
Learn-to-Share: A Hardware-friendly Transfer Learning Framework
Exploiting Computation and Parameter Sharing

Cheng Fu 1 Hanxian Huang 1 Xinyun Chen 2 Yuandong Tian 3 Jishen Zhao 1

Abstract

Task-specific fine-tuning on pre-trained transform-
ers has achieved performance breakthroughs in
multiple NLP tasks. Yet, as both computation and
parameter size grows linearly with the number
of sub-tasks, such methods are increasingly diffi-
cult to adopt in the real world due to unrealistic
memory and computation overhead on comput-
ing devices. Previous works on fine-tuning focus
on reducing the growing parameter size to save
storage cost by parameter sharing. However, com-
pared to storage, the constraint of computation is
a more critical issue with the fine-tuning models
in modern computing environments; prior works
fall short on computation reduction.

To enable efficient fine-tuning, we propose LeTS,
a framework that leverages both computation and
parameter sharing across multiple tasks. LeTS
consists of two principles. First, LeTS decou-
ples the computation dependency in traditional
fine-tuning model by proposing a novel neural
architecture to reuse the intermediate results com-
puted from the pre-trained model and the input.
Furthermore, we leverage differentiable neural ar-
chitecture search to determine task-specific com-
putation sharing scheme. Second, by treating the
final weight parameters as a weight difference
added to the pre-trained weight, we propose a
novel early stage pruning approach to generate a
mask at the beginning of fine-tuning. By combin-
ing these two principles, LeTS further reduces the
computation demand by exploiting the sparsity
feature of weight difference. Extensive experi-
ments show that with 1.4% of extra parameters
per task, LeTS reduces the computation by 49.5%
on GLUE benchmarks with only 0.2% accuracy
loss compared to the full fine-tuning method.

1University of San Diego 2University of California, Berke-
ley 3Facebook AI Research. Correspondence to: Cieua Vvvvv
<c.vvvvv@googol.com>.

Proceedings of the 38th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1: Roadmap of GLUE score (nine sub-tasks) v.s.
total operations and parameters. The area of a point is
proportional to the parameter size. F-n denotes freezing
bottom n layers. MB, TB, DB represent MobileBERT, Tiny-
BERT, DistillBERT respectively. LeTS outperforms other
parameter-sharing methods in terms of computation and
parameter efficiency. LeTS is orthogonal to model compres-
sion techniques (e.g. MB/TB/DB) as LeTS does not modify
the pre-trained model for fine-tuning.

1. Introduction
Fine-tuning from pre-trained Transformers (Vaswani et al.,
2017) has become the de-facto method for many NLP tasks,
with performance breakthrough in various natural language
understanding benchmarks (Devlin et al., 2019; Lan et al.,
2020; Liu et al., 2019d; Joshi et al., 2020; Yang et al., 2019).
Yet, the growing number of different NLP tasks arriving
in stream makes this approach hard to integrate into real-
world commercial products. The key bottlenecks lie in both
computation and storage constraints. In particular, with
conventional fine-tuning methods (Howard & Ruder, 2018;
Wang et al., 2018), both single input processing latency and
storage requirement grow linearly to the number of sub-
tasks. This incurs an impractical computation, power, and
storage overhead for a commercial product.

Both computation and storage constraints are critical to fine-
tuning tasks. On the one hand, without much sacrifice in
the quality of service, cloud computing vendors care more
about the computation constraint to further improve the
quality. The storage overhead can potentially be resolved
by the advances in memory and storage technologies (In-
tel, 2019; Consortium, a;b), which enable the low-cost and
large capacity data storage. On the other hand, in memory-

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

limited devices (e.g, mobile), both constraints are critical
to user experience. Most prior works focus on reducing the
storage constrained across multiple sub-tasks by leveraging
parameter-sharing. A multi-task learning (MTL) solution
trains all the sub-tasks together (Liu et al., 2019b; Clark
et al., 2019). However, it requires access to all the sub-tasks
at the design time. Furthermore, MTL is not scalable with
the increasing number of sub-tasks, as it is hard to balance
the performance of multiple tasks and solve them equally
well (Stickland & Murray, 2019).

Recently, Adapter (Houlsby et al., 2019) considers the new
tasks in the fashion of arriving in stream which is more scal-
able compared to MTL. It proposes to add a task-specific
building block between each attention layer and freeze the
other parameters during fine-tuning. Recent works pro-
pose a differentiable pruning method (Guo et al., 2020) that
achieves better results than Adapter. All the aforementioned
parameter-efficient efforts cannot relieve the computation
bottleneck in multi-task inference, because tuning the bot-
tom layers will influence the computation results in the
downstream layers. As such, re-computation is required.

Our goal is to resolve the computation and parameter con-
straints in multi-task evaluation. To achieve our goal, we pro-
pose Learn-to-Share (LeTS), a new transfer-learning frame-
work that exploits both computation- and parameter-sharing
to reduce computation and storage demands, while preserv-
ing a high sub-task performance. The key contributions of
LeTS are as follows:

(i) We propose a new fine-tuning architecture design space
(Figure 2(a)). The output of each self-attention layer will be
aggregated at the end using a pooling layer and a bidirec-
tional LSTM (Huang et al., 2015) (Bi-LSTM) to obtain the
final classification result. In this way, modifications on the
bottom layers do not influence the downstream computation
which enables concurrent execution inside the transformer.
Many computations can be bypassed when the Bi-LSTM
uses the already computed attention as input. Also, we iden-
tify that even more computations can be reduced by using
layer normalization approximation (Sec. 3.2).

(ii) We design a differentiable neural architecture search
(NAS) algorithm to find an optimal fine-tuning architecture
for a sub-task. Specifically, NAS selects the input to each
attention layer and the final pooling layer. When a com-
puted result is selected as the layers’ input, we can bypass
many computations to achieve computation sharing. A new
computation-aware loss function for our search space is pro-
posed to search models that can reduce computation and
preserve task accuracy.

(iii) We treat the obtained fine-tuning model weights as
the sum of pre-trained weights and weight difference (δ):
W f = W p +W δ , and propose a novel early-stage pruning

method to design Wδ . A weight mask to represent pruning is
generated for W δ at the beginning of the fine-tuning using a
single batch training. Instead of randomly initialization W δ ,
we use a task-specific gradient accumulation to initialize the
W δ to get a robust weight mask.

(iv) We systematically integrate (ii) and (iii) to generate
fine-tuning models with high task performance and low-
computation and storage cost. During NAS, a generated
mask from (ii) on the trainable parameters can better char-
acterize the model performance. Also, during the online
prototyping, when the input and output of a given linear
layer is already computed, the computation can be reduced
into a sparse-matrix multiplication by leveraging the sparsity
produced from (iii).

Our framework offers a holistic solution to designing effi-
cient fine-tuning language models for different computing
environments. Extensive experiments show that LeTS re-
duces computation cost by a large margin while achieving
a competitive sub-task accuracy. More specifically, for
computing and storage restricted platforms, LeTS yields
49.5% computation reduction by adding only 1.4% extra
parameters per task while preserving the accuracy (-0.2%
on average) of the fine-tuned BERT (Devlin et al., 2019) on
GLUE benchmarks. For a computing environment with low-
cost storage budget, LeTS can achieve 40.2% computation
reduction with no accuracy loss (+0.3%). LeTS becomes
more powerful in saving computations with the increasing
amount of sub-tasks. For BERTBASE, LeTS requires 7.2
GFLOPs1 for every newly added task compared to 22.5
GFLOPs of a fine-tuned BERTBASE.

LeTS is the first framework that considers both computa-
tion and storage efficiency in fine-tuning for multi-task NLP.
Our work can be combined with model compression tech-
niques (Lan et al., 2020; Sanh et al., 2019) to enable agile
and efficient NLP evaluation.

2. Overview
In this section, we discuss the key design components in
LeTS. The detailed design flow is shown in Algorithm 1.

Motivation. In a real-time multi-task evaluation, an in-
put query is evaluated by many fine-tuned transformers at
the same time. Each one focuses on one specific sub-task
and some tasks may depend on the computation result from
others. For instance, multiple tasks exist in document edit-
ing software (e.g., Google Doc or Microsoft Word), such
as analyzing tone, checking grammar and then generating
editing suggestions. Yet, the traditional fine-tuning method
is extremely inefficient as the required computation and pa-
rameters grow linearly to the number of sub-tasks, which
incurs the degraded quality of service and user experience.
In this work, we aim to yield speedup through computation

11 GFLOPs = 1 billion floating-point operations

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Figure 2: (a) The search space of LeTS for computation and parameter sharing. xp
j can be reused by all the sub-tasks.

For each sub-task, NAS selectors choose the inputs to the pooling layer and the next layer. W δ
j is sparse (pruned by

Delta-Pruning). (b) Zoom-in of a single self-attention layer. (c) An example model on BERTBASE produced by the search.
(d) Standard fine-tuning architecture / Freezing bottom 6 layers / Appending 1 layer on top of the pre-trained model.

reuse for multi-task evaluation. Different from previous
work (Xin et al., 2020) that uses layer output entropy to
stop the execution earlier, LeTS can generate a guaranteed
speedup that is not input-dependent.

Limitation of traditional fine-tuning procedures. We
observe three limitations that hinge the parallelization and
computation sharing in traditional fine-tuned procedures:
(1) The computation of an attention layer can only start exe-
cution when all its previous layers yield the results. (2) Any
modification of the bottom layers change the subsequent
computation, thus re-computation is required. (3) Although
previous parameter-sharing work (Guo et al., 2020) can
make W δ sparse to reduce parameter growth in a sub-task,
this sparsity cannot be exploited to reduce computation.

LeTS design. Motivated by these observations, we pro-
pose a novel fine-tuning architecture that can reduce com-
putation by reusing computed results. Also, the new archi-
tecture decouples the data dependency of different layers
to enable speedup. The architectures can be formulated
into a search space as shown in Figure 2(a). Given input
query x0, LeTS first caches all N attention layers’ output
(xp

j , j ∈ {1...N}) computed from input query x0 and pre-
trained model W p. For a given layer j in sub-task s, the
input to the trainable layer W f

j can be chosen from cached

result xp
j−1 or the computed result x f

j−1 from the previous
trainable layer. The attention output to the pooling layer can
be chosen from (i) xp

j−1 or (ii) x f
j−1. LeTS uses pooling and

Bi-LSTM to aggregate the outputs from attention layers to
generate the final result.

We use an example searched architecture in Figure 2(c) to
illustrate the advantages of the new architecture :
(i) Bypass self-attention layers. When the cached result

xp
j is used by the final pooling layer and next trainable layer,

the computation and parameters of the entire layer can be
saved. This can be applied at layer W p

j where j ∈ {0,1,2,6}.
(ii) Exploit the sparsity of W δ . LeTS can leverage the
sparsity feature of W δ

j . More specifically, when the input to
the attention layer is xp

j , LeTS computes xp
j ·W δ

j and adds
it to a cached result. In Figure 2(c), when j ∈ {3,4,5,7,9},
the computation between xp

j and W f K
j , W f Q

j , and W fV
j

(key/query/value parameter) can be reduced using this un-
structured sparsity. Note that this sparsity matrix multiplica-
tion can be easily implemented under any popular machine
learning libraries (Pytorch-Sparse; Tensorflow-Sparse).
(iii) Bypass linear layers in self-attention. The pool-
ing layer extracts the first hidden vector of each layer’s
output as the aggregate representation. For W f

j where
j ∈ {3,4,5,7,9,11}, only the first hidden vector of the out-
put is used in the downstream computation; in this scenario,
we move the pooling operation between n3 and n4 in Fig-
ure 2(b). As such, n4 and n5 in the self-attention layer can
be reduced to a matrix-vector multiplication. The normaliza-
tion layer (n6) would be applied to only the pooling vector
as an approximation for the original layer output (Sec. 3.2).
(iv) Enable concurrent execution inside each trans-
former. When the sub-tasks are dependent on each other
and must be executed sequentially, the execution of our
model can still be paralleled across computing devices in-
side each transformer. This is because the parameter tuning
on the early layers do not necessarily influence the down-
stream computation anymore. In Figure 2(c), assuming all
nine tasks share the same architecture, the execution time is
determined by the critical path (W p

0 -to-W p
8 + 9×W f

9 -to-W f
11),

which will be 9T +3T×9 (3.0×max speedup) compared to
12T ×9 of traditional BERTBASE fine-tuning (Figure 1(d)),
assuming executing each attention layer takes time T .

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

A breakdown of the extra computation and parameter per
task by leveraging (i)(ii)(iii) is shown in Figure 3. The
computation and parameter overheads of the extra linear
layers and Bi-LSTM are 0.01%/0.75% (Figure 3).

Figure 3: Extra computation and parameter breakdown lever-
aging (i) (ii) and (iii) for the example in Figure 2(c).

Neural architecture search for computation sharing.
The obtained architecture should achieve competitive sub-
task accuracy with low extra computation operations. To
address the above problem, we leverage a differentiable
NAS algorithm with a computation-aware loss to reflect
both computation cost and accuracy of a sub-task. (Sec. 3)

W δ pruning. Recent parameter-sharing approaches ei-
ther add a new module between attention layers (Pfeiffer
et al., 2020; Houlsby et al., 2019) or generate a weight
mask simultaneously during fine-tuning using l0 normaliza-
tion (Guo et al., 2020). Yet, many works (Gale et al., 2019)
have shown that l0 regularization output is inconsistent for
large-scale tasks. Also, the training parameters (i.e., weight
mask and parameters) double during fine-tuning.

In this work, we treat the final fine-tuning weight W f as
the addition between pre-trained weight W p and a weight
difference (W δ). By proposing an early-stage pruning ap-
proach, called Delta-Pruning, we compute the connection
sensitivity of W δ , which reveals the important connections
in the W δ for a given task (See Sec. 3.1). In this way, we can
obtain the deterministic task-specific mask at the beginning
of fine-tuning and use the generated mask to guide NAS.

3. Method
In this section, we detail the Delta-Pruning and
Computation-aware neural architecture search algorithms
in Algorithm 1.

3.1. Delta-Pruning in Early Stage

Delta-Pruning is motivated by SNIP (Lee et al., 2019) which
targets to generate weight sparsity before training. We de-
compose the final fine-tuned weight (W f) as Eq. (1).

W f =W p + c�W δ (1)
Here, W δ ∈ Rd is the fine-tuning weight difference, c ∈
{0,1}d is the generated mask for W δ . � is an element-wise
product. Given a task dataset D, the goal of Delta-Pruning
is to find mask c at the beginning of fine-tuning without
interfering with the searching and final fine-tuning phase.

Algorithm 1 LeTS Design Flow.

input : Pre-trained model W p; Preserving parameter
number k; Group restriction G (Detailed in Sec. 4);
Sub-task datasets S = {s0,s1, ...,sq}.

output : Fine-tuning Policies Pout and Models Mout .
1: Mout ← /0, Pout ← /0
2: for si in S do
3: W τ ← Generate Search Space(W p,G)
4: cτ ← Delta Pruning(W τ ,k,si) // cτ is weight mask
5: Mi,Pi← Computation Aware Searching(W τ ,cτ ,si)
6: ci← Delta Pruning(W p,Mi,k,si)
7: Mi← Final Finetuning(W p,Mi,ci,si)
8: Mout ←Mout

⋃
{Mi}, Pout ← Pout

⋃
{Pi}

9: end for
10: return Mout ,Pout

Assuming the k parameters in W δ is preserved, the con-
strained optimization problem can be described as Eq. (2):

min
c,W δ

L(W p + c�W δ ;D) = min
c,W δ

1
n

n

∑
i=1

`(W p + c�W δ ;(xi,yi))

s.t.W δ ∈ Rd ,c ∈ {0,1}d , ||c||0 ≤ k
(2)

Directly optimizing Eq. (2) using l0 normalization will dou-
ble the learnable parameters (Louizos et al., 2018) and is
unstable for large-scale tasks (Gale et al., 2019). It is even
more difficult to search l0 masks together with architecture
parameters in the DNAS algorithm (Sec 3.2). In this work,
we intend to measure the effect of a connection e in W δ

on the loss function. Specifically, if removing W δ
e does not

show enough loss variation (∆Le), we set ce = 0 to mask
the gradient W δ during training. Two challenges exist in
computing ∆Le: (i) Removing each connection in W δ

e and
check the variation in loss is computation-consuming. (ii)
W δ

e is unknown at the beginning of fine-tuning. A random
initialization method cannot reflect the fully fine-tuned W δ .

To resolve (i), we relax the binary constrain on c to a contin-
uous space and compute the gradient of L with respect to ce
as ge (Eq. (3)). Based on the intuition that the magnitude of
derivative of ce when ce = 1 shows whether the parameter
W δ

e has a considerable effect on the loss or not, we use ge
to approximate ∆Le for removing connection e in W δ

e . As
such, we define the connection sensitivity se for W δ

e to be
the ge normalized by the sum of ge in the network (Eq. (4)).

∆Le(W f ;D)≈ ge(W f ;D) =
∂L(Wp + c�W δ ;D)

∂ce

∣∣∣∣
c=1

(3)

se =
|ge(W f ;D)|

∑
d
k=1 |gk(W f ;D)|

(4)

Then, assuming k parameters are pruned in W δ , we generate
mask c using a salient criterion computed from connection
sensitivity s as Eq. (5):

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

ce = 1[se− s̃k ≥ 0], ∀e ∈ {1...d} (5)

Here, s̃k is the k-th largest element in the vector s and 1[·] is
the indicator function.

To resolve (ii), we first learn the weight difference initializa-
tion by warm-up the fine-tuning using D for steps Nsteps and
get W̃ p. We then approximate W δ using a task-specific ini-
tialization as W̃ δ = W̃ p−W p. Our ablation study shows that
using task-specific warm-up shows better results compared
to random initialization as this accumulation of gradients
can better reflect the final weight difference distribution.

3.2. Differentiable Neural Architecture Search for
Computation Sharing

As discussed in Sec. 2, a promising task-specific fine-tuning
architecture should yield low extra computation cost and
high task accuracy. We formulate the selection of fine-
tuning model as a bi-level non-convex optimization problem
as shown in Eq. (6).

min
a∈A

min
wa

L(a,wa) (6)

Here, A is a new search space proposed in LeTS, a ∈ A

is a set of continuous variables in the NAS selectors that
specifies a possible architecture, Wa is the selected fine-
tuning architectures from the search space A given a. The
loss function L penalizes both accuracy degradation as well
as the increase of extra computations.

Search space. As shown in Figure 2(a), we decouple data
dependency across layers by using a pooling layer, a linear
layer, and a Bi-LSTM to aggregate all layers’ output for final
classification. The pooling layer uses the first hidden vector
corresponding to the first token (i.e., [CLS] token) (Devlin
et al., 2019) as the layer presentation. The pooling output
vectors are then fed into a linear layer and a Bi-LSTM.

LeTS first builds up a stochastic super network W τ for the
searching phase. Before searching, we copy the weights
from W p to W τ trainable layers and disable the gradient
computation based on cτ which is the weight difference
mask obtained from the Delta-Pruning. Two decisions
should be made in each attention layer W τ

j : (i) the input
to the trainable layer. It can be either the cached result
(xp

j−1) or the output from the previous trainable layer (x f
j−1)

(ii) the output to the pooling layer from layer j. It can ei-
ther xp

j or x f
j . The total size of the search space would be

4N where N is the layer number in the pre-training mode
(≈ 1015 for BERTLARGE).

Two architecture selectors (si j , i∈ {0,1}) are used to decide
(i) and (ii) in layer j respectively (j ∈ 1...N). Each si j is
associated with an architecture vector ai j (1-by-2). We
relax the choice of the architecture selection to a Gumbel
Softmax (Jang et al., 2016) over the two possible sources:

xin
j = [xp

j−1;x f
j−1] ·Gumbel(ai j) (7)

Here, xin
j is the input to the jth trainable layer in W τ . [;]

is a concatenation operation. Gumbel converts ai j into a
probability vector which is used to approximate discrete
categorical selection. (Detailed in Appendix C) A temper-
ature parameter T is associated with the Gumbel function
to control its distribution. When T is high, Gumbel(ai j)
becomes a continuous random variable and when T is low,
Gumbel(ai j) is close to a discrete selection. During the
search, we gradually lower T in Gumbel to guide NAS.

Search algorithm and final fine-tuning architecture.
We alternatively update the two variables (a and W τ

a un-
der mask cτ to solve the bi-level optimization problem in
Eq. (6). More specifically, we leverage second-order ap-
proximation (Liu et al., 2019a) (Equations in Appendix C)
to update a since: (i) The total parameters in a is not large
(∼100). As such, it is feasible to use the second-order ap-
proximation although it requires more the computation; (ii)
second-order approximation can yield better solutions com-
pared to gradient descent as shown in (Liu et al., 2019a).

When searching ends, we choose the final connectivity using
a in jth layer. Precisely, the input connectivity is chosen as
xt

j−1 = argmaxt∈{p, f} a0 jt and the output to the pooling layer
is xt

j−1 = argmaxt∈{p, f} a1 jt . Then, we apply an optimiza-

tion on attention layers where s1 j chooses x f
j−1 and s0, j+1

chooses xp
j to reduce even more computation. We move the

final pooling operation between n3 and n4 in Figure 2(b).
In this way, the computation of the following linear layers
(n4,n5) can be reduced to a matrix-vector multiplication.
We refer to this method as normalization approximation as
the variance and mean of the first latent vector from n5 will
approximate the mean and variance of the original n5 output
during layer normalization (n6).

Computation-aware loss function. To consider both the
task accuracy and computation cost, we define the loss func-
tion of LeTS’s online searching phase as follows:

L=CE(a,W τ) ·αlog(Eops(a,W τ))β (8)

CE(a,W τ) is the cross-entropy loss given the architecture
parameter a and the super net W τ . α,β is the exponential
factor that controls the magnitude of the operation terms.
For the Eops, we compute the expectation of operation over
the architecture parameters a:

Eops = ∑∑
j
[Gumbel(a0 j) ·Gumbel(a1 j)

T]�ops(W τ
j)

(9)
ops(W τ

j) returns the number operations in layer j based
on the selected combination of s0 j and s1 j into a 2-by-2
matrix. More specifically (See Figure 2(c)), (i) if both s1 j
and s0 j select xp

j−1 as their input. then the computation of
the entire layer j can be bypassed. (ii) If s0 j selects xp

j−1 and

s1 j selects x f
j−1 as its input, then the computation between

xp
j−1 and W f K

j , W f K
j , W f K

j would become sparse-matrix

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

multiplication by leveraging the sparse feature of W δ
j . The

number of operations is computed according to the sparsity
ratio of W τ

j . Beyond the above two cases, the computation
number of a traditional self-attention layer is returned. Note
that the ops return a matrix of constant values given W τ

j . As
such, the Eops is differentiable to the architecture parameters
a0 j and a1 j to search for computation-efficient models.

4. Evaluation
4.1. Experiment setup

Datasets. We evaluate LeTS on General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang et al.,
2018) consists of the following nine tasks: The Corpus of
Linguistic Acceptability (CoLA). The Stanford Sentiment
Treebank (SST-2). The Microsoft Research Paraphrase Cor-
pus (MRPC). The Quora Question Pairs (QQP). The Se-
mantic Textual Similarity Benchmark (STS-B). The Multi-
Genre Natural Language Inference Corpus (MNLI) (We
test on both matched domain MNLIm and mismatched do-
main MNLImm). The Stanford Question Answering Dataset
(QNLI). The Recognizing Textual Entailment (RTE).

Metrics. We report Matthew’s correlation for CoLA,
Spearman for STS-B, F1 score for MRPC/QQP, and ac-
curacy for MNLI/QNLI/SST-2/RTE, respectively. For com-
putation efficiency, we report max speedup assuming the
sub-tasks are dependent on each other. Also, we show new
FLOPs per task over the FLOPs of a fine-tuned BERT and
total operations that are required to compute the nine sub-
tasks. For parameter efficiency, we report total parameters
and new parameters per task.

Baselines. All previous parameter-sharing works are
tested on BERTLARGE model (Devlin et al., 2019). We com-
pare LeTS with the following baselines: (i) Full fine-tuning
on BERTLARGE in a traditional way; (iii) Adapter (Houlsby
et al., 2019). (iv) DiffPruning (Guo et al., 2020). (v) Bit-
Fit (Ravfogel & Goldberg), which fine-tunes only the bias
parameters using a large learning rate. (See Sec. 5)

Also, we compare LeTS with model compression works,
such as DistillBERT , MobileBERT (Sun et al., 2020)
and TinyBERT (Jiao et al., 2020) which compressed the
BERTBASE through knowledge distillation (Sec. 5). This
comparison is conducted on BERTBASE.

Note that all previous parameter-sharing works cannot re-
duce the computation overhead for multi-task evaluation.
Thus, we build two extra baselines: (vi) We freeze bottom k
self-attention layers and fine-tune the top layers. (vii) We
append k new layers at the top of the pre-trained model and
freeze the pre-trained weights (Figure 2(d)).

LeTS design settings. We leverage LeTS to design
fine-tuning models for platforms with different comput-
ing/storage budgets: (i) We search task-specific architec-

tures for each task in GLUE and fine-tuning it with the
generated sparse mask (denoted as LeTS-(p,c)2). (ii) Dur-
ing the final fine-tuning, we also conduct an ablation study
by removing the weight mask to achieve better accuracy
(denoted as LeTS-(c)). This is suitable for computing plat-
forms with a low-cost storage budget. (ii) To maximize the
parallelism in a searched model, we decouple the attention
layers into g groups (denoted as LeTS-G-g) and require the
first layer in each group to use the cached inputs (xp

j−1); thus
the evaluation of different groups can be executed concur-
rently. Inside each group, we still apply DNAS to decide
the connections.

Hyperparameters. The DNAS method takes 1 GPU day
per task which is less than 0.5% of the pre-training cost of
BERTLARGE (Devlin et al., 2019). The max input length for
BERT is set to 128 to match previous baselines. Our pre-
trained models and code base are from (Wolf et al., 2020).
We use Nsteps = 100 to initialize W δ (Sec. 3.1). Inspired
by (Ravfogel & Goldberg) that the bias terms requires a
larger learning rate to achieve better fine-tuning results, we
apply two optimizers with different learning rate scheduler
to update the bias terms (lrb ∈ {1e−3,5e−4}) and other parts
(lrw ∈ {2e−5,1e−5}) separately during the final fine-tuning.
Details of other hyperparameters are shown in Appendix A.
Training time and overheads are reported in Appendix B.

4.2. Results
Comparison to baselines on GLUE dataset. Our com-

parison with the baseline methods is shown in Table 1.
LeTS-(c)/-(p,c) can achieve similar performance (+0.3%/-
0.2% on average) to a fully fine-tuned BERTLARGE model
while saving 40.2%/49.5% computation. With a more ag-
gressive setting, LeTS-G-4 can reduce 57.0% computation
(3.84× speedup) while matching the task performance of
Adapters. In the meantime, LeTS-(p,c)/-G-4 only adds 1.4%
parameters per task (including the Linear and Bi-LSTM
layers), which is more parameter-efficient than Adapters.
LeTS illustrates a trade-off between concurrent execution
speedup and multi-task performance which is not done by
previous works.

Compared to DistillBERT6, MobileBERT, and TinyBERT6
that reduce the total computation by 50.4%/28.3%/50.4%
on BERTBASE, LeTS-G-3/-G-4 shows 56%/62% com-
putation reduction while preserving a high task per-
formance (-0.4%/-0.7%) compared to the fine-tuned
model. For fiercely compressed models (e.g., TinyBERT-4,
MobileBERTTINY,DistillBERT-4), they show large perfor-
mance degradation (-2.3%/-2.6%/-7.7%) compared to the
full fine-tuning model although saving more computations
than LeTS. Also, LeTS shows the lowest parameter over-
head (1.15×) compared to all compression models.

2p and c stand for parameter/computation-sharing

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Compared to ‘Freezing Bot-12’ and ‘Appending Top-1’,
LeTS also achieves better task performance (+1.4%/+8.4%)
on average. That is because we relax the fine-tuning con-
straints on all the layers and aggregate the results for final
classification. Also, when the number of sub-tasks increases,
LeTS can save even more computations compared to Freez-
ing Bot-12 (42.6% new FLOPs per task compare to 50%).

Comparison of Delta-Pruning with other parameter-
sharing methods. Tab. 2 shows the performance of Delta-
Pruning compared to previous parameter-sharing works. To
make a fair comparison, the result is tested using the original
fine-tuning architecture. With the sparsity ratios restriction
as 0.1%/0.25%/0.5% per task, LeTS achieves 2.4%/0.8/0.6%
average performance increase compared to DiffPruning.
This shows Delta-Pruning is effective to preserve task accu-
racy compared to the l0 regularization method.

4.3. Sensitivity and Ablation study.

Varying the sparsity constraint on BERTLARGE model
/ Weight mask distribution. We also conduct a sensitivity
analysis using Delta-Pruning with various sparsity ratios
(0.1%/0.25%/0.5%) across GLUE benchmarks (Table 2).
Different tasks show different sensitivity with the growth
of sparsity ratio. A better trade-off between accuracy v.s.
sparsity ratio can be achieved through grid-search for each
given task. Also, we show the distribution of weight masks
for each layer varies across benchmarks (Figure 9). We
hypothesize that when the tasks’ inputs or outputs are related
(e.g., QQP and QNLI both encode questions / MPRC and
STS-B both generate similarity), they reveal similar mask
distribution. This indicates that adding a uniform module
(e.g., Adapter) between each layer for a task is sub-optimal.

Sensitivity to computation sharing ratio / Ablation to
computation-aware loss function. To shows the capabil-
ity of LeTS in reducing computation while maintaining a
high task accuracy, we perform NAS for 2 tasks multiple
times (with different α , β in the loss function) and samples
different architectures from the distribution. Figure 4 shows
the results between extra operations v.s. task accuracy (on
GLUE dev set). Freezing bot-k layers cannot preserve task
accuracy with the increasing of k, while the architecture
searched from LeTS does not show a large performance
drop. LeTS also presents better task accuracy compared
to the random sampled architectures, which shows that our
DNAS algorithm can improve the quality of the searched
model. When removing the computation-aware loss func-
tion, DNAS tends to select more trainable matrices to pre-
serve task performance and the searched model cannot fully
exploit computation sharing.

5. Related Work
Fine-tuning for transfer learning. Transfer a pre-trained
model to a task of interest can be achieved by fine-tuning
all the weights on that single task (Howard & Ruder, 2018).

Figure 4: Sensitivity to computation sharing ratio (per-
formed on BERTBASE).

Figure 5: Distribution of LeTS’s task-specific weight masks.
(performed on BERTLARGE)

Recent advances in text classification (Dai et al., 2019; Liu
et al., 2019c; Joshi et al., 2020; Yang et al., 2019) have been
achieved by fine-tuning a pre-trained transformer (Vaswani
et al., 2017). However, it modifies all the weights of the net-
work which is parameter inefficient for downstream tasks.
Multi-task learning. Multi-task learning (MTL) learns
models on multiple tasks simultaneously and utilizes them
across a diverse range of tasks (Caruana, 1997). MTL has
been widely exploited using BERT and shows good per-
formance on multiple text classification tasks (Liu et al.,
2019b; Clark et al., 2019). In this work, we assume multiple
tasks arrive in stream (i.e., online setting) and thus jointly
training is not available as discussed in Sec. 1. Moreover,
it is challenging to balance multiple tasks and solve them
equally well in training (Stickland & Murray, 2019).
Parameter sharing for fine-tuning. Adapter is an alterna-
tion for parameter-efficient BERT models for online settings
(Houlsby et al., 2019). It works well on machine translation
(Bapna & Firat, 2019), cross-lingual transfer (Üstün et al.,
2020), and task composition for transfer learning (Pfeiffer
et al., 2020). These task-specific adapters are inserted be-
tween layers and cannot exploit the computation sharing
because of the modification on the bottom layers. Recent
work (Guo et al., 2020) use l0 normalization to train a mask
during fine-tuning for multi-task NLP. In this paper, we
propose a novel method to prune weight difference based
on SNIP (Lee et al., 2019) to condense the task-specific

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Table 1: Comparison between LeTS and the baseline parameter-sharing works on BERTLRAGE using GLUE test set.

Max Speedup †
New FLOPs Per Task%

(Total FLOPs %)
Total Params

%
New params

Per Task QNLI‡ SST-2 MNLIm/mm CoLA MRPC STS-B RTE QQP Avg

Full fine-tuning 1.00× 100% (900%) 9.00× 100% 92.7 94.9 86.7/85.9 60.5 89.3 86.5 70.1 72.1 80.9
Full fine-tuning * 1.00× 100% (900%) 9.00× 100% 93.4 94.1 86.7/86.0 59.6 88.9 86.6 71.2 71.7 80.6
Adapters (8-256) 1.00× 100% (900%) 1.32× 3.6% 90.7 94.0 84.9/85.1 59.5 89.5 86.9 71.5 71.8 80.4

Adapters (64) 1.00× 100% (900%) 1.18× 2.1% 91.4 94.2 85.3/84.6 56.9 89.6 87.3 68.6 71.8 79.8
Diff pruning 1.00× 100% (900%) 1.05× 0.5% 92.9 93.8 85.7/85.6 60.5 87.0 83.5 68.1 70.6 79.4

Diff pruning (struct.) 1.00× 100% (900%) 1.05× 0.5% 93.3 94.1 86.4/86.0 61.1 89.7 86.0 70.6 71.1 80.6
Freeze Bot-12 1.80× 50.0% (500%) 5.05× 45% 91.5 94.0 85.6/84.5 56.2 88.3 83.5 69.3 70.8 79.1
Freeze Bot-23 6.75× 4.2% (138%) 1.34× 3.7% 79.8 91.6 71.4/72.9 40.2 80.1 67.3 58.6 63.3 68.2
Append Top-1 6.75× 4.2% (138%) 1.34× 3.7% 82.1 91.9 75.7/74.6 43.4 83.4 81.2 59.8 66.6 72.1
LeTS-G-4 (p,c) 3.84× 34.7% (387.3%) 1.13 × 1.4%(0.4%)$ 92.5 93.8 85.3/84.8 59.8 88.6 86.4 70.8 71.1 80.1

LeTS (c) 2.60× 51.9% (537.9%) 6.66× 62.9% (0.4%) 92.9 94.5 86.4/86.0 61.1 89.0 86.8 71.6 71.7 80.9
LeTS (p,c) 2.84× 42.6% (454.2%) 1.13× 1.4%(0.4%)$ 92.6 94.2 85.5/85.1 60.4 88.9 86.5 71.4 71.1 80.4

* Fine-tuning results of our pre-trained BERTLARGE from huggingface (Wolf et al., 2020).
‡ Besides DiffPruning and our results, previous works are reported on the old QNLI test set in the GLUE benchmark. The average is calculated without QNLI.
† When the sub-tasks are dependent on each other, max speedup can be achieved through concurrent execution. $ The percentage in bracket is the parameter overhead of Bi-LSTM and linear layers.

Table 2: Sensitivity study to sparsity ratio constraint and comparison to parameter-sharing baselines on GLUE dev dataset.

Total Params
%

New params
Per Task QNLI SST-2 MNLIm/mm CoLA MRPC STS-B RTE QQP Avg

Full fine-tuning 9.00× 100% 93.5 94.1 86.5/87.1 62.8 91.9 89.8 71.8 87.6 85.0
Diff-Pruning (struct.) 1.01× 0.1% 92.7 93.3 85.6/85.9 58.0 87.4 86.3 68.6 85.2 82.5
Diff pruning (struct.) 1.03× 0.25% 93.2 94.2 86.2/86.5 63.3 90.9 88.4 71.5 86.1 84.5
Diff pruning (struct.) 1.05× 0.5% 93.4 94.2 86.4/86.9 63.5 91.3 89.5 71.5 86.6 84.8

BitFit* 1.01× 0.08% 91.1 93.3 - 62.9 91.5 89.5 75.1 87.6 -
LeTS (p) 1.01× 0.1% 92.3 93.3 85.3/85.7 63.5 91.6 89.6 75.1 87.4 84.9
LeTS (p) 1.03× 0.25% 92.7 93.9 85.9/86.2 64.1 91.7 89.8 75.7 87.6 85.3
LeTS (p) 1.05× 0.5% 92.9 94.0 86.4/86.2 64.4 91.9 89.8 75.8 87.6 85.4

* BitFit does not report all the performance on GLUE dev set.

Table 3: Comparison between LeTS and the model compression works on BERTBASE using GLUE test set.

Max
Speedup

New FLOPs Per Task%
(Total FLOPs %)

Total Params
over BERTBASE Total Params QNLI* SST-2 MNLIm/mm CoLA MRPC STS-B RTE QQP Avg

Full-finetuning 1.00× 100% (900%) 9.00× 110M × 9 90.9 93.4 83.9/83.4 52.8 87.5 85.2 67.0 71.1 78.0
DistillBERT4 3.00× 33.5% (300%) 4.27× 52.2M × 9 85.2 91.4 78.9/78.0 32.8 82.4 76.1 54.1 68.5 70.3

MobileBERTTINY 8.55× 13.6% (123%) 1.24× 15.1M × 9 89.5 91.7 81.5/81.6 46.7 87.9 80.1 65.1 68.9 75.4
TinyBERT4 9.40× 5.2% (46.8%) 1.19× 14.5M × 9 87.7 92.6 82.5/81.8 44.1 86.4 80.4 66.6 71.3 75.7

DistillBERT6 2.00× 49.5% (446%) 5.48× 67.0M × 9 88.9 92.5 82.6/81.3 49.0 86.9 81.3 58.4 70.1 75.3
MobileBERT w/o OPT 1.78× 71.7% (645%) 2.07× 25.3M × 9 91.6 92.6 84.3/83.4 51.1 88.8 84.8 70.4 70.5 78.2

TinyBERT6 2.00× 49.5% (446%) 5.48× 67.0M × 9 90.4 93.1 84.6/83.2 51.1 87.3 83.7 70.0 71.6 78.1
LeTS-G-3 (p,c) 2.83× 36.7% (397%) 1.15× 127M 90.4 92.2 82.8/81.8 50.5 88.3 84.6 70.0 70.3 77.6
LeTS-G-4 (p,c) 3.77× 27.6% (323%) 1.15× 127M 90.0 92.0 82.6/81.6 49.9 87.9 84.5 69.5 70.1 77.3

* The average is calculated without QNLI.

knowledge which achieves better parameter efficiency.
Hardware-aware NAS. Recent advances in NAS leverage
differentiable methods by relaxing the selection of architec-
tures in a continuous space to reduce the high search cost
of RL-based NAS (Zoph & Le, 2016; Tan et al., 2019; Tan
& Le, 2019). Previous differentiable NAS work (Wu et al.,
2019; Liu et al., 2019a; Wan et al., 2020) mainly focus on
computer vision tasks. In LeTS, we combine the searching
algorithm of (Wu et al., 2019) and (Liu et al., 2019a) to re-
solve a unique problem in NLP. LeTS also presents a novel
search space with a computation-aware loss to search model
with high task accuracy and computation sharing ratio.
Model compression. Model pruning is another way to
reduce a single model size and computation. (Gordon et al.,
2020) prune weights in BERT based on magnitude, (Guo
et al., 2019) use iteratively reweighted l1 minimization, and
(Lan et al., 2019) leverage cross-layer parameter sharing.
Other works distill knowledge from a pre-trained model
down to a smaller student model (Sanh et al., 2019; Sun
et al., 2020; Jiao et al., 2020). Note that LeTS is orthogonal

to all these methods, as we did not modify the pre-trained
parameters. we leave this combination as future work.

6. Conclusion
We propose LeTS, a transfer learning framework that
achieves computation and parameter sharing when multiple
tasks arriving in stream. LeTS proposes a novel architecture
space that can reuse computed results to reduce computation.
By leveraging NAS with a computation-aware loss function,
LeTScan find models with high task performance and low
computation overhead. By treating the fine-tuned weight
as the sum of pre-trained weight and weight difference, we
present a early stage pruning algorithm to compress weight
difference without task performance decrease. The integra-
tion of the above novelty enables even more computation
reduction by exploiting the sparsity of the weight difference.
LeTS achieves better task performance compared to previ-
ous parameter-sharing only methods. Also, by leveraging
computation sharing, LeTS engenders large computation
reduction to enable scalable transfer learning.

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

A. Searched models / Explanation of metrics /
Hyperparameters

In this section, we reveal the searched model of LeTS-(p,c)
and LeTS-(c) of each sub-tasks searched on BERTLARGE.
Also, we detail the computation of our metrics used to char-
acterize computation and parallelism (max speedup and new
ops per task). At last, we report the hyperparameters used
for searching/final fine-tuning.

A.1. Searched models for each task

The searched fine-tuning models on BERTLARGE for each
sub-tasks of GLUE are shown in Fig. 6, p and f refer to
the computed input from W p

j−1 and previous trainable layer

output W f
j−1. For each layer j, we report (s0,s 1) where : 1)

s0 is the select input for the next trainable layer; the second is
the input to the final aggregation layers (pooling+linear+Bi-
LSTM discussed in Sec.2).

Figure 6: Searched model for each given tasks using
BERTLARGE. (placeholder)

A.2. Metrics explanations

In Table 1 and Table 3, we report the new operations per
task and max speedup. In this subsection, we detail the
computation of these two metrics.

New operations per task We compute the new operations
(FLOPs or Floating-point operations) introduced by the sub-
task based on the searched result and weight mask. We
normalize the number of new operations of a task si where
i∈ 1...,N using the total number of operations required for a

single BERTLARGE/BASE (77.7 / 22.5 GFLOPs) as Eq. (10):

ops%(si) =
ops(si)

ops(BERTLARGE)
×100% (10)

This percentage ops% indicates that you only need to ex-
tra ops% new operations compared to adding an entire new
transformer (100%) when adding the sub-task to your sys-
tem.

New operations per task (%) reported in Table 1 and Table
3 is the average of ops% for each GLUE sub-task:

new ops per task(si)(%) =
∑

N
i (ops%(si))

N
(11)

Total operations (%) For LeTS, total operations of the nine
tasks needs to add the overhead operations of computing
pretrained weight and input:

Total ops(%) =
∑

N
i (ops(si))+overhead

ops(BERT)
×100% (12)

For example, the total operations of traditional fine-
tuning method for the 9 GLUE tasks will be 9× of
the operation of BERTLARGE (100%×9=900%) and the
overhead/ops(BERTLARGE) is 0%. For freezing top-12
layers (Sec. 4), the new operations per task is 50% and
the overhead/ops(BERTLARGE) is 50% 3, thus the total
normalized operations would be 40%×9 + 50% = 500%.
For LeTS, all the searched model does not take the com-
puted results since layer 18-23 (Figure 6), as such the
overhead/ops(BERTLARGE) would be 18/24≈ 75%. This
overhead takes less portion with the increasing number of
sub-tasks. Assuming the number of sub-task is N, the antic-
ipated computation reduction v.s. the number of sub-tasks
are visualized in Figure 7 for LeTS (p,c) and Freezing Top-
12 on BERTLARGE.

Max speedup When the sub-tasks are independent of each
other, the user can leverage the computation reduction to
achieve speedup. Yet, in many cases, the sub-tasks are
chained together (i.e., data-dependent) and must be executed
in order. In this scenario, LeTS’s design space can yield
fruitful speedup as we decouple the computation of different
attention layers inside each transformer. We first identify
the critical path (Hennessy & Patterson, 2011) (example
computing max speedup for LeTS is showed in Figure 2(c)
and Sec.2) of execution the 9 tasks. The max speedup in
this case would be computed as:

max speedup =
ops(BERT)×N

ops(critical path)
(13)

3overhead is to compute the previous 12 layers between the
pre-trained weights and input

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Taking freezing top 12 layers as an example,
ops(si)/ops(BERTLARGE) = 50%, and the critical path
would be overhead 50% and 50% computation time for
each sub-task (max speedup = 900%/500% = 1.8×).

Note that both the freezing top-12 and original fine-tuning
architecture is included in our search space. Yet, fine-tuning
approach is computationally inefficient and freezing top-12
layers sacrifices the task performance a lot. LeTS pushes
the Pareto frontier between task performance and sub-task
computation overhead.

A.3. Final Fine-tuning Hyperparameters

Table 4 shows the hyperparameters for training our final
searched model on GLUE tasks. For final testing, we select
the model that achieves the best validation (dev set) result.
We use two learning rate schedulers for the bias term in
transformer and all other parameters (including the added
Bi-LSTM and linear layer).

Another thing worth mention is that the max input length (lm)
in our evaluation is set to 128 to match previous baselines.
With larger lm (e.g., 512), the overhead of the aggregation
layers / pretrained model and input computation would take
even less portion to the overall computation cost. The com-
putation reduction of LeTS will also be more explicit. That
is because the computation complexity of transformer is
proportional to the input length (l) O(l2).

Temperature scheduling and searching

During the search, the initial temperature T in Eq. 14 is set
to 4.0 and exponentially annealed by exp(−0.065)≈ 0.936
for every 1

10 epoch. We use a early stop mechanism that
terminate the searching phase when the selected model does
not change for 1

10 epochs. Because the model parameters
start from pretrained BERT, the searching phase converges
faster than traditional DNAS. For the loss function in Sec.3,
Eops is represented in billion operations. We set α to 0.5
and β to 0.5. The learning rate of alpha is initialized to
5e−4 which is updated using an Adam optimizer (default
optimizer settings in huggingface (Wolf et al., 2020)).

B. Gumbel Softmax and Second-order
approximation

Gumbel Softmax equations The architecture parameters
discussed in Sec.3.2 will be converted to a probability vector
using Gumbel Softmax equations. Specifically, the archi-
tecture parameters ai j associate with the ith selector in jth
layer are computed as Eq. (14).

Pai j = Gumbel(ai jt |ai j) =
exp((ai jt +gi jt)/T))

∑t exp((ai jt +gi jt)/T))
(14)

Here, gi jt ∼ Gumbel(0,1) is a random noise following the
Gumbel distribution. The output is a probability vector Pai j

(2×1).

Second-order approximation equations

As discussed in Sec.3.2, we iteratively update weight and
architecture parameters of the super network (a and W τ).
The gradient of weight parameters (denote W τ as W in ap-
pendix for simplicity) are updated using traditional gradient
decent. And the gradient of architecture parameters (a) are
computed by a second-order approximation. Specifically,
we split the training dataset as into two parts (D1 takes 80%,
D2 takes 20%). The gradient of the architecture parameters
can be approximated as Eq. 15:

∇aL(Wa,a)≈ ∇αLD2(W −ξ ∇WLD1(W,a),a) (15)

Here, Wa is the final pre-trained model given architecture
parameter a. To the l.h.s of Eq. 15 means we can train a
for one step after fine-tuning the entire model. To reduce
the search cost, the idea of differentiable NAS (DNAS) is to
approximate the final Wa by adapting W using only a single
training step (Liu et al., 2019a). To prevent the searched
model from over-fitting to the training dataset, we split the
training datasets (D1, D2) to update weight and architecture
parameters, respectively. The Eq. 15 can be expanded into
Eq. 16:

∇aLD2(W ′,a)−ξ ∇
2
a,WLD1(W,a)∇W ′LD2(W ′,a) (16)

Where W ′ =W −ξ ∇WLD1(W,a). The second term can be
computed through a finite difference approximation. As-
sume ε is a small scalar and W± = W ± ε∇W ′LD2(W ′,a).
Then:

∇
2
α,wLD1(w,α)∇w′LD2(w′,α)≈

∇αLD1(w+,α)−∇αLD1(w−,α)

2ε

(17)

To sum up, during the architecture parameter update, we first
compute the ∇aLD1(w+,α) and ∇aLD1(w−,α) through
two forward and backward pass and approximate the second
term in Eq. 16 using Eq. 17. Due to the small size of a
in the super network, the second order approximation is
feasible and model selection is more accurate than using
naive gradient decent (ξ = 0).

C. Detailed design flow of Delta-pruning /
Ablation study of gradient-accumulation
initialization

For all tasks we initialize the training for 10 epochs, which
is larger than the original fine-tuning (∼ 2.5× longer fine-
tuning time). This is because the additional Bi-LSTM takes
more time to converge.

GPU memory overhead. LeTS do not explicitly require
more memory during final fine-tuning (1.2× than traditional

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Table 4: Hyperparameters for final fine-tuning. We use polynomial decay scheduler in transformer ((Vaswani et al., 2017))
on two learning rate.

QNLI SST-2 MNLI CoLA MRPC STS-B RTE QQP
Epochs 7 7 7 10 10 10 10 7

Batch size 16 16 16 16 16 16 16 16
Learning Rate (bias terms) 5e-4 5e-4 5e-4 1e-3 1e-3 1e-3 1e-3 5e-4

Learning Rate (other parameters) 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Warm-up steps 1986 1256 7432 420 350 720 350 28318

Algorithm 2 Delta-pruning

input Pre-trained parameter W p, offset parameter W δ , the
desired W δ sparsity constraint k, a mini batch training
dataset Db

output Mask c
1: Warn up fine-tuning W for 100 epoch and get W̃ f

2: W δ ← W̃ f −W p, c← 1d

3: Set trainable mask and perform one mini-batch training
to get ∆L(W f ;D) (Eq.3 in the paper).

4: for i in {1...d} do
5: score se =

|ge(W f ;D)|
∑

d
k=1 |gk(W f ;D)|

6: end for
7: Descending sort all the score s.
8: for i in {1...d} do
9: ci← 1[si− s̃k ≤ 0]

10: end for

fine-tuning) as the pre-trained parameters is frozen (no
gradient consumption) and the pruning mask is generated
ahead of fine-tuning. For DiffPruning, the pruning mask is
searched during fine-tuning. As such, it takes more GPU
memory consumption (∼ 2×) than traditional fine-tuning
approach.

Task-specific initialization and sparsity. For initialize
W δ in Delta-Pruning (Sec.3.1), we show that using a warm-
up method to accumulate gradients can generate a weight
mask that represent the final fine-tuning results. We visual-
ize the weight mask generated from final W δ and gradient
accumulation W̃ delta (Nsteps=100) for selected tasks with
the sparsity ratio k=0.25% as shown in Figure 9.

We also conduct an ablation study by replacing the gradient
accumulation initialization with random initialization and
the visualization of the mask is shown in Figure 9. The
random initialization method also decrease the average task
performance on GLUE dev set by x.x% on average com-
pared to the gradient accumulation method (x.x% as shown
in Table 2).

References
Bapna, A. and Firat, O. Simple, scalable adaptation for

neural machine translation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference

Fig/c.png

Figure 7: Total operation (%) v.s. number of sub-tasks for
BERT-large.

Fig/c.png

Figure 8: Max speedup v.s. number of sub-tasks for BERT-
large.

on Natural Language Processing (EMNLP-IJCNLP), pp.
1538–1548, Hong Kong, China, November 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/D19-1165. URL https://www.aclweb.org/
anthology/D19-1165.

Caruana, R. Multitask learning. Machine learning, 28(1):
41–75, 1997.

Clark, K., Luong, M.-T., Khandelwal, U., Manning, C. D.,
and Le, Q. V. BAM! born-again multi-task networks
for natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 5931–5937, Florence, Italy,
July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1595. URL https://www.
aclweb.org/anthology/P19-1595.

Consortium, C. Compute Express Link, a. URL https:
//www.computeexpresslink.org/.

Consortium, G.-Z. The Gen-Z Consortium, b. URL https:
//genzconsortium.org/.

https://www.aclweb.org/anthology/D19-1165
https://www.aclweb.org/anthology/D19-1165
https://www.aclweb.org/anthology/P19-1595
https://www.aclweb.org/anthology/P19-1595
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://genzconsortium.org/
https://genzconsortium.org/

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Fig/x.png

Figure 9: Visualization of final fine-tuning weight and the gradient accumulation for 100 steps. We show only the middle
(6th) layer on selected tasks.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-XL: Attentive language
models beyond a fixed-length context. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 2978–2988, Florence,
Italy, July 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/P19-1285. URL https:
//www.aclweb.org/anthology/P19-1285.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.

4171–4186, Minneapolis, Minnesota, June 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/N19-1423. URL https://www.aclweb.org/
anthology/N19-1423.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gordon, M., Duh, K., and Andrews, N. Compressing bert:
Studying the effects of weight pruning on transfer learn-
ing. pp. 143–155, 01 2020. doi: 10.18653/v1/2020.
repl4nlp-1.18.

Guo, D., Rush, A. M., and Kim, Y. Parameter-efficient
transfer learning with diff pruning, 2020.

https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Guo, F.-M., Liu, S., Mungall, F. S., Lin, X., and Wang, Y.
Reweighted proximal pruning for large-scale language
representation. arXiv preprint arXiv:1909.12486, 2019.

Hennessy, J. L. and Patterson, D. A. Computer architecture:
a quantitative approach. Elsevier, 2011.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Howard, J. and Ruder, S. Universal language model
fine-tuning for text classification. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp.
328–339, Melbourne, Australia, July 2018. Associa-
tion for Computational Linguistics. doi: 10.18653/
v1/P18-1031. URL https://www.aclweb.org/
anthology/P18-1031.

Huang, Z., Xu, W., and Yu, K. Bidirectional
LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991, 2015. URL http://arxiv.org/
abs/1508.01991.

Intel. Intel® OptaneTM DC Persistent Memory, 2019.
URL https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X.,
Li, L., Wang, F., and Liu, Q. TinyBERT: Distill-
ing BERT for natural language understanding. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 4163–4174, Online,
November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.372.
URL https://www.aclweb.org/anthology/
2020.findings-emnlp.372.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer,
L., and Levy, O. Spanbert: Improving pre-training by
representing and predicting spans. Transactions of the As-
sociation for Computational Linguistics, 8:64–77, 2020.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., and Soricut, R. Albert: A lite bert for self-
supervised learning of language representations. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Lee, N., Ajanthan, T., and Torr, P. SNIP: SINGLE-SHOT
NETWORK PRUNING BASED ON CONNECTION
SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=B1VZqjAcYX.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differ-
entiable architecture search. In International Confer-
ence on Learning Representations, 2019a. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep
neural networks for natural language understanding. In
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 4487–4496, Flo-
rence, Italy, July 2019b. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1441. URL https:
//www.aclweb.org/anthology/P19-1441.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019c.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019d. URL http://arxiv.org/
abs/1907.11692.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=H1Y8hhg0b.

Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I.,
Ruder, S., Cho, K., and Gurevych, I. AdapterHub:
A framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pp. 46–54, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.7. URL https://www.aclweb.org/
anthology/2020.emnlp-demos.7.

Pytorch-Sparse. Pytorch Sparse Library. URL https:
//pytorch.org/docs/master/sparse.html.

https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory
https://www.aclweb.org/anthology/2020.findings-emnlp.372
https://www.aclweb.org/anthology/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://www.aclweb.org/anthology/P19-1441
https://www.aclweb.org/anthology/P19-1441
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://pytorch.org/docs/master/sparse.html
https://pytorch.org/docs/master/sparse.html

Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Ravfogel, E. B.-Z. S. and Goldberg, Y. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based
masked language-models.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108, 2019. URL http://
arxiv.org/abs/1910.01108.

Stickland, A. C. and Murray, I. Bert and pals: Projected
attention layers for efficient adaptation in multi-task learn-
ing. In International Conference on Machine Learning,
pp. 5986–5995. PMLR, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou,
D. MobileBERT: a compact task-agnostic BERT for
resource-limited devices. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Lin-
guistics, pp. 2158–2170, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.195. URL https://www.aclweb.org/
anthology/2020.acl-main.195.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105–6114. PMLR,
2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2820–2828, 2019.

Tensorflow-Sparse. Tensorflow sparse matrix API. URL
https://www.tensorflow.org/api_docs/
python/tf/sparse/sparse_dense_matmul.

Üstün, A., Bisazza, A., Bouma, G., and van Noord, G.
UDapter: Language adaptation for truly Universal Depen-
dency parsing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2302–2315, Online, November 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.180. URL https://www.aclweb.
org/anthology/2020.emnlp-main.180.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu,
B., Yu, M., Xu, T., Chen, K., Vajda, P., and Gonzalez,
J. E. Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A multi-task benchmark and analy-
sis platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pp. 353–355, Brussels, Belgium, November 2018. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/W18-5446. URL https://www.aclweb.org/
anthology/W18-5446.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 10734–10742, 2019.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. Deebert:
Dynamic early exiting for accelerating bert inference.
arXiv preprint arXiv:2004.12993, 2020.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://www.aclweb.org/anthology/2020.acl-main.195
https://www.aclweb.org/anthology/2020.acl-main.195
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.aclweb.org/anthology/2020.emnlp-main.180
https://www.aclweb.org/anthology/2020.emnlp-main.180
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446

