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Abstract

A video-grounded dialogue system is required
to understand both dialogue, which contains
semantic dependencies from turn to turn, and
video, which contains visual cues of spatial
and temporal scene variations. Building such
dialogue systems is a challenging problem, in-
volving various reasoning types on both vi-
sual and language inputs. Existing bench-
marks do not have enough annotations to thor-
oughly analyze dialogue systems and under-
stand their capabilities and limitations in iso-
lation. These benchmarks are also not ex-
plicitly designed to minimise biases that mod-
els can exploit without actual reasoning. To
address these limitations, in this paper, we
present DVD, a Diagnostic Dataset for Video-
grounded Dialogues. The dataset is designed
to contain minimal biases and has detailed an-
notations for the different types of reasoning
over the spatio-temporal space of video. Dia-
logues are synthesized over multiple question
turns, each of which is injected with a set
of cross-turn semantic relationships. We use
DVD to analyze existing approaches, provid-
ing interesting insights into their abilities and
limitations. In total, DVD is built from 11k
CATER synthetic videos and contains 10 in-
stances of 10-round dialogues for each video,
resulting in more than 100k dialogues and 1M
question-answer pairs. Our code and dataset
are publicly available1.

1 Introduction

Research in visual question answering (VQA) aims
to develop intelligent systems that can reason and
answer questions about visual information. Ear-
lier datasets have been introduced to study this
problem, focusing on images as the visual input
(Antol et al., 2015; Gao et al., 2015; Malinowski

∗Work done when HL was a research intern at Facebook.
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Q1: until the end of the cube 's rotation , what types of actions 
does the big thing undertake the most ? A1: flying
Q2: during the same time period , how many sliding objects are 
there ? A2: 2
Q3: among them , there is a ball . during the whole video , what 
type of action does it undertake second ? A3: no action
Q4: how about up until now ? A4: sliding
Q5: during the red thing 's last slide , how many things are 
behind the earlier mentioned large object ? A5: 2
Q6: how about left of it ? A6: 0 ...

t1 t2 t3 t4t0 T

Object A: t1 t3

Object B: t2 t4

t5 t6

t5 t6
slides

flies

rotates

Figure 1: Example DVD dialogue: We demonstrate an
example dialogue in DVD that tests various aspects, in-
cluding action recognition, temporal reasoning, spatial
reasoning, video interval tracking, and dialogue object
tracking. Qi/Ai: question/answer of turn i.

and Fritz, 2014; Zhu et al., 2016) Recently, many
QA benchmarks have been proposed to extend the
visual information from the image to video domain
(Jang et al., 2017; Lei et al., 2018; Zadeh et al.,
2019). While image QA problems require a sys-
tem to learn cross-modality interaction, video QA
problems go beyond and capture visual information
with temporal variance.

As an orthogonal extension from VQA problems,
another line of research investigates image/video
QA in a dialogue setting (Das et al., 2017; Seo
et al., 2017; De Vries et al., 2017; Chattopadhyay
et al., 2017; Alamri et al., 2019). In this problem,
questions about a given video or image are posi-
tioned in a multi-turn dialogue. In each dialogue
turn, a question usually exhibits different types of
cross-turn relations to other questions in prior dia-
logue turns, such as object co-reference and topic
alignment. In this work, we investigate the problem
of multi-turn video question answering (QA), also
known as video-grounded dialogue.

Numerous approaches to video-grounded dia-
logue have shown remarkable performance in build-
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ing intelligent multimodal systems (Hori et al.,
2019; Schwartz et al., 2019; Le et al., 2019; Li
et al., 2020; Le et al., 2020). However, most of
these methods exhibit marginal performance gain,
and our ability to understand their limitations is
impeded by the complexity of the task. Existing
benchmarks are not designed with enough informa-
tion to determine whether current approaches are
capable of sophisticated reasoning and not just ex-
ploiting biases, which has been a common concern
in vision-language systems (Agrawal et al., 2016;
Goyal et al., 2017; Qi et al., 2020).

To address the limitations of existing bench-
marks and analyze dialogue systems more effi-
ciently, we propose DVD, a Diagnostic Dataset
for Video-grounded Dialogues. We demonstrate an
example dialogue in DVD in Figure 1. From scene
graphs and object action annotation of a CATER
video (Girdhar and Ramanan, 2020), we simu-
late questions based on reasoning structures, also
known as functional programs in CLEVR (Johnson
et al., 2017). Compared to CLEVR, we introduced
17 novel functional modules, designed for video
and dialogue input components. As illustrated in
Figure 1, at each dialogue turn, a DVD question
tests dialogue systems to perform different types of
reasoning on videos, such as action recognition and
spatio-temporal reasoning. Across turns, we gener-
ate questions to be related to each other by incor-
porating different types of semantic relationships,
including: (1) temporal relation, which requires a
system to learn to localize different temporal seg-
ments of the video from turn to turn; (2) object
reference, which requires a system to resolve visual
objects mentioned throughout the dialogue history
in either short-term references (pronouns) or long-
term references (e.g. “the earlier mentioned large
object”); and (3) topic transfer, which requires a
system to maintain a memory of the last question
turn to solve the question in the current turn.

On DVD, we trained a set of baseline methods
and analyzed the results by several aspects of visual
and linguistic complexity (Section 4). We found
that these methods struggle on questions requiring
both video temporal and spatial localization. They
are also vulnerable to long-term reasoning in both
videos and dialogues as they are not designed to
track active visual objects or relevant video seg-
ments throughout dialogue context. We hope the
DVD dataset will lead to new research avenues
to develop intelligent systems capable of complex

reasoning on video and dialogue medium (further
discussion in the Supplementary Material). The
DVD dataset and code will be made public.

2 Related Work

We compared DVD to existing datasets from the
following four angles:
1) Vision-linguistic. Vision-linguistic understand-
ing benchmarks have been proposed, including
captioning (Farhadi et al., 2010; Lin et al., 2014;
Rohrbach et al., 2015), phrase grounding or object
reference (Kazemzadeh et al., 2014; Plummer et al.,
2015), scene graph learning (Krishna et al., 2017),
and text-to-clip (Anne Hendricks et al., 2017). Our
benchmark, DVD, is more related to VQA in which
a visual input is given and a system is required to
answer a question about this input (Antol et al.,
2015; Zhu et al., 2016; Jang et al., 2017; Lei et al.,
2018). Another related line of research is the re-
search of navigation systems in a physical environ-
ment (Gordon et al., 2018; Wijmans et al., 2019).
Compared to the prior benchmarks, one major dif-
ference of DVD is the extension of single-turn in-
teraction to a multi-turn human-machine dialogue.
2) Visually-grounded Dialogue. Extended from
the vision-linguistic understanding research, this
line of research focuses on answering questions se-
quentially positioned over multiple turns (De Vries
et al., 2017; Das et al., 2017; Chattopadhyay et al.,
2017; Hori et al., 2019; Thomason et al., 2019). A
system has to understand the dialogue context and
resolve cross-turn semantic dependencies. How-
ever, due to the complexity of the tasks, involving
cross-modality and cross-turn information, prior
benchmarks are often subject to bias that models
often exploit without actual reasoning (Qi et al.,
2020). In this work, we design a diagnostic bench-
mark with minimal bias and incorporate a set of
specific reasoning requirements.
3) Diagnostic. Our work is related to MNIST Dia-
logue (Seo et al., 2017) and CLEVR Dialog (Kottur
et al., 2019). They involve synthetic images to de-
velop image-grounded dialogues. Compared to
them, DVD questions are extended from the image
to the video domain and injected with more diverse
cross-turn semantics. As shown in Table 1 DVD
contains a higher proportion of unique questions
than related benchmarks. DVD is also inspired
by the dialogue state tracking task (DST) (Mrkšić
et al., 2017; Bordes et al., 2017; Kottur et al., 2021;
Moon et al., 2020). DST requires a system to detect



Split
#Videos/
Images

#Dialogs #Questions
# Unique
Questions

DVD-Train 6,157 61,551 615,510 360,334
DVD-Val 1,540 15,396 153,960 99,211
DVD-Test 3,299 32,978 329,780 200,346
DVD-Total 10,996 109,925 1,099,250 620,739
CLEVR 100K N/A 1M 854K
CLEVRER 20K N/A 305K 26.4K
VisDial 123K 123K 1.2M 380K
AVSD 11.1K 11.1K 101.2K 59K
MNIST Dialog 50K 150K 1.5M 355
CLEVR Dialog 85K 425K 4.25M 73K

Table 1: Statistics for DVD: Compared to synthetic
dialogue benchmarks, MNIST Dialog and CLEVR Di-
alog, majority of questions in DVD are unique. Ques-
tions are generated from question templates and incor-
porated with various cross-turn semantics.

all information slots mentioned in dialogue, such
as restaurant name and booking date. Instead, in
DVD, for each turn, we introduce an object tracking
state, defined as visual objects and their attributes
mentioned in dialogue context.
4) Multi-step reasoning. A multi-step reasoning
question is typically represented by a reasoning
structure, also known as functional programs. Ear-
lier efforts (Andreas et al., 2016; Johnson et al.,
2017) designed questions that are expressed as ele-
mentary operation programs. More related to our
work, Song et al. (2018); Yi* et al. (2020) extended
the prior work to the video domain with questions
focusing on the temporal variance of video frames.
A major difference between our work and these
approaches is the extension of functional programs
to a dialogue task with context-based operations,
such as object tracking and interval tracking. This
extension brings a step toward more transparent
dialogue systems capable of performing reasoning
operations across question turns.

3 The DVD Dataset

Our benchmark provides a dataset that can be used
to conduct rich diagnostics to better understand the
reasoning capabilities of dialogue systems. Table 1
and Figure 3 to 6 give an overview of DVD.

3.1 Objects, Spatial Relations, and Intervals

Objects. Objects are identified by their attributes,
including object shapes, sizes, materials, and col-
ors. One unique characteristic of CATER objects
is that each object can move multiple times in a
single video. From the CATER universe, we de-
fine 4 types of object actions: “flying”, “rotating”,
“sliding”, and “no action” (object being stationary).
Another characteristic of CATER objects is that one
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Figure 2: Example spatial relationship: We demon-
strate the projection of objects and their movements on
the ground plane. Considering the “left” relationship,
“A1 is left of B2” and “A2 is left of B5”.

object can be contained by another object, resulting
in a visual problem called object containment. In
our experiments, current dialogue systems are still
vulnerable to this problem, making it hard to apply
to the open world (See Section 4.3).
Video intervals. We define video intervals as con-
tinuous video frames, limited by a start and end
point, each of which can be the start or end of an
object’s action or the start or end of the whole video.
We formulate two types of video intervals:
1) Atomic intervals. In these intervals, all objects
have at most one action and they can be in only one
of the two states: in motion or stationary. To find
atomic intervals, we simply collate the start and end
timestamps of all object actions in a CATER video
and sort them chronologically. By definition, any
non-overlapping interval between two timestamps
is considered atomic. This constraint allows us to
identify the relative spatial relationships (“left”,
“right”, “behind”, and “front”) between any two ob-
jects by using their coordinates at the start and end
of the interval. Note that in the CATER universe,
all actions can be projected either as a straight line
(“flying” and “sliding”) or a single point (“rotat-
ing” and “no action”). Practically, we focus on
spatial reasoning only when one of the two objects
is stationary. Figure 2 demonstrates the “left” spa-
tial relation, and Figure 3 (Top) shows an example
question of atomic interval with spatial relation.
2) Compositional intervals. Compositional inter-
vals are all other intervals that are not atomic. In
these intervals, an object can have more than one
actions, i.e. be in more than one states such as
“flying” then “no action”. Therefore, its movement
projections are not linear and we do not identify
spatial relations in these cases. Instead, we focus on
information such as action set and action sequence
to generate questions. Figure 3 (Bottom) presents
an example question of compositional interval.
To create DVD questions, we first identify all in-
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Figure 3: Example questions and their functional programs: Top: A question of atomic interval with relative
spatial relationship. Bottom: A question of compositional interval with action set comparison semantic.

Before this time period, how many other things with the same set of 
activities performed by the aforementioned yellow thing ? 
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Figure 4: Examples questions positioned in dialogue and their functional programs: Each question contained
references to past dialogue turns, through video temporal relation (TR) or dialogue object reference (OR).

tervals in a video (with a minimum duration of
about 0.5s), then randomly sample one interval,
and proceed to create questions based on object
movements and locations in this interval. Figure
5-(a) shows the percentages of DVD questions by
video interval types. Overall, more than 60% of
questions are of compositional intervals and among
the atomic-interval questions, the majority of them
contain a spatial relation. We still maintain a small
percentage of temporal-agnostic instances (“none”
type) to keep the dialogue flow natural.

3.2 Question and Dialogue Generation

Question representation. We use question tem-
plates to materialize questions in natural language.
Each template associates with an applicable type of
video interval and a functional program. Compared
to CLEVR functional programs (Johnson et al.,
2017), we introduce 17 new functional modules, of
which 13 are extended for video-based inputs and
4 are extended for dialogue-based inputs. Over-
all, we utilize 26 question templates for 8 question
types. Figure 3 illustrates two sample questions
with corresponding reasoning structures and Figure
5-(b) shows the statistics of question type distribu-
tion. Please refer to the supplementary material for
the full details of functional modules and question
types and examples.
Dialogue Generation. We generated dialogues
with a fixed length of 10 turns. In each turn, we
adopted a Depth First Search (DFS) approach, as

similarly used in CLEVR (Johnson et al., 2017),
to instantiate questions by sequentially traversing
and executing functional programs. To generate
linguistic dependencies between dialogue turns, at
each turn, we randomly sample and incorporate
one or more of the 3 semantic relations below. Fig-
ure 4 and 6 present examples of 2 questions and a
dialogue with these semantic relations.

Type I: Video Temporal Relation (TR): This type
of semantic relation tests a system to localize video
intervals in relation to past dialogue turns. We
randomly select one of three types of relation: (1)

“during” relation reuses the same time interval as the
last dialogue turn, e.g. the Q4 in Figure 6; (2) “be-
fore” and (3) “after” relations simulate a dialogue
flow with references to the earlier and subsequent
video segments. TR synthesizes scenarios when
humans either maintain or shift their attention tem-
porally from one video segment to a related part.

Type II: Dialogue Object Reference (OR): We
incorporate object references into a question by re-
placing original object phrase, such as “the large
rubber cone”, with pronouns, such as “it”, to re-
fer to object(s) mentioned in the earlier part of the
dialogue. The distance of reference is one turn
and we call this a short-term memory OR. Addi-
tionally, we simulate long-term memory OR by
injecting unique objects mentioned further in the
past dialogue turns. We simulate this behavior by
maintaining a dialogue object state at each turn.
To choose an object for references, we randomly



(b) Question distribution by 
question type 

(e) Dialogue distribution by the number of turns 
with semantic relations

(d) Question distribution by turn 
distance of object references

(a) Question distribution by 
video interval 

(TR) (OR) (TT)

(c) Number of active objects 
per dialogue turn

Figure 5: Data analysis of DVD: (a) and (b): Questions are distributed by 8 question types and 3 video interval
types. (c): The boxplot displays the distribution of active objects mentioned in each dialogue turn position. (d): At
turn position i, an old object originally mentioned in a prior turn position j might be reused, resulting in reference
of turn distance i − j. (e): Each dialogue turn is incorporated with semantic relations, including TR (temporal
relation), OR (object references), and TT (topic transfer). The dotted line indicates the overall average.

sample a past dialogue turn position and sample
an object introduced in this turn. This object then
replaces the original object phrases in the question
of the current turn. For example, in question Q3
in Figure 6, “the earlier mentioned small thing” is
identified from the object originally introduced in
Q1. Following this method, our dialogue simulates
scenarios in which humans only focus on a sub-
set of objects rather than all objects in the video
scene and they can refer to those objects again over
multiple dialogue turns. Figure 5-(c) displays the
boxplot of the number of active objects involved
in each turn position. Out of 10 objects (the max-
imum number of objects in a CATER video), 2
to 5 objects are involved on average per dialogue.
Figure 5-(d) shows the question distribution by the
turn distance of long-term memory OR, with the
majority of questions containing 2-turn distance
references.

Type III: Topic Transfer (TT): This relation tests
the model ability to memorize and reuse the context
of the last dialogue turn to the current turn through
3 types of topic transfers: (1) Attribute transfer and
(2) spatial transfer reuse the same question from the
prior dialogue turn with a modification of object at-
tribute or spatial relation (e.g. Q2 and Q5 in Figure
6). Compared to TR, these two types of topic trans-
fers focus on human attention shifts in spatial space
rather than temporal space; (3) Temporal transfer
introduces a unique setting of situated dialogue

in DVD. Instead of using a fixed video input for
each dialogue instance, at the first dialogue turn,
we shorten a CATER video by a cutoff point, e.g.
T0. At each later turn, for 30% of time, we up-
date the current video input to a new cutoff point
later than the previous one e.g. Ti+1 > Ti. We
do not update when the cutoff reaches the end of
the original CATER video T i.e. Ti+1 = T . For
instance, in Figure 6, at Q7, we reuse the same con-
text from Q6 but with new extended visual content.
We introduce temporal transfer as a preliminary
step to challenge dialogue systems in a dynamic
environment with a continuous visual stream.

After sampling question templates and semantic de-
pendencies, the ground-truth answers are obtained
by executing corresponding functional programs.
For each question template, we discard dominating
instances to maintain an approximate uniform dis-
tribution of answer values, minimizing bias result-
ing from question-conditioned data distributions.
Additionally, at each turn, we remove any question
that is ill-posed or becomes redundant when posi-
tioned in dialogue. For instance, the question “how
many red rubber objects are there?” is removed if
in a prior dialogue turn, the question is “how many
red objects are there?” and the answer is already

“1”. To do this, we perform a check at every dia-
logue turn to determine whether involving objects
and their attributes are already mentioned in the
dialogue object state. Finally, we only keep dia-



Dialogue Dialogue Object State TR OR
TT

A S T

Q1: before the large thing 's first flight , what color is the average thing that is in front of the small thing? A1: yellow

Q2: what about its material ? A2: rubber
{obj1: size=large}, {obj2: size=average, color=yellow}, {obj3: 
size=small} ✓ ✓

Q3: during the earlier mentioned small thing 's first slide , 
what shape is the stationary thing to the right of the 
aforementioned average object? A3: cube

{obj1: size=large}, {obj2: size=average, color=yellow, 
material=rubber}, {obj3: size=small} ✓

Q4: during the same time period , how many average cyan 
shiny things are behind the gray object? A4: 1

{obj1: size=large}, {obj2: size=average, color=yellow, 
material=rubber}, {obj3: size=small}, {obj4: shape=cube} ✓

Q5: how about to the left of it ? A5: 0
{obj1: size=large}, {obj2: size=average, color=yellow, 
material=rubber}, {obj3: size=small}, {obj4: shape=cube}, {obj5: 
color=gray}, {obj6: color=cyan, size=average, material=metal}

✓ ✓ ✓

Q6: throughout the whole video , does the earlier cube 
object fly more frequently than the earlier mentioned 
average object slides ? A6: True

{obj1: size=large}, {obj2: size=average, color=yellow, 
material=rubber}, {obj3: size=small}, {obj4: shape=cube}, {obj5: 
color=gray}, {obj6: color=cyan, size=average, material=metal}

✓

Q7: what about up until now ? A7: False {obj1: size=large}, {obj2: size=average, color=yellow, 
material=rubber}, {obj3: size=small}, {obj4: shape=cube}, {obj5: 
color=gray}, {obj6: color=cyan, size=average, material=metal}

✓

Turn 1 Turn i Turn i+1 Turn j Turn 10

0 to e_0 0 to e_0 0 to e_1 0 to T 0 to T

... ... ...

Video Inputs:

Dialogue Turns:
Temporal Topic Transfer 

Figure 6: Dialogue generation: In each dialogue turn, we generate questions with randomly sampled cross-turn
dependencies: temporal relation (TR), object reference (OR), and topic transfers (TT), including attribute (A),
spatial (S), and temporal (T) transfer. We maintain a dialogue object state of active objects which are color-coded.

logues that have cross-turn dependencies in 9 out
of 10 turns, considering the first turn semantically
independent. Figure 5-(e) provides the distribution
of dialogues by the number of TR, OR, and TT
relations. For more analysis of DVD, please refer
to the supplementary material.

4 Dialogue Systems on DVD

The video-grounded dialogue task in DVD is de-
fined as a turn-based retrieval task from multiple-
choice candidate answers. At each dialogue turn
i (i = 1, 2, ..., 10), video input Vi, the ground-
truth dialogue context, including question and an-
swer pairs up to the last dialogue turn, Ci =
(Qk,Ak)|k=i−1

k=1 , the question of the current turn
Qi, are provided. The system is given a set of
candidate answers A, predefined as all possible an-
swer values for all question types, with |A| = 40
in DVD, and is required to select one answer from
A. We evaluate models by the accuracy of pre-
dicted answers against the ground-truth answers.
For a system denoted as θ, the objective function
is: Âi = argmaxA P (Ai|Vi,Qi, Ci; θ).

4.1 Experimental Setup

Baselines. We experimented with a representa-
tive set of baseline approaches on DVD, includ-
ing: (1) Answer Prior, which selects the most pop-
ular answer option as predicted answers; (2) Q-
type (Random/Frequency), which assume known
question types and select a random or most popu-
lar answer from the corresponding answer space;
(3) Q-retrieval (TF-IDF), which retrieves the most
similar question from the training set and use its

answer as the predicted answer; (4) RNN(Q) and
HRNN(C+Q), which encode dialogue-only compo-
nents without seeing visual information to predict
answers; (5) HRNN(C+Q)+CNN(V)/TA(V), same
as (4) but with access to visual information which
is encoded by pretrained CNN models and tem-
poral attention (TA) (Jang et al., 2017; Lei et al.,
2018; Hori et al., 2019); (6) TF(C+Q+V), which
uses a Transformer-based architecture to encode
visual and language information (Schwartz et al.,
2019; Le et al., 2019; Li et al., 2020). Finally, we
conducted internal human evaluation on a subset
of the DVD test split. For each test sample, a hu-
man received an input video, dialogue history, and
the question for the current turn. The human was
required to select an answer from the list of 40
candidates A to answer the question.

Experiments. Video-grounded dialogues entail
a lot of visio-linguistic and reasoning challenges
that are not easy to be studied in isolation using ex-
isting datasets. To address this issue with DVD, we
exploit the rich annotations of DVD in our experi-
ments during evaluation. We designed our experi-
ments to systematically analyze model capabilities
and shortcomings through unique challenges in
video-grounded dialogue systems. Specifically, in
Section 4.2, we analyzed the results of all models
overall as well as by each question type. In Section
4.3, we leverage the spatio-temporal annotation
of visual objects to analyze model performance
by related video interval types, spatial reasoning
(results by object containment), and temporal rea-
soning (results by relative interval length). In terms
of dialogue contextual complexity, in Section 4.4,



Accuracy
Answer

Prior
Q-type

(Random)
Q-type
(Freq)

Q-retrieval
(TF-IDF)

RNN
(Q)

HRNN
(C+Q)

HRNN
(C+Q)+
CNN(V)

HRNN
(C+Q)+
TA(V)

TF
(C+Q
+V)

Human

All 21.3 27.8 35.3 32.1 39.7 45.8 49.3 50.2 51.1 89.3
Action count 0.0 9.3 23.4 19.8 16.3 28.2 37.8 36.0 38.8 87.5
Action query 0.0 12.7 23.7 20.6 25.8 33.1 36.7 38.6 39.4 88.1
Attribute query 0.0 32.9 38.7 39.4 38.1 39.2 43.3 45.1 43.1 98.0
Compare action seq 33.4 34.1 37.3 35.1 45.5 52.5 58.2 57.5 61.6 91.5
Compare action set 25.1 28.2 36.3 28.2 32.8 40.0 43.0 44.3 45.4 82.9
Compare action freq 48.5 50.0 50.5 44.4 58.4 56.9 62.3 65.2 67.1 88.5
Object count 0.0 9.1 23.3 18.8 26.2 38.6 40.0 40.2 39.9 90.6
Object exist 48.9 49.8 51.1 54.4 66.4 67.0 69.2 69.4 69.0 92.3
None 0.0 32.1 38.3 39.0 38.3 39.5 43.1 45.1 43.4 99.1
Atomic (non-spatial) 18.8 26.3 31.9 42.4 47.2 47.8 49.9 50.7 48.9 83.3
Atomic (spatial) 21.2 27.3 35.5 27.6 36.8 46.0 47.5 47.6 47.1 93.9
Compositional 22.8 28.0 35.4 32.1 40.0 45.8 50.2 51.4 53.2 87.1
Transfer (attribute) 0.0 30.7 45.5 37.1 40.8 45.7 54.5 57.3 57.7 100.0
Transfer (spatial) 49.8 42.4 44.9 26.4 29.6 48.1 47.7 47.4 48.0 90.5
Transfer (temporal) 28.9 38.4 22.6 3.0 30.2 53.5 62.2 64.6 69.0 79.8

Table 2: Experiment results on the DVD test split: Models are evaluated by overall accuracy and by question
types (Top), accuracy by video intervals in question (Center), and transferability accuracy (Bottom).

we use cross-turn relation annotations to analyze
model performance by temporal-based attention
shift (TR), dialogue turn distance (OR), and short-
term transferability (TT).

4.2 Results

From Table 2 (Top), we observe that “blind” sys-
tems that use answers only or questions only,
achieve quite poor results up to 39% accuracy. By
selecting the most popular answer option, Answer
Prior only achieves 21% accuracy. When a “blind”
model has access to dialogue history, the perfor-
mance increases up to 45%. This increment shows
that dialogue context contains useful information
for a dialogue system to infer answers. We note
that on average there are nearly 3 out of 10 question
turns with a topic transfer per dialogue (see Figure
5-(e)). In such cases, a model can randomly make
a good guess by just reusing the answer of the last
question turn. When a system is presented with
the visual input, we observe model performance
increases up to 51%. However, in the best system,
the performance is still far below the human level
with a performance gap of 38 absolute points.

In Table 2 (Top), from the results of Q-
type(Random) per question type, we observed that
answers are balanced in each question type. The ta-
ble also shows performance drops between pairs of
object-oriented vs. action-oriented question types.
For instance, TF(C+Q+V) achieves 38% accuracy
in Action count vs. 39% in Object count, and 39%
accuracy in Action query vs. 43% in Attribute
query. In comparison-based questions, comparing

action sets tend to be more challenging than com-
paring action sequences. To compare action sets of
two objects in a video interval, a system needs to
process the interval completely. However, to com-
pare action sequences, in most cases, the system
can determine the answer after the first few action
steps the objects perform. For more analysis of
question types and sub-types, please refer to the
supplementary material.

4.3 Analysis by Visual Complexity

To understand the drive of the performance by vi-
sual inputs, we investigated the results by the visual
complexity in questions. In Table 2 (Center), com-
pared to HRNN(C+Q)+CNN(V), models using at-
tention, either through TA(V) or Transformer, show
more improvement in compositional interval ques-
tions with increments up to 3 absolute points. In
other types of intervals, the performance gains are
not very significant. Particularly, in atomic-interval
questions that require spatial localization, the per-
formance does not change when applying attention.
This observation necessitates systems that focus on
both spatial and temporal space of visual inputs.

In Figure 7 (Left), we analyzed model perfor-
mance by the number of objects mentioned in ques-
tions that are contained in video scenes. We noted
that current models are vulnerable to visual ob-
ject containment, as the accuracy decreases by the
number of contained objects. This observation is
consistent with the results of CATER action recog-
nition tasks (Girdhar and Ramanan, 2020). In Fig-
ure 7 (Right), we investigated model performance



Figure 7: Experiment results by visual properties:
Left: results by the number of objects mentioned in
question that are contained in video scenes. Right: re-
sults by the relative length of video interval in question.

by the relative length of ground-truth video inter-
val in question, measured as the percentage of the
whole video length. To make a fair analysis, we
removed cases in which a question can be solved
correctly without localizing the specific video inter-
val but simply using the whole video. We observed
that model performance decreases as the interval
length increases, demonstrating the challenge of
long-term video understanding in video scenes. We
noted that there is a drop in performance in the low-
est range of interval lengths, 0−10%. As this range
often represents atomic intervals, the majority of
which include questions with spatial relations, sys-
tems are negatively affected and the curve drops
initially in this low range.

4.4 Analysis by Cross-turn Relations

We examined model performance in a multi-turn
setting by cross-turn semantic relations. First, we
investigated the effect of TR. In a TR-injected ques-
tion, a system is required to learn to retrieve a video
segment related to the last used segment. However,
some questions may be correctly answered without
localizing the correct segments. For instance, at
the current dialogue turn, a question is of interval
(tm, tn) and at the next turn, a question with an
“after” TR is of interval (tn, tq) (s.t. tm < tn < tq)
might be solved if the visual context is the same
in both intervals. We separate such question turns
and measured the results of the remaining ques-
tions with TR relations “after” and “before”. From
Figure 8, we observed that current systems are
not optimal to learn to shift attention to related
intervals, depending on the type of questions. In
action-based questions (AC, AQ, CASeq, CASet,
and CAF), the results of “before” and “after” TR
are lower than those without a TR relation, but in
object-based questions (OC, OE), we observed dif-
ferently. This difference can be explained by the
dynamics of actions vs. objects. Between video
intervals, information about object actions (e.g. fre-

(a) TF(C+Q+V) (b) HRNN(C+Q) + TA(V)

Figure 8: Experiment results by temporal relations:
Action count (AC), Action query (AQ), Attribute query
(AttQ), Compare action sequence (CASeq), Compare
action set (CASet), Compare action frequence (CAF),
Object count (OC), and Object exist (OE).

(b) Action Query

Figure 9: Experiment results for cross-turn reason-
ing: Results of Action count questions by turn position
(Left) and by turn distance of object references (Right).

quency, types) tends to change more easily than
objects themselves. Action-based questions chal-
lenge systems through cross-turn temporal reason-
ing more than object-based questions.

Secondly, we analyzed the impacts of long-term
memory OR. From Figure 9 (Left), we noticed that
model performance becomes more stable in sys-
tems where dialogue history is introduced as an
input. For instance, compared to RNN(Q), the per-
formance curve of TF(C+Q+V) follows a more
gentle downward trend from low to high dialogue
turn positions. To fairly analyze performance by
OR turn distance, we discard any instances that
do not require systems to use dialogue context to
resolve the references, but simply rely on the input
video. For example, a question with a reference
“the earlier mentioned red object” is removed if
there is indeed only one “red object” in the video
scene. From results by OR turn distance in Figure
9 (Right), we observed all systems are relatively
unstable, even as dialogue history is introduced
as an input. This difference against the results by
turn position exhibits a limitation of current sys-
tems as they struggle to resolve object references
by existing dialogue encoding techniques.

Finally, to analyze the effect of TT relations, we
investigate a new metric, called transferability, in
Table 2 (Bottom). When a system is presented with
a question turn with a topic transfer, it should learn



to derive the answer in relation to the context of
the last dialogue turn. If the last answer is right,
an intelligent system should be able to consistently
answer in the current turn correctly. For instance,
given a question-answer pair “what is the color
of the sliding cube? red”, a human can often in-
fer the answer to a TT(A)-injected question “what
about its material?” based on the same visual ob-
ject. We gather questions that precede questions
containing topic transfers and call this set Qtt

prior.
For each question qttprior that the model answered
correctly, we measure the accuracy over the corre-
sponding transferred question qtt and average the
scores. We observed a clear performance gain from
RNN(Q) to HRNN(C+Q) in terms of transferabil-
ity metric, demonstrating the impacts of dialogue
context on TT questions. A chance-based system
can achieve approximately 50% transferability by
just recycling answers from prior turns. The best
system results, however, are still far from human-
level performance. This observation necessitates
systems designed with a better contextual memory
to adapt past context in new dialogue turns.

5 Discussion and Conclusion

We have introduced DVD, a diagnostic dataset de-
signed to analyze video-grounded dialogue sys-
tems. DVD dataset is generated with tight control
of data bias through balancing the question and an-
swer distribution and questions are built based on
a principled approach to reflect the complexity in
videos and dialogues. Our results have shown that
DVD can provide interesting insights into system
abilities and limitations. Specifically, our analy-
sis has revealed some key shortcomings of current
models, including: (1) limited ability to efficiently
integrate visual information from both spatial and
temporal space; (2) limited ability to recognize
and compile multiple actions in long-ranged video
intervals; (3) inconsistent performance across dia-
logue turns, especially in cases when systems are
required to switch attention temporally; and (4) un-
stable performance to resolve object co-reference
in the dialogue context, especially when the turn
distance of the object references increases.

These insights provide potential avenues where
we hope DVD will be a useful benchmark to ex-
plore new ideas. Specifically, we discuss two re-
search directions:

Dialogue object tracking. To further diagnose
a dialogue system, we aim to study their long-term

memory reasoning ability to track objects and their
attributes mentioned in the dialogue context. We
are inspired by research work of dialogue state
tracking in task-oriented dialogues (Bordes et al.,
2017) and propose to use tracking accuracy met-
ric in video-grounded dialogue systems. At each
turn t, a video-grounded dialogue system should
be able to track and update a dialogue state St,
defined as a set of all mentioned objects oti and
their attributes, including sizes zti , colors cti, ma-
terials mt

i, and shapes sti: St = (ot1, o
t
2, ...) =

((zt1, c
t
1,m

t
1, s

t
1), (z

t
2, c

t
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t
2, s
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2), ...). We define

two tracking metrics, including joint accuracy,
measuring the accuracy of prediction of all objects
and attributes as a set, and slot accuracy, measur-
ing the accuracy of predicted attributes individually.
The introduction of these evaluation metrics neces-
sitates a new learning task, dialogue object track-
ing (DOT) in video-grounded dialogue systems, to
better understand current systems’ long-term rea-
soning ability.

Video interval tracking. Another aspect of di-
alogue systems that we want to diagnose is their
ability to localize video segments in a multi-turn
setting. Each question turn often focuses on dif-
ferent parts of the video as the dialogue extends
over time. It is important to learn how a system can
localize the right segments of the video from turn
to turn. Similar to DOT, we define a new learning
task for video interval tracking (VIT) in a similar
nature as text-to-clip tasks (Anne Hendricks et al.,
2017). The task can be defined as a ranking task
of segment candidates to choose the relevant seg-
ments in each question turn. This task is evaluated
by ranking metrics such as Rank@1 or Rank@2,
and mean intersection over union (mIoU). Alter-
natively, we can adapt grounding, a simple metric
used by Hudson et al. (2019) to assess spatial atten-
tion of image regions. in DVD, grounding can be
used in temporal attention-based approaches to de-
termine model ability to localize the right position
of video intervals in question.

Finally, we want to emphasize that DVD is de-
signed as a synthetic dataset for diagnosis purposes
to systematically evaluate model capabilities. The
benchmark should not be used to replace data of
human dialogues but be used to supplement real-
world dialogue datasets.
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A A Comparison of DVD to Related
Benchmarks

In Table 3, we compare DVD with related bench-
marks by 4 aspects: spatial reasoning (SR), tempo-
ral reasoning (TR), dialogue object tracking (DOT),
and video interval tracking (VIT). SR and TR
are visual-related reasoning types. SR refers to
the reasoning requirement to localize information
within an image. SR is the most popular reason-
ing type, being involved in most vision-language
benchmarks such as VQA (Antol et al., 2015) and
TGIF-QA (Jang et al., 2017). TR is often present
when a video is used as input, which requires sys-
tems to localize the relevant temporal location in
the video. However, TR is not just limited to video
understanding tasks but also refers to problems
with dynamic visual inputs such as navigation sys-
tems or embodied QA. DOT and VIT refer to cross-
turn semantic relations in a multi-turn dialogue
problem setting. DOT refers to the use of object
references, requiring systems to learn to resolve
these references in dialogue context. DOT can be
seen clearly in most dialogue benchmarks as ob-
ject references are used frequently in traditional
dialogues. VIT is a new reasoning requirement in
video-grounded dialogue tasks. It requires systems
to localize temporal parts of the video from turn to
turn. VIT is less obvious in prior benchmarks as
it is challenging to simulate. It is mostly present
in specific tasks such as AVSD (Hori et al., 2019)
and CVDN (Thomason et al., 2019) where a video
input is introduced and at each turn, only a specific

temporal part of the video is relevant. Compared
to existing benchmarks, DVD is the first diagnostic
benchmark that combines all 4 aspects, SR, TR,
DOT, and VIT, together.

B DVD Functional Program Modules

In Table 4 and 5, we describe all data types and
functional program modules in DVD. In total,
there are 20 data types and 32 functional mod-
ules. Among the functional modules, compared
to CLEVR (Johnson et al., 2017), we introduced
17 novel modules that are designed to be executed
on dialogue or video components. Within these
modules, there are 13 video-based modules (Count
Action, Filter Action, Same Action Set, Same Action
Sequence, Find Interval, Union Interval, Relate
Spatial, Relate Temporal, Query Action Set, Query
Action Sequence, Action by Frequency, Action by
Order, Equal Action) and 4 dialogue-based mod-
ules (Refer Object, Track Object, Refer Interval,
Track Interval).

C DVD Question Types, Sub-types, and
Examples

In Table 6, we detail all 8 question types for DVD.
In each question type, we described the types of
video intervals applicable, including Atomic inter-
val, Compositional interval, or None. None type is
used in temporal agnostic questions, such as ques-
tions to query object attributes or count objects. In
each question type, we further classify questions
by question sub-types. Figure 10 presents the dis-
tribution of questions by question sub-types. We
observed that per each question type, question sub-
types are balanced in most cases. For instance, the
question type Compare Action Frequency include 3
sub-types: equal, less, and more, and each is about
4% of the total questions. Similar observations can
be seen in other question types, including Com-
pare Action Sequence, Compare Action Set, and
Attribute Query.



Benchmarks
Diagnostic
benchmark

Visual reasoning Language reasoning
SR TR DOT VIT

Image/video QA, embodied QA
VQA (Antol et al., 2015), Visual7W (Zhu et al., 2016) 7 3 7 7 7

TGIF-QA (Jang et al., 2017), TV-QA (Lei et al., 2018) 7 3 3 7 7

IQA (Gordon et al., 2018), EQA (Wijmans et al., 2019) 7 3 3 7 7

Image/video grounded dialogues, navigation dialogues
VisDial (Das et al., 2017), GuessWhat (De Vries et al., 2017) 7 3 7 3 7

AVSD (Hori et al., 2019), CVDN (Thomason et al., 2019) 7 3 3 3 3

Synthetic image/video QA
SHAPE (Andreas et al., 2016), CLEVR (Johnson et al., 2017) 3 3 7 7 7

SVQA (Song et al., 2018), CLEVRER (Yi* et al., 2020) 3 3 3 7 7

Synthetic dialogues
bAbI (Bordes et al., 2017) 3 7 7 3 7

MNIST Dialog (Seo et al., 2017), CLEVR-Dialog (Kottur et al., 2019) 3 3 7 3 7

DVD (Ours) 3 3 3 3 3

Table 3: Comparison to related benchmarks: Compared to existing datasets for vision-language understanding,
DVD is the first diagnostic benchmark designed for both spatial reasoning (SR) and temporal reasoning (TR) and
explicit requiring dialogue object tracking (DOT) and video interval tracking (VIT) in a multi-turn setting.

Data type Description
Object A dictionary storing the attributes of an object, including its shape, size, color, and

material, and details of its actions, including start and end points
Objects A list of of Objects
Spatial Relation A value from the set: “left”, “right”, “front”, and “behind”
Temporal Relation A value from the set: “before”, “after”, and “during”
Reference Pronoun, such as “it”, “its”, “them”, “the first one”, used to refer to an object or action

mentioned in the last dialogue turn
Last Turn The last dialogue turn, including the last question and answer
Object Tracker A list of objects, storing all objects involved and their attributes mentioned so far up

to the last dialogue turn
Interval Tracker A list of video intervals mentioned so far up to the last dialogue turn
Interval A tuple containing the start and end time of a video segment
Action Any value from “sliding”, “flying”, “rotating”, and “no action”
Action Set Any combination of actions, except for “no ation”, without duplication. A standalone

“no action” is acceptable.
Action Sequence Any combination of actions, except for “no action”, that can form a sequence. A

standalone “no action” is acceptable.
Frequency A positive integer that indicates the number of times an action is undertaken. Fre-

quency can also be expressed by superlatives such as “least” or “most”.
Order An ordinal number that indicates the order of an action during a video interval.
Color A string that indicates an object color: “gold”, “gray”, “green”, “purple”, “red”,

“cyan”, “cylinder”, “blue”, “brown”, “yellow”
Material A string that indicates an object material, including “metal” and “rubber”
Shape A string that indicates an object shape, including “cone”, “cube”, “sphere”, “snitch”
Size A string that indicates an object size, including “large”, “medium”, and “small”
Binary A binary value, either “False” or “True”
Integer An integer value >= 0

Table 4: Data types in DVD: In total, there are 20 data types, which can be categorized by the following groups
(from Top to Bottom): object-based, relation-based, cross-turn based, action-based, attributes, and binary/integer.



Module
Type

Module
Name

Input
Type

Output
Type

Module Description

Count
Count Object Objects Integer Return number of objects
Count Action (Interval, Object,

Action)
Integer Return number of times an object undertakes

a specific type of actions during an interval
Exist Exist Objects Binary Return whether there is at least one resulting

object from the last module

Object-
based

Filter Color (Objects, Color) Objects Return objects of a specific color
Filter
Material

(Objects, Material) Objects Return objects of a specific material

Filter Shape (Objects, Shape) Objects Return objects of a specific shape
Filter Size (Objects, Size) Objects Return objects of a specific size
Filter
Action

(Interval, Objects,
Action)

Objects Return objects performing a specific action
during an interval

Same Action
Set

(Interval, Object) Objects Return objects performing the same action set
as another object during an interval

Same Action
Sequence

(Interval, Object) Objects Return objects performing the same action se-
quence as another object during an interval

Unique Objects Object Return the unique object from resulting objects
Scene Objects Return all objects in the current video

Interval-
based

Find
Interval

(Object, Action) Interval Return the start and end point of the interval
of an action performed by an object

Union
Interval

(Interval1,
Interval2)

Interval Return the overlapping interval from Interval1
and Interval2

Relate
Relate
Spatial

(Interval, Object,
Spatial Relation)

Objects Return objects located in relation to another
object during a specific interval

Relate
Temporal

(Interval, Temporal
Relation)

Interval Return interval in relation to another interval

Integer
-based

Greater Than (Integer1, Integer2) Binary Return whether Integer1 > Integer2
Less Than (Integer1, Integer2) Binary Return whether Integer1 < Integer2
Equal (Integer1, Integer2) Binary Return whether Integer1 = Integer2

Multi-turn

Refer Object (Reference, Last
Turn)

Objects Resolve object reference based on the last dia-
logue turn

Track Object Object Tracker Objects Return all objects mentioned so far in the dia-
logue

Refer
Interval

(Reference, Last
Turn)

Interval Resolve interval reference to an action men-
tioned in the last dialogue turn

Track
Interval

Interval Tracker Interval Return the interval used in the last dialogue
turn

Action
-based

Query Action
Set

(Interval, Object) Action
Set

Return the set of actions performed by an ob-
ject during an interval

Query Action
Sequence

(Interval, Object) Action
Se-
quence

Return the sequence of actions performed by
an object during an interval

Action by
Frequency

(Interval, Object,
Frequency)

Action
Set

Return the set of action performed by an object
for a fixed number of times during an interval

Action by
Order

(Interval, Object,
Order)

Action Return an specific action performed by an ob-
ject during an interval in an ordinal position
(e.g. 1st, 2nd)

Equal Action (Action
Set/Sequence, Ac-
tion Set/Sequence)

Binary Return whether two set of actions are the same
or two sequences of actions are the same

Other
Modules

Query Color Object Color Obtain the color of a specific object
Query
Material

Object Material Obtain the material of a specific object

Query Shape Object Shape Obtain the shape of a specific object
Query Size Object Size Obtain the size of a specific object

Table 5: Details of functional program modules: In total, there are 32 functional program modules, of which 17
are modules introduced for video-based and dialogue-based components.



Question
Type

Question
Interval

Question
Subtype

Example

more until the end of the snitch ’s rotation , does the blue thing fly more
frequently than the purple object flies ?

equal during the whole video , does the sphere rotate as frequently as the
cylinder slides ?

Compare
action

frequency
Compositional

less after the large thing ’s first flight , does the cylinder fly less frequently
than the green object slides ?

count before the large matte thing ’s flight , how many other things perform the
same sequence of activities as the cyan object ?Compare

action
sequence

Compositional
exist until the end of the metal sphere ’s slide , is there any other thing with

the same sequence of activities performed by the average purple thing ?
count throughout the whole video , how many other things undertake the same

types of actions as the large block ?Compare
action

set

Compositional
exist until the end of the cyan shiny thing ’s last slide , is there any other object

that has the same types of actions as the large rubber object ?
by frequency during the gray thing ’s flight , what activities that the big thing perform

the least ?
by order until the end of the average green thing ’s second flight , what is the

purple thing doing first ?Compositional
all actions during the whole video , what is the brown thing doing ?

Atomic (Non-Spatial) all actions after the red cube ’s second slide , what actions does the green sphere
undertake ?

Action
query

Atomic (Spatial) all actions during the small thing ’s second rotation , what actions does the average
rubber thing that is in front of the red thing undertake ?

size how big is the cylinder ?
color what color is the cylinder ?

material what material is the brown cone ?
Attribute

query
None

shape what is the shape of the cyan object ?
Action
count

Compositional - throughout the whole video , how many times does the metal cylinder
spin in total ?

Compositional - throughout the whole video , what number of sliding matte cones are
there ?

Atomic (Spatial) - during the cylinder ’s first rotation , what number of objects are in front
of the purple thing ?

Atomic (Non-spatial) - before the cylinder ’s slide , how many stationary metallic objects are
there ?

Object
count

None - what number of purple things are there ?
Compositional - throughout the whole video , is there any sliding large rubber cone ?

Atomic (Spatial) - during the brown thing ’s rotation , is there any cone in front of the purple
cube ?

Object
exist

Atomic (Non-spatial) - since the start of the big red thing ’s flight , is there a contained small red
metal cylinder ?

Table 6: Question types and examples: In total, there are 8 question types, each of which is designed for one or
more types of video intervals (Atomic, Compositional, or None). In each question type, we also classify further
into question sub-types.

Figure 10: Distribution of questions by question sub-types: For each question type, we classify questions further
into corresponding sub-types. In total, from 8 question types, there are 17 question sub-types.


