-
ing, breakdancing, and gymnastics). We found that a multiplicative
reward [Lee et al. 2019; Park et al. 2019] has several benefits in
imitation learning compared to the additive reward used in [Peng
et al. 2018, 2017]. First, it shows better performance for reference
motions that require agile and subtle behaviors such as dancing. In
our experiments, the additive reward usually satisfied only a few
terms rather than balancing the reward among all terms. With the
multiplicative reward, all terms were forced to be non-zero to ob-
tain a reasonable reward. The multiplicative reward also has fewer
parameters because weights to balance among the terms are not
needed because the standard deviations in the exponential functions
only influence the importance of each term, whereas the relative
weights existing outside the exponential functions also influence in
the additive reward. We also found that different behaviors require
different relative weights when the additive reward function is used
but not when the reward is multiplicative. We show the effectiveness
of the multiplicative reward over the additive reward in Section 6

5.2 Learning
We use the proximal policy optimization (PPO) algorithm [Schulman
et al. 2017] to learn the dynamic controller. The algorithm utilizes
stochastic policy gradients with the generalized advantage estimator
GAE(λ) and multi-step returns TD(λ). An important idea of PPO
is to prevent the new policy from changing significantly from the
current policy by using a clipped surrogate objective with a clip
parameter ϵ . The algorithm has been used in many of the state-of-
the-art examples of physics-based character control [Bergamin et al.
2019; Lee et al. 2019; Park et al. 2019; Peng et al. 2018; Won and Lee
2019; Yu et al. 2018].

Early termination ends the current episode before the predefined
maximum length when the motion has failed. The most popular
termination method is to check collisions between the simulated
character and the ground. For example in an walking controller,
we can check whether any body is in contact with the ground
other than the feet. As pointed out in [Peng et al. 2018; Won and Lee
2019], controller learningwas not possible without early termination
because it increases sample efficiency significantly and prevents the
algorithms from falling into bad local minima.
In our system, simple early termination conditions are hard to

identify because our reference motions are diverse. [Bergamin et al.
2019] proposed checking the height of the head but we have motions
on which the character spins on his head. Further, our reference
motions include motions in which the points of contact change such
as walking followed by crawling. Instead of using behavior-specific
early termination conditions, we perform early termination based on
the reward value similar to [Babadi et al. 2019; Xie et al. 2019]. More
precisely, we terminate the current episode if the average reward
value for l s is less than ρ × rmax , where l and ρ are temporal and
qualitative tolerances, respectively, and rmax is the maximum value
of the reward function, which is 1.0 in Equation 6. We found that
early termination by reward best performs when it is used with the
multiplicative reward because the reward value is equally affected by

Table 1. Simulation and learning parameters

Simulation Simulation rate (Hz) 480
Control rate (Hz) 30

Learning

Policy learning rate (απ) 1.0e−5

Value learning rate (αV) 1.0e−3

Discount factor (γ) 0.95
GAE and TD (λ) 0.95
of tuples per policy update (T) 8192
Batch size for policy update (n) 256
Iteration for policy update (N) 10
Clip parameter (ϵ) 0.2

all sub-terms and terminates episodes whenever the current episode
does not satisfy any sub-term, this increases sample efficiency.

5.3 Learning a Mixture-of-Experts Policy
Learning a single controller for heterogeneous behaviors is challeng-
ing because strategies must be learned simultaneously to control
different behaviors such as walking, crawling, breakdancing, and
ballroom dancing. To address this challenge, we propose a controller
based on mixture-of-experts (MOE). Figure 4 shows an example of
the MOE structure. Given the reference motions clustered into eight
groups, we first learn dynamic controllers π0, · · · , π7 (experts) sep-
arately. The experts are specialized controllers for each cluster, and
they are combined together with a gating network. The combined
controller π (a|s) is computed by a weighted sum of the experts.

π (a|s) =
∑
i ∈E

wi (s)πi (a|s), wi (s) =
exp

(
дi (s)

)∑
i ∈E exp

(
дi (s)

) (8)

where E is a set of the experts, wi (s) is a weight on the i-th con-
troller whose value is computed by the softmax values on the output
of the gating network g(s) = (д1(s),д2(s), · · ·) ∈ R |E | Finally, we
learn the combined controller with the entire library of reference
motions. During learning, all weights for the gate network and the
experts are updated end-to-end to allow further improvement for
the entire library. We re-sampled reference motions so that the num-
ber of motions in each cluster are similar. This resampling reduces
data imbalance that leads to the forgetting problem in learning a
combined controller, where experts easily lose their specializations
and adapt only to new data. For example, if we learn a controller by
random selection from the database, all expert controllers would be
adapted to the ordinary behaviors such as walking because they ap-
pear most frequently in the database. This hierarchical strategy has
several benefits compared to learning from scratch. First, the expert
controllers can be tuned to focus on smaller and homogeneous data,
which allows us to cover broader range of behaviors. Second, the
structure is scalable and reusable. When new reference motions are
added, existing experts can be combined with a new expert to make
another controller.

6 RESULTS
Figure 5 shows our simulated characters and Table 2 includes their
physical properties. We have different models for the characters

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters • 33:7

Fig. 4. A Mixture-of-Experts Structure. An output action a is generated by
a weighted sum of the outputs of the eight experts π1 · · · π8, where the
gating network followed by the softmax function generates the weights.

(a) AMASS (b) PFNN

Fig. 5. Characters

Table 2. Properties of the characters

Property AMASS PFNN
Joints (=Links) 19 22
Weight (kg) 53.5 48.3
Height (m) 1.61 1.50
Degrees of freedom 57 60
State dimension 1880 2153
Action dimension 51 54
Lateral Friction Coefficient 0.8
Rolling Friction Coefficient 0.3
Restitution Coefficient 0.0

depending on the input controller (motion graph or PFNN) because
we use the provided model for PFNN with no changes [Holden et al.
2017]. Our characters are modeled as articulated rigid bodies, where
bodies are connected by 3-DOF spherical joints and 1-DOF revolute

joints. The hierarchies of our charactersmatch the referencemotions
except that we removed the finger and toe joints. We adopt similar
mass distributions to [Peng et al. 2018], and attached a stable PD
servo [Tan et al. 2011] with manually assigned gains and torque
limits for each joint.

We used PyBullet [Coumans and Bai 2019] to model and simulate
the physical environment and the OpenAI baseline [Dhariwal et al.
2017] implementation for the PPO algorithm. All expert controllers
use neural networks with two fully-connected layers and 256 hidden
units for each layer. The gating network in the combined controller
uses a neural network with two fully-connected layers and 128
hidden units in all experiments, where the internal layers use ReLu
non-linear activation. Table 1 includes the parameter values used
for simulation and Deep RL. The same values were used for all
experiments unless noted.
All computations were performed on 2 CPUs (Intel Xeon CPU

E5-2698 v4), with 40 physical cores total. Building a motion graph,
generating reference motions, and clustering takes approximately
6, 1, and 0.5 hours, respectively. The learning of the expert con-
troller usually converges after 1e8 transition tuples are generated,
which takes approximately 3 days in our implementation. For clus-
ters that contain difficult motions such as breakdancing, training
requires twice as much time. Learning a combined controller for
the entire reference library requires 3e8 tuples for full convergence
(approximately 10 days).

To generate 1 s of motion at run-time, requires approximately 1 s
when a motion graph is used to produce the new reference motion
(the motion that will be simulated) and 1.5 s when a PFNN controller
is used (with a single thread). The time includes the generation of
the new reference motion, evaluation of the deep neural network
controller, and the physics simulation. PFNN requires more time
to generate the new reference motion because of the network eval-
uation. Our implementation for all components is in Python and
presumably a C/C++ implementation would provide better run-time
performance.

6.1 Motion Clustering
We clustered the entire reference library of 8192 motion clips of
10 s each into eight groups. The left image in Figure 6 shows a
two-dimensional view of the clustering results and representative
postures corresponding to the clusters are shown on the right. The
number of motions varies across the cluster. For example, the largest
cluster (cluster 0) includes approximately 4000 motions, the smallest
cluster (cluster 7) only includes 8 motions. This imbalance is because
our motion database has many ordinary behaviors such as walking,
running, and standing, while it has only a few clips for unusual
behaviors such as breakdance, Indian dance, and ballroom dance.

6.2 Mixture-of-Experts Controller
As described in Section 5.3, we sampled reference motions equally
from each cluster when learning the combined controller to prevent
the controller from only learning the motions in the large clusters.
Our controller was able to generate most of the reference motions
successfully, it can also generate motions from reference motions

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

33:8 • Won et al.

Fig. 6. Motion Clustering Results. Two-dimensional embedding by t-SNE (Left) and representative postures corresponding to the clusters (Right).

Fig. 7. Dynamic Controller for PFNN

which were not seen during training. Figure 1 depicts a set of simu-
lated characters imitating reference motions (seen and unseen). All
of the characters are controlled by the single combined controller.

6.3 Comparing Controller Designs
To understand the effectiveness of the design of our controller, we
compared its performance with other possible design choices (see
Figure 8). We explore the importance of experts in controller design
and how best to reuse existing experts when new motions are added.
A beginner is a controller whose structure is the same as an expert
but it is not pre-trained for any specific cluster (i.e. the network
weights are randomly initialized). Blue indicates that the controller
is trainable during the training, whereas greymeans that the weights
are fixed.We experimented with eight different designs: (a) our MOE
controller (experts are all pre-trained, cover all eight clusters and
can be modified during the training), (b) all beginners (learning
from scratch), (c) the experts are fixed during combined controller
learning, (d) mix of fixed experts and beginners (e) fixed experts
trained for only ordinary behaviors such as walking, running are
included (f) fixed experts trained for unusual behaviors such as
dancing, (g) an addition of beginners to (e), and (h) addition of
beginners to (f).

The second graph in Figure 8 shows a comparison of those eight
designs. We measured performance of the controllers by the average
elapsed time until falling K . Given a reference motion with length
T s,K means that the character falls down afterK ×T s. For example,
K = 0.5 implies that the character falls down after half the time
has passed. We randomly selected 100 motions from each cluster
to compute the values. The result shows that our controller (a) is
superior to other controllers for all clusters on average. We spent the
same training time for all designs. Mixture of beginners (b) does not
learn the difficult motions (clusters 2, 3, 7) successfully. As expected
the fixed experts in (c) perform less well than trainable experts (a).
We had hoped that beginners (d) would improve the performance
over fixed experts but that was not the case. It appears that training
beginners and the gate function at the same time is too difficult. The
final four designs (e-h) are additional experiments with beginners
(with either the ordinary or unusual experts deleted) and again the
beginners fail to compensate for the missing experts.

The third graph in Figure 8 illustrates the importance of training
on balanced data for the clusters that have few motions (2, 4, and
7) where the performance is significantly degraded when training
occurs with a randomly selected (and therefore unbalanced) data
set. The last two bars in this figure shows that the performance of
experts on the cluster that they were originally trained on is lower
after they are trained in concert with the mixture graph. This result
implies that there is a trade-off between generalization (the ability
to create a combined controller that can perform all motions in
a large corpus) and specialization (the ability to perform just one
behavior well).

6.4 Additive vs. Multiplicative Reward
Figure 9 shows a comparison between dynamic controllers learned
by the additive reward (top) and the multiplicative reward (bottom).
All weights and variances for the reward functions were kept fixed
for all experiments. In a simple and low-energy reference motion
(a), we see only a small difference in the pose, but our multiplicative
controller overshoots a little less. In the reference motion (b), the
foot positions are more accurate with the multiplicative controller.
In one of the most challenging reference motions, (c), which includes
agile footsteps, a back-flip, and a handstand, only the multiplicative

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters • 33:9

Fig. 8. Performance Comparison. Design choices for combined controllers (Top) and their performances (Bottom)

controller was successful at learning the behavior even after the
additive controller trained for 2e8 transition tuples. These results
imply that our multiplicative reward is general enough to be applied
to highly diverse behaviors without requiring behavior-specific
parameter tuning.

6.5 Early Termination based on the Reward
We compare our early termination strategy based on reward values
to one of the most popular strategies, which is based on checking
collisions with the ground. Figure 10 shows the qualitative compar-
isons. For collision-based early termination, we need to manually
select the body parts that are not allowed to collide with the ground.
Which body parts should be selected depends on the behavior. In
contrast, our reward strategy does not require any behavior-specific
prior knowledge. Our early termination strategy was able to learn
dynamic controllers for both reference motions as was the manually
determined termination strategy.

6.6 Application to Other Kinematic Controllers
Most kinematic controllers can easily be integrated into our system
as illustrated in Figure 2. To show the generality of our system,
we also built a system using an existing state-of-the-art kinematic
controller, phase-functioned neural networks (PFNN) [Holden et al.
2017], as the input controller. It requires continuous user inputs to
generate motions, where there exist directional (analog stick) and
discrete (button) inputs. To mimic the directional input automati-
cally, we use a momentum-based random walk inspired by [Peng

et al. 2016].

ui = clip(ui−1 + ∆u ·mi ,−1, 1)
mi = clip(mi−1 + ∆mi ,−mmax,mmax)

∆mi = sign(U (−1, 1) −
mi−1
mmax

)) ·U (0,∆mmax)

(9)

where U is an uniform distribution for given ranges, ui , mi are
the current user input, its momentum, respectively. ∆u,mmax, and
∆mmax control the speed of input change, where 0.3, 0.5, and 0.1
were used in our experiment. To mimic the discrete input, we ran-
domly trigger the input with the probability ρ, keep it turned on
for a random duration between (δmin, δmax), and repeat this with
a fixed interval ν . We used ρ = 0.1, δmin = 1.0, δmax = 5.0, and
ν = 1.0. Because the PFNN controller was learned for locomo-
tion only, two hours of reference motions with three clusters were
enough for learning the dynamic controllers in our experiment,
where the clusters approximately correspond to standing, crouch-
ing, and amix of walking and running, respectively. Figure 7 shows a
screenshot where the simulated character is successfully controlled
interactively using joystick inputs from a human user. Examples are
included in the accompanying video.

7 CONCLUSION
In this paper, we demonstrate that learning expert controllers for
homogeneous sets of behaviors and combining them in a second
training phase to create a combined controller allows us to have
one, universal controller for a broad set of human motion. Below we

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

33:10 • Won et al.

(a) Waltz (b) Ballroom dancing

(c) Breakdancing

Fig. 9. Comparison of additive (top) and multiplicative (bottom) rewards.

(a) Walk-Crawl-Walk. Most body parts collide with the ground.
(b) Range-of-Motion exercise. The feet only collide with
the ground.

Fig. 10. Comparisons of early termination methods. Early termination by collision with manual body assignment (top) and early termination by reward
(bottom).

discuss limitations of this approach as well as promising avenues
for future work.
We made a somewhat arbitrary decision to create eight clusters

from the CMUmotion capture database and therefore to create eight
experts for inclusion in the MOE controller. It would be interest-
ing to see whether larger numbers of clusters (and hence experts)
would provide better performance. The expert performance should
improve as the motion in the cluster becomes yet more homoge-
neous but the training of the MOE controller will be more difficult

as the number of experts increases and at some point, it will fail to
converge. Prior work in the literature indicates that more than 16 ex-
perts may present difficulties in learningMOE-like controllers [Peng
et al. 2019; Starke et al. 2019].

Although our controller was very successful in reproducing most
of the motions in the CMU motion capture database (and combina-
tions of thosemotions created by amotion graph), that database does
not of course span all of human motion. Further experiments would
be necessary to see whether our approach of creating a monolithic

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters • 33:11

MOE controller can scale to yet larger datasets. There is presumably
a limit on the number of experts that can be includedwithout degrad-
ing overall performance or causing the learning of the combined
controller to fail to converge. A further level in the hierarchy might
be needed where a behavior selection algorithm chooses among a
set of MOE controllers to select the one that best matches a given
reference motion.

There are, of course, referencemotions generated from themotion
graph on which our controller fails. Further exploration would be
needed to classify those failures but we expect that at least some
of them may result from failures of the motion graph where the
synthetic transitions created in the motion graph are not within
the space of natural or physically realistic motion. Other failures
are caused by the decrease in performance of the individual experts
on their cluster of motions after the combined controller is trained.
This represents the basic trade-off between specialization and the
ability to have one combined controller that can be used on motions
that contain behaviors from multiple clusters.

In the application of this work, it would be expected that the full
range of desired behaviors might not be available at the outset. We
did not explore network designs that would make it easier to incre-
mentally add new motions and behaviors to the training set but that
is a very interesting avenue for future work. We had hoped that be-
ginners might fulfill this need, but our experiments all indicate that
training beginners simultaneously with the existing MOE controller
results in worse performance than having all motions represented
by experts. It is possible that new behaviors and motions might
be incorporated by first training new experts and then using the
existing controller as a warm start for training a new controller that
incorporates the new experts. If this approach for incrementally
adding to the training set is successful, then controllers such as
the one presented here might begin to play a role similar to that
of ImageNet in the computer vision community. When a classifier
is needed for a particular application, the standard practice now
is to begin with a model trained on ImageNet and then refine the
performance with additional training data for the particular appli-
cation. The standard practice for controllers might be to build on a
controller created from the CMU motion capture dataset or the full
AMASS dataset and then refine it for the particular behaviors that
were needed for a new application such as a video game focused on
a particular sport.

REFERENCES
Amin Babadi, Kourosh Naderi, and Perttu Hämäläinen. 2019. Self-Imitation Learning

of Locomotion Movements through Termination Curriculum. In Motion, Interaction
and Games, MIG 2019. ACM, 21:1–21:7. https://doi.org/10.1145/3359566.3360072

Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. 1726–1734.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14858

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
Data-driven Responsive Control of Physics-based Characters. ACM Trans. Graph.
38, 6, Article 206 (Nov. 2019). http://doi.acm.org/10.1145/3355089.3356536

Glen Berseth, Cheng Xie, Paul Cernek, and Michiel van de Panne. 2018. Progressive
Reinforcement Learning with Distillation for Multi-Skilled Motion Control. CoRR
abs/1802.04765 (2018). http://arxiv.org/abs/1802.04765

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan
Jeschke. 2018. Physics-based motion capture imitation with deep reinforcement
learning. In Motion, Interaction and Games, MIG 2018. ACM, 1:1–1:10. https://doi.
org/10.1145/3274247.3274506

Simon Clavet. 2016. Motion Matching and The Road to Next-Gen Animation. In In Proc.
of GDC.

Alexander Clegg, Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2018. Learning
to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning.
ACMTrans. Graph. 37, 6, Article 179 (Dec. 2018). http://doi.acm.org/10.1145/3272127.
3275048

CMU. 2002. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust Task-based

Control Policies for Physics-based Characters. ACM Trans. Graph. 28, 5, Article 170
(Dec. 2009). http://doi.acm.org/10.1145/1618452.1618516

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. ACM Trans. Graph. 29, 4, Article 130 (July 2010). http://doi.acm.
org/10.1145/1778765.1781156

Erwin Coumans and Yunfei Bai. 2016–2019. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

Danilo Borges da Silva, Rubens Fernandes Nunes, Creto Augusto Vidal, Joaquim B. Cav-
alcante Neto, Paul G. Kry, and Victor B. Zordan. 2017. Tunable Robustness: An
Artificial Contact Strategy with Virtual Actuator Control for Balance. Comput.
Graph. Forum 36, 8 (2017), 499–510. https://doi.org/10.1111/cgf.13096

Marco da Silva, Yeuhi Abe, and Jovan Popovic. 2008. Simulation of Human Motion
Data using Short-Horizon Model-Predictive Control. Comput. Graph. Forum 27, 2
(2008), 371–380. https://doi.org/10.1111/j.1467-8659.2008.01134.x

Marco da Silva, Frédo Durand, and Jovan Popović. 2009. Linear Bellman Combination
for Control of Character Animation. ACM Trans. Graph. 28, 3, Article 82 (July 2009).
http://doi.acm.org/10.1145/1531326.1531388

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. 2017.
OpenAI Baselines. https://github.com/openai/baselines.

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. 2001. Composable
Controllers for Physics-based Character Animation. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). ACM,
New York, NY, USA. http://doi.acm.org/10.1145/383259.383287

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. 2017. Meta
Learning Shared Hierarchies. CoRR abs/1710.09767 (2017). http://arxiv.org/abs/
1710.09767

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible
Muscle-based Locomotion for Bipedal Creatures. ACM Trans. Graph. 32, 6, Article
206 (Nov. 2013). http://doi.acm.org/10.1145/2508363.2508399

Perttu Hämäläinen, Joose Rajamäki, and C. Karen Liu. 2015. Online Control of Simulated
Humanoids Using Particle Belief Propagation. ACM Trans. Graph. 34, 4, Article 81
(July 2015). http://doi.acm.org/10.1145/2767002

Matthew J. Hausknecht and Peter Stone. 2016. Deep Reinforcement Learning in Param-
eterized Action Space. In 4th International Conference on Learning Representations,
ICLR 2016. http://arxiv.org/abs/1511.04143

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (July 2017). http:
//doi.acm.org/10.1145/3072959.3073663

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. 1991.
Adaptive Mixtures of Local Experts. Neural Computation 3, 1 (1991), 79–87. https:
//doi.org/10.1162/neco.1991.3.1.79

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. ACM Trans.
Graph. 21, 3 (July 2002). http://doi.acm.org/10.1145/566654.566605

Taesoo Kwon and Jessica Hodgins. 2010. Control Systems for Human Running
Using an Inverted Pendulum Model and a Reference Motion Capture Sequence.
In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA ’10). Eurographics Association, Goslar Germany, Germany.
http://dl.acm.org/citation.cfm?id=1921427.1921447

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-Mapped Inverted Pendulum
Models for Controlling Dynamic Human Motions. ACM Trans. Graph. 36, 4, Article
145d (Jan. 2017). http://doi.acm.org/10.1145/3072959.2983616

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive Control of Avatars Animated with Human Motion Data. ACM
Trans. Graph. 21, 3 (July 2002). http://doi.acm.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation by
Learning Multi-objective Control. ACM Trans. Graph. 37, 6, Article 180 (Dec. 2018).
http://doi.acm.org/10.1145/3272127.3275071

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-
actuated Human Simulation and Control. ACM Trans. Graph. 38, 4, Article 73 (July
2019). http://doi.acm.org/10.1145/3306346.3322972

Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2009. Comprehensive
Biomechanical Modeling and Simulation of the Upper Body. ACM Trans. Graph. 28,
4, Article 99 (Sept. 2009). http://doi.acm.org/10.1145/1559755.1559756

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-driven Biped Control. ACM
Trans. Graph. 29, 4, Article 129 (July 2010). http://doi.acm.org/10.1145/1778765.
1781155

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

https://doi.org/10.1145/3359566.3360072
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14858
http://doi.acm.org/10.1145/3355089.3356536
http://arxiv.org/abs/1802.04765
https://doi.org/10.1145/3274247.3274506
https://doi.org/10.1145/3274247.3274506
http://doi.acm.org/10.1145/3272127.3275048
http://doi.acm.org/10.1145/3272127.3275048
http://mocap.cs.cmu.edu/
http://doi.acm.org/10.1145/1618452.1618516
http://doi.acm.org/10.1145/1778765.1781156
http://doi.acm.org/10.1145/1778765.1781156
http://pybullet.org
https://doi.org/10.1111/cgf.13096
https://doi.org/10.1111/j.1467-8659.2008.01134.x
http://doi.acm.org/10.1145/1531326.1531388
https://github.com/openai/baselines
http://doi.acm.org/10.1145/383259.383287
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1710.09767
http://doi.acm.org/10.1145/2508363.2508399
http://doi.acm.org/10.1145/2767002
http://arxiv.org/abs/1511.04143
http://doi.acm.org/10.1145/3072959.3073663
http://doi.acm.org/10.1145/3072959.3073663
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
http://doi.acm.org/10.1145/566654.566605
http://dl.acm.org/citation.cfm?id=1921427.1921447
http://doi.acm.org/10.1145/3072959.2983616
http://doi.acm.org/10.1145/566654.566607
http://doi.acm.org/10.1145/3272127.3275071
http://doi.acm.org/10.1145/3306346.3322972
http://doi.acm.org/10.1145/1559755.1559756
http://doi.acm.org/10.1145/1778765.1781155
http://doi.acm.org/10.1145/1778765.1781155

33:12 • Won et al.

Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion Control
for Many-muscle Humanoids. ACM Trans. Graph. 33, 6, Article 218 (Nov. 2014).
http://doi.acm.org/10.1145/2661229.2661233

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for
Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 3, Article
42a (June 2017). http://doi.acm.org/10.1145/3083723

Libin Liu and Jessica Hodgins. 2018. Learning Basketball Dribbling Skills Using Tra-
jectory Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4,
Article 142 (July 2018). http://doi.acm.org/10.1145/3197517.3201315

Libin Liu, Michiel Van De Panne, and Kangkang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Trans. Graph. 35, 3, Article 29 (May
2016). http://doi.acm.org/10.1145/2893476

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based Contact-rich Motion Control. ACM Trans. Graph. 29, 4, Article 128
(July 2010). http://doi.acm.org/10.1145/1778765.1778865

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. 34, 6
(Oct. 2015). https://dl.acm.org/doi/10.1145/2816795.2818013

Adriano Macchietto, Victor Zordan, and Christian R. Shelton. 2009. Momentum Control
for Balance. ACM Trans. Graph. 28, 3, Article 80 (July 2009). http://doi.acm.org/10.
1145/1531326.1531386

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In The IEEE
International Conference on Computer Vision (ICCV). https://amass.is.tue.mpg.de

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tiru-
mala, Nicolas Heess, and Greg Wayne. 2019a. Hierarchical Visuomotor Control of
Humanoids. In 7th International Conference on Learning Representations, ICLR 2019.
https://openreview.net/forum?id=BJfYvo09Y7

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg
Wayne, Yee Whye Teh, and Nicolas Heess. 2019b. Neural Probabilistic Motor Primi-
tives for Humanoid Control. In 7th International Conference on Learning Representa-
tions, ICLR 2019. OpenReview.net. https://openreview.net/forum?id=BJl6TjRcY7

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg
Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture by
adversarial imitation. CoRR abs/1707.02201 (2017). http://arxiv.org/abs/1707.02201

SeheeMin, JungdamWon, Seunghwan Lee, Jungnam Park, and Jehee Lee. 2019. SoftCon:
simulation and control of soft-bodied animals with biomimetic actuators. ACM
Trans. Graph. 38, 6 (2019), 208:1–208:12. https://doi.org/10.1145/3355089.3356497

Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. 2010. Robust Physics-based
Locomotion Using Low-dimensional Planning. ACM Trans. Graph. 29, 4, Article 71
(July 2010). http://doi.acm.org/10.1145/1778765.1778808

Igor Mordatch and Emo Todorov. 2014. Combining the benefits of function approx-
imation and trajectory optimization. In In Robotics: Science and Systems (RSS).
http://www.roboticsproceedings.org/rss10/p52.html

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors Through Contact-invariant Optimization. ACMTrans. Graph. 31, 4, Article
43 (July 2012). http://doi.acm.org/10.1145/2185520.2185539

Masaki Nakada, Tao Zhou, Honglin Chen, Tomer Weiss, and Demetri Terzopoulos.
2018. Deep Learning of Biomimetic Sensorimotor Control for Biomechanical Human
Animation. ACM Trans. Graph. 37, 4, Article 56 (July 2018). http://doi.acm.org/10.
1145/3197517.3201305

Kensuke Onuma, Christos Faloutsos, and Jessica K. Hodgins. 2008. FMDistance: A Fast
and Effective Distance Function for Motion Capture Data. In Eurographics 2008 -
Short Papers. 83–86. https://doi.org/10.2312/egs.20081027

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-simulate Policies from Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (Nov. 2019). http://doi.acm.org/10.1145/3355089.3356501

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. DeepMimic:
Example-guided Deep Reinforcement Learning of Physics-based Character Skills.
ACM Trans. Graph. 37, 4, Article 143 (July 2018). http://doi.acm.org/10.1145/3197517.
3201311

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive Loco-
motion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. 35, 4, Article
81 (July 2016). http://doi.acm.org/10.1145/2897824.2925881

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (July 2017). http://doi.acm.org/10.1145/3072959.
3073602

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019.
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional
Policies. CoRR abs/1905.09808 (2019). http://arxiv.org/abs/1905.09808

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017). http:
//arxiv.org/abs/1707.06347

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating Biped Behaviors
from Human Motion Data. ACM Trans. Graph. 26, 3, Article 107 (July 2007). http:

//doi.acm.org/10.1145/1276377.1276511
Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine

for character-scene interactions. ACM Trans. Graph. 38, 6 (2019), 209:1–209:14.
https://doi.org/10.1145/3355089.3356505

Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1999. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112, 1-2 (1999), 181–211. https://doi.org/10.1016/S0004-3702(99)00052-1

Jie Tan, C. Karen Liu, and Greg Turk. 2011. Stable Proportional-Derivative Controllers.
IEEE Computer Graphics and Applications 31, 4 (2011), 34–44. https://doi.org/10.
1109/MCG.2011.30

Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS 2012. 4906–4913.
https://doi.org/10.1109/IROS.2012.6386025

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for Hierarchical
Reinforcement Learning. In Proceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 3540–3549.
http://proceedings.mlr.press/v70/vezhnevets17a.html

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-based Actuators and Objectives. ACM
Trans. Graph. 31, 4, Article 25 (July 2012). http://doi.acm.org/10.1145/2185520.
2185521

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess.
2017. Robust Imitation of Diverse Behaviors. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17). Curran Associates
Inc., USA. http://dl.acm.org/citation.cfm?id=3295222.3295284

Jungdam Won and Jehee Lee. 2019. Learning Body Shape Variation in Physics-based
Characters. ACM Trans. Graph. 38, 6, Article 207 (Nov. 2019). http://doi.acm.org/10.
1145/3355089.3356499

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to train your
dragon: example-guided control of flapping flight. ACM Trans. Graph. 36, 6 (2017),
198:1–198:13. https://doi.org/10.1145/3130800.3130833

JungdamWon, Jungnam Park, and Jehee Lee. 2018. Aerobatics control of flying creatures
via self-regulated learning. ACM Trans. Graph. 37, 6 (2018), 181:1–181:10. https:
//doi.org/10.1145/3272127.3275023

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan Hurst, and Michiel
van de Panne. 2019. Learning Locomotion Skills for Cassie: Iterative Design and
Sim-to-Real. In Proc. Conference on Robot Learning (CORL 2019). https://arxiv.org/
abs/1903.09537

Yuting Ye and C. Karen Liu. 2010. Optimal Feedback Control for Character Animation
Using an Abstract Model. ACM Trans. Graph. 29, 4, Article 74 (July 2010). http:
//doi.acm.org/10.1145/1778765.1778811

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple
Biped Locomotion Control. ACM Trans. Graph. 26, 3, Article 105 (July 2007). http:
//doi.acm.org/10.1145/1276377.1276509

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (July 2018). http://doi.acm.org/
10.1145/3197517.3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans. Graph. 37, 4 (2018), 145:1–
145:11. https://doi.org/10.1145/3197517.3201366

ACM Trans. Graph., Vol. 39, No. 4, Article 33. Publication date: July 2020.

http://doi.acm.org/10.1145/2661229.2661233
http://doi.acm.org/10.1145/3083723
http://doi.acm.org/10.1145/3197517.3201315
http://doi.acm.org/10.1145/2893476
http://doi.acm.org/10.1145/1778765.1778865
https://dl.acm.org/doi/10.1145/2816795.2818013
http://doi.acm.org/10.1145/1531326.1531386
http://doi.acm.org/10.1145/1531326.1531386
https://amass.is.tue.mpg.de
https://openreview.net/forum?id=BJfYvo09Y7
https://openreview.net/forum?id=BJl6TjRcY7
http://arxiv.org/abs/1707.02201
https://doi.org/10.1145/3355089.3356497
http://doi.acm.org/10.1145/1778765.1778808
http://www.roboticsproceedings.org/rss10/p52.html
http://doi.acm.org/10.1145/2185520.2185539
http://doi.acm.org/10.1145/3197517.3201305
http://doi.acm.org/10.1145/3197517.3201305
https://doi.org/10.2312/egs.20081027
http://doi.acm.org/10.1145/3355089.3356501
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/2897824.2925881
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://arxiv.org/abs/1905.09808
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://doi.acm.org/10.1145/1276377.1276511
http://doi.acm.org/10.1145/1276377.1276511
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1109/MCG.2011.30
https://doi.org/10.1109/MCG.2011.30
https://doi.org/10.1109/IROS.2012.6386025
http://proceedings.mlr.press/v70/vezhnevets17a.html
http://doi.acm.org/10.1145/2185520.2185521
http://doi.acm.org/10.1145/2185520.2185521
http://dl.acm.org/citation.cfm?id=3295222.3295284
http://doi.acm.org/10.1145/3355089.3356499
http://doi.acm.org/10.1145/3355089.3356499
https://doi.org/10.1145/3130800.3130833
https://doi.org/10.1145/3272127.3275023
https://doi.org/10.1145/3272127.3275023
https://arxiv.org/abs/1903.09537
https://arxiv.org/abs/1903.09537
http://doi.acm.org/10.1145/1778765.1778811
http://doi.acm.org/10.1145/1778765.1778811
http://doi.acm.org/10.1145/1276377.1276509
http://doi.acm.org/10.1145/1276377.1276509
http://doi.acm.org/10.1145/3197517.3201397
http://doi.acm.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366

	Abstract
	1 Introduction
	2 Related Work
	2.1 Physics-based Character Control
	2.2 Deep Reinforcement Learning
	2.3 Ensemble Methods
	2.4 Kinematic Controllers

	3 Overview
	4 Reference Motion Preparation
	4.1 Motion Graph Construction
	4.2 Motion Generation and Clustering

	5 Dynamic Controller Learning
	5.1 Reinforcement Learning Formulation
	5.2 Learning
	5.3 Learning a Mixture-of-Experts Policy

	6 Results
	6.1 Motion Clustering
	6.2 Mixture-of-Experts Controller
	6.3 Comparing Controller Designs
	6.4 Additive vs. Multiplicative Reward
	6.5 Early Termination based on the Reward
	6.6 Application to Other Kinematic Controllers

	7 Conclusion
	References

