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Abstract

Training large-scale question answering
systems is complicated because training
sources usually cover a small portion of
the range of possible questions. This pa-
per studies the impact of multitask and
transfer learning forsimple question an-
swering; a setting for which the reason-
ing required to answer is quite easy, as
long as one can retrieve the correct evi-
dence given a question, which can be diffi-
cult in large-scale conditions. To this end,
we introduce a new dataset of 100k ques-
tions that we use in conjunction with ex-
isting benchmarks. We conduct our study
within the framework of Memory Net-
works (Weston et al., 2015) because this
perspective allows us to eventually scale
up to more complex reasoning, and show
that Memory Networks can be success-
fully trained to achieve excellent perfor-
mance.

1 Introduction

Open-domain Question Answering (QA) systems
aim at providing the exact answer(s) to questions
formulated in natural language, without restriction
of domain. While there is a long history of QA
systems that search for textual documents or on
the Web and extract answers from them (see e.g.
(Voorhees and Tice, 2000; Dumais et al., 2002)),
recent progress has been made with the release of
large Knowledge Bases (KBs) such asFreebase,
which contain consolidated knowledge stored as
atomic facts, and extracted from different sources,
such as free text, tables in webpages or collab-
orative input. Existing approaches for QA from
KBs use learnable components to either trans-
form the question into a structured KB query
(Berant et al., 2013) or learn to embed questions

and facts in a low dimensional vector space and re-
trieve the answer by computing similarities in this
embedding space (Bordes et al., 2014a). How-
ever, while most recent efforts have focused on
designing systems with higher reasoning capabil-
ities, that could jointly retrieve and use multiple
facts to answer, the simpler problem of answer-
ing questions that refer to a single fact of the KB,
which we callSimple Question Answeringin this
paper, is still far from solved.

Hence, existing benchmarks are small; they
mostly cover the head of the distributions of facts,
and are restricted in their question types and their
syntactic and lexical variations. As such, it is still
unknown how much the existing systems perform
outside the range of the specific question tem-
plates of a few, small benchmark datasets, and it is
also unknown whether learning on a single dataset
transfers well on other ones, and whether such
systems can learn from different training sources,
which we believe is necessary to capture the whole
range of possible questions.

Besides, the actual need for reasoning, i.e. con-
structing the answer from more than a single fact
from the KB, depends on the actual structure of the
KB. As we shall see, for instance, a simple prepro-
cessing ofFreebase tremendously increases the
coverage of simple QA in terms of possible ques-
tions that can be answered with a single fact, in-
cluding list questions that expect more than a sin-
gle answer. In fact, the task of simple QA itself
might already cover a wide range of practical us-
ages, if the KB is properly organized.

This paper presents two contributions. First, as
an effort to study the coverage of existing sys-
tems and the possibility to train jointly on differ-
ent data sources via multitasking, we collected the
first large-scale dataset of questions and answers
based on a KB, calledSimpleQuestions. This
dataset, which is presented in Section 2, contains
more than100k questions written by human anno-
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What American cartoonist is the creator of Andy Lippincott? (andy lippincott, character created by, garry trudeau)

Which forest is Fires Creek in? (fires creek, containedby, nantahala national forest)

What is an active ingredient in childrens earache relief ? (childrens earache relief, active ingredients, capsicum)

What does Jimmy Neutron do? (jimmy neutron, fictional character occupation, inventor)

What dietary restriction is incompatible with kimchi? (kimchi, incompatible with dietary restrictions, veganism)

Table 1:Examples of simple QA. Questions and corresponding facts have been extracted from the new
datasetSimpleQuestions introduced in this paper. Actual answers are underlined.

tators and associated toFreebase facts, while the
largest existing benchmark,WebQuestions, con-
tains less than6k questions created automatically
using the Google suggest API.

Second, in sections 3 and 4, we present an
embedding-based QA system developed under
the framework of Memory Networks (MemNNs)
(Weston et al., 2015; Sukhbaatar et al., 2015).
Memory Networks are learning systems centered
around a memory component that can be read and
written to, with a particular focus on cases where
the relationship between the input and response
languages (here natural language) and the storage
language (here, the facts from KBs) is performed
by embedding all of them in the same vector
space. The setting of the simple QA corresponds
to the elementary operation of performing a single
lookup in the memory. While our model bares
similarity with previous embedding models for
QA (Bordes et al., 2014b; Bordes et al., 2014a),
using the framework of MemNNs opens the
perspective to more involved inference schemes
in future work, since MemNNs were shown to
perform well on complex reasoning toy QA tasks
(Weston et al., 2015). We discuss related work in
Section 5.

We report experimental results in Section 6,
where we show that our model achieves excel-
lent results on the benchmarkWebQuestions.
We also show that it can learn from two different
QA datasets to improve its performance on both.
We also present the first successful application of
transfer learning for QA. Using theReverb KB
and QA datasets, we show thatReverb facts can
be added to the memory and used to answerwith-
out retraining, and that MemNNs achieve better
results than some systems designed on this dataset.

2 Simple Question Answering

Knowledge Bases contain facts expressed as
triples (subject, relationship, object),
where subject and object are entities and
relationship describes the type of (directed)
link between these entities. The simple QA prob-

lem we address here consist in finding the answer
to questions that can be rephrased as queries of the
form (subject, relationship, ?), asking for
all objects linked tosubject by relationship.
The questionWhat do Jamaican people speak ?,
for instance, could be rephrased as theFreebase
query (jamaica, language spoken, ?). In
other words, fetching a single fact from a KB is
sufficient to answer correctly.

The termsimple QArefers to the simplicity of
the reasoning process needed to answer questions,
since it involves a single fact. However, this does
not mean that the QA problem is easy per se, since
retrieving this single supporting fact can be very
challenging as it involves to search over millions
of alternatives given a query expressed in natural
language. Table 1 shows that, with a KB with
many types of relationships likeFreebase, the
range of questions that can be answered with a sin-
gle fact is already very broad. Besides, as we shall
see, modiying slightly the structure of the KB can
make some QA problems simplerby adding direct
connections between entities and hence allow to
bypass the need for more complex reasoning.

2.1 Knowledge Bases

We use the KBFreebase1 as the basis of our
QA system, our source of facts and answers. All
Freebase entities and relationships are typed and
the lexicon for types and relationships is closed.
Freebase data is collaboratively collected and
curated, to ensure a high reliability of the facts.
Each entity has an internal identifier and a set of
strings that are usually used to refer to that entity
in text, termedaliases. We consider two extracts
of Freebase, whose statistics are given in Table 2.
FB2M, which was used in (Bordes et al., 2014a),
contains about2M entities and5k relationships.
FB5M, is much larger with about5M entities and
more than7.5k relationships.

We also use the KBReverb as a secondary
source of facts to study how well a model trained
to answer questions usingFreebase facts could

1www.freebase.com

www.freebase.com


FB2M FB5M Reverb
ENTITIES 2,150,604 4,904,397 2,044,752
RELATIONSHIPS 6,701 7,523 601,360
ATOMIC FACTS 14,180,937 22,441,880 14,338,214
FACTS (grouped) 10,843,106 12,010,500 –

Table 2: Knowledge Bases used in this paper.
FB2M andFB5M are two versions ofFreebase.

be used to answer usingReverb’s as well, with-
out being trained onReverb data. This is a pure
setting oftransfer learning. Reverb is interesting
for this experiment because it differs a lot from
Freebase. Its data was extracted automatically
from text with minimal human intervention and is
highly unstructured: entities are unique strings and
the lexicon for relationships is open. This leads
to many more relationships, but entities with mul-
tiple references are not deduplicated, ambiguous
referents are not resolved, and the reliability of the
stored facts is much lower than inFreebase. We
used the full extraction from (Fader et al., 2011),
which contains2M entities and600k relationships.

2.2 The SimpleQuestions dataset

Existing resources for QA such asWebQues-
tions (Berant et al., 2013) are rather small (few
thousands questions) and hence do not provide a
very thorough coverage of the variety of ques-
tions that could be answered using a KB like
Freebase, even in the context of simple QA.
Hence, in this paper, we introduce a new dataset
of much larger scale for the task of simple QA
called SimpleQuestions.2 This dataset consists
of a total of 108,442 questions written in natu-
ral language by human English-speaking annota-
tors each paired with a corresponding fact from
FB2M that provides the answer and explains it.
We randomly shuffle these questions and use 70%
of them (75910) as training set, 10% as validation
set (10845), and the remaining 20% as test set. Ex-
amples of questions and facts are given in Table 1.

We collectedSimpleQuestions in two phases.
The first phase consisted of shortlisting the set of
facts fromFreebase to be annotated with ques-
tions. We usedFB2M as background KB and re-
moved all facts with undefined relationship type
i.e. containing the wordfreebase. We also re-
moved all facts for which the (subject, relation-
ship) pair had more than a threshold number of ob-
jects. This filtering step is crucial to remove facts

2The dataset is available fromhttp://fb.ai/babi.

which would result in trivial uninformative ques-
tions, such as,Name a person who is an actor?.
The threshold was set to 10.

In the second phase, these selected facts were
sampled and delivered to human annotators to
generate questions from them. For the sampling,
each fact was associated with a probability which
defined as a function of its relationship frequency
in the KB: to favor variability, facts with relation-
ship appearing more frequently were given lower
probabilities. For each sampled facts, annotators
were shown the facts along with hyperlinks to
freebase.com to provide some context while
framing the question. Given this information, an-
notators were asked to phrase a question involving
the subject and the relationship of the fact, with
the answer being the object. The annotators were
explicitly instructed to phrase the question differ-
ently as much as possible, if they encounter multi-
ple facts with similar relationship. They were also
given the option of skipping facts if they wish to
do so. This was very important to avoid the anno-
tators to write a boiler plate questions when they
had no background knowledge about some facts.

3 Memory Networks for Simple QA

A Memory Network consists of a memory (an in-
dexed array of objects) and a neural network that
is trained to query it given some inputs (usually
questions). It has four components:Input map
(I), Generalization(G), Output map(O) andRe-
sponse(R) which we detail below. But first, we
describe the MemNNs workflow used to set up a
model for simple QA. This proceeds in three steps:

1. Storing Freebase: this first phase parses
Freebase (eitherFB2M or FB5M depending on
the setting) and stores it in memory. It uses the
Input module to preprocess the data.

2. Training: this second phase trains the
MemNN to answer question. This usesInput, Out-
put andResponsemodules, the training concerns
mainly the parameters of the embedding model at
the core of theOutputmodule.

3. Connecting Reverb: this third phase adds
new facts coming fromReverb to the memory.
This is done after training to test the ability of
MemNNs to handle new facts without having to
be re-trained. It uses theInput module to prepro-
cessReverb facts and theGeneralizationmodule
to connect them to the facts already stored.

http://fb.ai/babi
freebase.com


After these three stages, the MemNN is ready
to answer any question by running theI, O andR
modules in turn. We now detail the implementa-
tion of the four modules.

3.1 Input module

This module preprocesses the three types of data
that are input to the network:Freebase facts that
are used to populate the memory, questions that
the system need to answer, andReverb facts that
we use, in a second phase, to extend the memory.

Preprocessing Freebase TheFreebase data is
initially stored as atomic facts involving single en-
tities as subject and object, plus a relationship be-
tween them. However, this storage needs to be
adapted to the QA task in two aspects.

First, in order to answer list questions, which
expect more than one answer, we redefine a fact
as being a triple containing a subject, a relation-
ship, and the set of all objects linked to the subject
by the relationship. Thisgroupingprocess trans-
forms atomic facts into grouped facts, which we
simply refer to asfacts in the following. Table 2
shows the impact of this grouping: onFB2M, this
decreases the number of facts from14M to 11M
and, onFB5M, from 22M to 12M.

Second, the underlying structure ofFreebase
is a hypergraph, in which more than two entities
can be linked. For instance dates can be linked
together with two entities to specify the time pe-
riod over which the link was valid. The under-
lying triple storage involvesmediator nodesfor
each such fact, effectively making entities linked
through paths of length 2, instead of 1. To ob-
tain direct links between entities in such cases, we
created a single fact for these facts by removing
the intermediate node and using the second rela-
tionship as the relationship for the new condensed
fact. This step reduces the need for searching the
answer outside the immediate neighborhood of the
subject referred to in the question, widely increas-
ing the scope of the simple QA task onFreebase.
On WebQuestions, a benchmark not primarily
designed for simple QA, removing mediator nodes
allows to jump from around65% to 86% of ques-
tions that can be answered with a single fact.

Preprocessing Freebase facts A fact with k ob-
jects y = (s, r, {o1, ..., ok}) is represented by a
bag-of-symbol vectorf(y) in R

NS , whereNS is
the number of entities and relationships. Each di-
mension off(y) corresponds to a relationship or

an entity (independent of whether it appears as
subject or object). The entries of the subject and
of the relationship have value1, and the entries of
the objects are set to1/k. All other entries are0.

Preprocessing questions A question q is
mapped to a bag-of-ngrams representationg(q) of
dimensionRNV whereNV is the size of the vo-
cabulary. The vocabulary contains all individual
words that appear in the questions of our datasets,
together with the aliases ofFreebase entities,
each alias being a single n-gram. The entries of
g(q) that correspond to words and n-grams ofq
are equal to1, all other ones are set to0.

Preprocessing Reverb facts In our experiments
with Reverb, each facty = (s, r, o) is represented
as a vectorh(y) ∈ R

NS+NV . This vector is a bag-
of-symbol for the subjects and the objecto, and
a bag-of-words for the relationshipr. The exact
composition ofh is provided by theGeneraliza-
tion module, which we describe now.

3.2 Generalization module

This module is responsible for adding new ele-
ments to the memory. In our case, the memory has
a multigraph structure where each node is aFree-
base entity and labeled arcs in the multigraph are
Freebase relationships: after their preprocessing,
all Freebase facts are stored using this structure.

We also consider the case where new facts,
with a different structure (i.e. new kinds of re-
lationship), are provided to the MemNNs by us-
ing Reverb. In this case, the generalization mod-
ule is then used to connectReverb facts to the
Freebase-based memory structure, in order to
make them usable and searchable by the MemNN.

To link the subject and the object of aReverb
fact toFreebase entities, we use precomputed en-
tity links (Lin et al., 2012). If such links do not
give any result for an entity, we search forFree-
base entities with at least one alias that matches
theReverb entity string. These two processes al-
lowed to match17% of Reverb entities toFree-
base ones. The remainder of entities were en-
coded using bag-of-words representation of their
strings, since we had no other way of matching
them toFreebase entities. All Reverb relation-
ships were encoded using bag-of-words of their
strings. Using this approximate process, we are
able to store eachReverb fact as a bag-of-symbols
(words orFreebase entities) all already seen by
the MemNN during its training phase based on



Freebase. We can then hope that what had been
learned there could also be successfully used to
queryReverb facts.

3.3 Output module

The output module performs the memory lookups
given the input to return thesupporting factsdes-
tined to eventually provide the answer given a
question. In our case of simple QA, this mod-
ule only returns a single supporting fact. To avoid
scoring all the stored facts, we first perform an ap-
proximate entity linking step to generate a small
set of candidate facts. The supporting fact is the
candidate fact that is most similar to the question
according to an embedding model.

Candidate generation To generate candidate
facts, we matchn-grams of words of the question
to aliases ofFreebase entities and select a few
matching entities. All facts having one of these
entities as subject are scored in a second step.

We first generate all possiblen-grams from the
question, removing those that contain an interrog-
ative pronoun or1-grams that belong to a list of
stopwords. We only keep then-grams which are
an alias of an entity, and then discard alln-grams
that are a subsequence of anothern-gram, except
if the longern-gram only differs byin, of, for or
theat the beginning. We finally keep the two enti-
ties with the most links inFreebase retrieved for
each of the five longest matchedn-grams.

Scoring Scoring is performed using an embed-
ding model. Given two embedding matrices
WV ∈ R

d×NV and WS ∈ R
d×NS , which re-

spectively contain, in columns, thed-dimensional
embeddings of the words/n-grams of the vocabu-
lary and the embeddings of theFreebase entities
and relationships, the similarity between question
q and aFreebase candidate facty is computed as:

SQA(q, y) = cos(WV g(q),WSf(y)) ,

with cos() the cosine similarity. When scoring a
fact y from Reverb, we use the same embeddings
and build the matrixWV S ∈ R

d×(NV +NS), which
contains the concatenation in columns ofWV and
WS , and also compute the cosine similarity:

SRV B(q, y) = cos(WV g(q),WV Sh(y)) .

The dimensiond is a hyperparameter, and the em-
bedding matricesWV andWS are the parameters
learned with the training algorithm of Section 4.

3.4 Response module

In Memory Networks, theResponsemodule post-
processes the result of theOutputmodule to com-
pute the intended answer. In our case, it returns
the set of objects of the selected supporting fact.

4 Training

This section details how we trained the scoring
function of theOutput module using a multitask
training process on four different sources of data.

First, in addition to the newSimpleQuestions
dataset described in Section 2, we also usedWe-
bQuestions, a benchmark for QA introduced in
(Berant et al., 2013): questions are labeled with
answer strings from aliases ofFreebase entities,
and many questions expect multiple answers. Ta-
ble 3 details the statistics of both datasets.

We also train on automatic questions gener-
ated from the KB, that isFB2M or FB5M de-
pending on the setting, which are essential to
learn embeddings for the entities not appearing
in either WebQuestions or SimpleQuestions.
Statistics ofFB2M or FB5M are given in Ta-
ble 2; we generated one training question per
fact following the same process as that used in
(Bordes et al., 2014a).

Following previous work such as
(Fader et al., 2013), we also use the indirect
supervision signal of pairs of question para-
phrases. We used a subset of the large set of
paraphrases extracted from WIKI ANSWERS

and introduced in (Fader et al., 2014). Our
Paraphrases dataset is made of15M clusters
containing 2 or more paraphrases each.

4.1 Multitask training

As in previous work on embedding mod-
els and Memory Networks (Bordes et al., 2014a;
Bordes et al., 2014b; Weston et al., 2015), the em-
beddings are trained with a ranking criterion. For
QA datasets the goal is that in the embedding
space, a supporting fact is more similar to the
question than any othernon-supportingfact. For
the paraphrase dataset, a question should be more
similar to one of its paraphrases than to any an-
other question.

The multitask learning of the embedding ma-
tricesWV andWS is performed by alternating
stochastic gradient descent (SGD) steps over the
loss function on the different datasets. For the
QA datasets, given a question/supporting fact pair



(q, y) and a non-supporting facty′, we perform a
step to minimize the loss function

ℓQA(q, y, y
′) =

[

γ − SQA(q, y) + SQA(q, y
′)
]

+
,

where [.]+ is the positive part andγ is a margin
hyperparameter. For the paraphrase dataset, the
similarity score between two questionsq and q′

is also the cosine between their embeddings, i.e.
SQQ(q, q

′) = cos(WV g(q),WV g(q
′)), and given

a paraphrase pair(q, q′) and another questionq′′,
the loss is:

ℓQQ(q, q
′, q′′) =

[

γ−SQQ(q, q
′)+SQQ(q, q

′′)
]

+
.

The embeddings (i.e. the columns ofWV and
WS) are projected onto theL2 unit ball after
each update. At each time step, a sample from
the paraphrase dataset is drawn with probabil-
ity 0.2 (this probability is arbitrary). Otherwise,
a sample from one of the three QA datasets,
chosen uniformly at random, is taken. We use
the WARP loss (Weston et al., 2010) to speed
up training, and Adagrad (Duchi et al., 2011) as
SGD algorithm multi-threaded withHogWild!
(Recht et al., 2011). Training takes 2-3 hours on
20 threads.

4.2 Distant supervision

Unlike for SimpleQuestions or the synthetic QA
data generated fromFreebase, for WebQues-
tions only answer strings are provided for ques-
tions: the supporting facts are unknown.

In order to generate the supervision, we use
the candidate fact generation algorithm of Sec-
tion 3.3. For each candidate fact, the aliases of its
objects are compared to the set of provided answer
strings. The fact(s) which can generate the maxi-
mum number of answer strings from their objects’
aliases are then kept. If multiple facts are obtained
for the same question, the ones with the minimal
number of objects are considered as supervision
facts. This last selection avoids favoring irrelevant
relationships that would be kept only because they
point to many objects but would not be specific
enough. If no answer string could be found from
the objects of the initial candidates, the question is
discarded from the training set.

Future work should investigate the process of
weak supervised training of MemNNs recently in-
troduced in (Sukhbaatar et al., 2015) that allows to
train them without any supervision coming from
the supporting facts.

WebQuestions SimpleQuestions Reverb
TRAIN 3,000 75,910 –
VALID . 778 10,845 –
TEST 2,032 21,687 691

Table 3: Training and evaluation datasets.
Questions automatically generated from the KB
and paraphrases can also be used in training.

4.3 Generating negative examples

As in (Bordes et al., 2014a; Bordes et al., 2014b),
learning is performed with gradient descent, so
that negative examples (non-supporting facts or
non-paraphrases) are generated according to a ran-
domized policy during training.

For paraphrases, given a pair(q, q′), a non-
paraphrase pair is generated as(q, q′′) whereq′′ is
a random question of the dataset, not belonging to
the cluser ofq. For question/supporting fact pairs,
we use two policies. The default policy to ob-
tain a non-supporting fact is to corrupt the answer
fact by exchanging its subject, its relationship or
its object(s) with that of another fact chosen uni-
formly at random from the KB. In this policy, the
element of the fact to corrupt is chosen randomly,
with a small probability (0.3) of corrupting more
than one element of the answer fact. The second
policy we propose, calledcandidates as negatives,
is to take as non-supporting fact a randomly cho-
sen fact from the set of candidate facts. While the
first policy is standard in learning embeddings, the
second one is more original, and, as we see in the
experiments, gives slightly better performance.

5 Related Work

The first approaches to open-domain QA were
search engine-based systems, where keywords ex-
tracted from the question are sent to a search en-
gine, and the answer is extracted from the top re-
sults (Yahya et al., 2012; Unger et al., 2012). This
method has been adapted to KB-based QA
(Yahya et al., 2012; Unger et al., 2012), and ob-
tained competitive results with respect to semantic
parsing and embedding-based approaches.

Semantic parsing ap-
proaches (Cai and Yates, 2013;
Berant et al., 2013; Kwiatkowski et al., 2013;
Berant and Liang, 2014; Fader et al., 2014) per-
form a functional parse of the sentence that
can be interpreted as a KB query. Even though
these approaches are difficult to train at scale



because of the complexity of their inference, their
advantage is to provide a deep interpretation of the
question. Some of these approaches require little
to no question-answer pairs (Fader et al., 2013;
Reddy et al., 2014), relying on simple rules to
tranform the semantic interpretation to a KB
query.

Like our work, embedding-based meth-
ods for QA can be seen as simple MemNNs.
The algorithms of (Bordes et al., 2014b;
Weston et al., 2015) use an approach similar
to ours but are based onReverb rather than
Freebase, and relied purely on bag-of-word
for both questions and facts. The approach of
(Yang et al., 2014) uses a different representation
of questions, in which recognized entities are
replaced by anentity token, and a different train-
ing data using entity mentions from WIKIPEDIA .
Our model is closest to the one presented in
(Bordes et al., 2014a), which is discussed in more
details in the experiments.

6 Experiments

This section provides an extensive evaluation of
our MemNNs implementation against state-of-
the-art QA methods as well as an empirical study
of the impact of using multiple training sources on
the prediction performance.

6.1 Evaluation and baselines

Table 3 details the dimensions of the test
sets of WebQuestions, SimpleQuestions
and Reverb which we used for evalua-
tion. On WebQuestions, we evaluate
against previous results on this benchmark
(Berant et al., 2013; Yao and Van Durme, 2014;
Berant and Liang, 2014; Bordes et al., 2014a;
Yang et al., 2014) in terms of F1-score as defined
in (Berant and Liang, 2014), which is the average,
over all test questions, of the F1-score of the
sets of predicted answers. Since no previous
result was published onSimpleQuestions, we
only compare different versions of MemNNs.
SimpleQuestions questions are labeled with
their entire Freebase fact, so we evaluate in
terms of path-level accuracy, in which a prediction
is correct if the subject and the relationship were
correctly retrieved by the system.

The Reverb test set, based on the KB of the
same name and introduced in (Fader et al., 2013)
is used for evaluation only. It contains691

questions. We consider the task of re-ranking a
small set of candidate answers, which areRe-
verb facts and are labeled as correct or incorrect.
We compare our approach to the original system
(Fader et al., 2013), to (Bordes et al., 2014b) and
to the original MemNNs (Weston et al., 2015), in
terms of accuracy, which is the percentage of ques-
tions for which the top-ranked candidate fact is
correct.

6.2 Experimental setup

All models were trained with at least the dataset
made of synthetic questions created from the KB.
The hyperparameters were chosen to maximize
the F1-score onWebQuestions validation set, in-
dependently of the testing dataset. The embed-
ding dimension and the learning rate were chosen
among{64, 128, 256} and{1, 0.1, ..., 1.0e−4} re-
spectively, and the marginγ was set to0.1. For
each configuration of hyperparameters, the F1-
score on the validation set was computed regularly
during learning to perform early stopping.

We tested additional configurations for our al-
gorithm. First, in theCandidates as Negativesset-
ting (negative facts are sampled from the candi-
date set, see Section 4), abbreviated CANDS AS

NEGS, the experimental protocol is the same as
in the default setting but the embeddings are ini-
tialized with the best configuration of the default
setup. Second, our model shares some similarities
with an approach studied in (Bordes et al., 2014a),
in which the authors noticed important gains using
a subgraph representation of answers. For com-
pleteness, we also added such a subgraph repre-
sentation of objects. In that setting, calledSub-
graph, each objecto of a fact is itself repre-
sented as a bag-of-entities that encodes the imme-
diate neighborhood ofo. This Subgraphmodel is
trained similarly as our main approach and only
the results of a post-hoc ensemble combination of
the two models (where the scores are added) are
presented. We also report the results obtained by
an ensemble of the 5 best models on validation
(subgraph excepted); this is denoted5 models.

6.3 Results

Comparative results The results of the com-
parative experiments are given in Table 4. On
the main benchmarkWebQuestions, our best re-
sults use all data sources, the bigger extract from
Freebase and the CANDS AS NEGSsetting. The
two ensembles achieve excellent results, with F1-



WebQuestions SimpleQuestions Reverb
F1-SCORE(%) ACCURACY (%) ACCURACY (%)

BASELINES

Random guess 1.9 4.9 35
(Berant et al., 2013) 31.3 n/a n/a
(Fader et al., 2014) n/a n/a 54

(Bordes et al., 2014b) 29.7 n/a 73
(Bordes et al., 2014a) –using path 35.3 n/a n/a

(Bordes et al., 2014a) –using path + subgraph 39.2 n/a n/a
(Berant and Liang, 2014) 39.9 n/a n/a

(Yang et al., 2014) 41.3 n/a n/a
(Weston et al., 2015) –the original MemNN n/a n/a 72

MEMORY NETWORKS(never trained onReverb – only transfer)
KB TRAIN SOURCES CANDS ENSEMBLE

WQ SIQ PRP AS NEGS

FB2M yes yes yes – – 36.2 62.7 n/a
FB5M – – – – – 18.7 44.5 52
FB5M – – yes – – 22.0 48.1 62
FB5M – yes – – – 22.7 61.6 52
FB5M – yes yes – – 28.2 61.2 64
FB5M yes – – – – 40.1 46.6 58
FB5M yes – yes – – 40.4 47.4 61
FB5M yes yes – – – 41.0 61.7 52
FB5M yes yes yes – – 41.0 62.1 67
FB5M yes yes yes yes – 41.2 62.2 65
FB5M yes yes yes yes 5 models 41.9 63.9 68
FB5M yes yes yes yes Subgraph 42.2 62.9 62

Table 4:Experimental results for previous models of the literature and variants of MemoryNetworks.
All results are on the test sets.WQ, SIQ andPRP stand forWebQuestions, SimpleQuestions and
Paraphrases respectively. More details in the text.

scores of41.9% and42.2% respectively. The best
published competing approach (Yang et al., 2014)
has an F1-score of41.3%, which is comparable
to a single run of our model (41.2%). On the
new SimpleQuestions dataset, the best models
achieve62 − 63% accuracy, while the support-
ing fact is in the candidate set for about86%
of SimpleQuestions questions. This shows that
MemNNs are effective at re-ranking the candi-
dates, but also that simple QA is still not solved.

Our approach bares similarity to
(Bordes et al., 2014a) -using path. They use
FB2M, and so their result (35.3% F1-score on
WebQuestions) should be compared to our
36.2%. The models are slightly different in that
they replace the entity string with the subject
entity in the question representation and that
we use the cosine similarity instead of the dot
product, which gave consistent improvements.
Still, the major differences come from how we
useFreebase. First, the removal of the mediator
nodes allows us to restrict ourselves to single sup-
porting facts, while they search in paths of length
2 with a heuristic to select the paths to follow
(otherwise, inference is too costly), which makes
our inference simpler and more efficient. Second,

using grouped facts, we integrate multiple answers
during learning (through the distant supervision),
while they use a grouping heuristic at test time.
Grouping facts also allows us to scale much better
and to train onFB5M. On WebQuestions, not
specifically designed as a simple QA dataset,
86% of the questions can now be answered with a
single supporting fact, and performance increases
significantly (from 36.2% to 41.0% F1-score).
Using the biggerFB5M as KB does not change
performance onSimpleQuestions because it
was based onFB2M, but the results show that our
model is robust to the addition of more entities
than necessary.

Transfer learning on Reverb In this set of ex-
periments, allReverb facts are added to the mem-
ory, without any retraining, and we test our ability
to rerank answers on the companion QA set. Thus,
Table 4 (last column) presents the result of our
modelwithout trainingon Reverb against meth-
ods specifically developed on that dataset. Our
best results are67% accuracy (and68% for the
ensemble of5 models), which are better than the
54% of the original paper and close to the state-
of-the-art73% of (Bordes et al., 2014b). These re-
sults show that the Memory Network approach can



integrate and use new entities and links.

Importance of data sources The bottom half of
Table 4 presents the results on the three datasets
when our model is trained with different data
sources. We first notice that models trained on
a single QA dataset perform poorly on the other
datasets (e.g.46.6% accuracy onSimpleQues-
tions for the model trained onWebQuestions
only), which shows that the performance onWe-
bQuestions does not necessarily guarantee high
coverage for simple QA. On the other hand, train-
ing on both datasets only improves performance;
in particular, the model is able to capture all ques-
tion patterns of the two datasets; there is no “neg-
ative interaction”.

While paraphrases do not seem to help much
on WebQuestions and SimpleQuestions, ex-
cept when training only with synthetic questions,
they have a dramatic impact on the performance
on Reverb. This is becauseWebQuestions and
SimpleQuestions questions follow simple pat-
terns and are well formed, whileReverb questions
have more syntactic and lexical variability. Thus,
paraphrases are important to avoid overfitting on
specific question patterns of the training sets.

7 Conclusion

This paper presents an implementation of
MemNNs for the task of large-scale simple QA.
Our results demonstrate that, if properly trained,
MemNNs are able to handle natural language and
a very large memory (millions of entries), and
hence can reach state-of-the-art on the popular
benchmarkWebQuestions.

We want to emphasize that many of our find-
ings, especially those regarding how to format the
KB, do not only concern MemNNs but potentially
any QA system. This paper also introduced the
new datasetSimpleQuestions, which, with100k
examples, is one order of magnitude bigger than
WebQuestions: we hope that it will foster inter-
esting new research in QA, simple or not.
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