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Abstract—Warehouse users often have to make too many
decisions about their queries, pipelines, workflows and data
to optimize the resources they use as well as the quality and
the availability of their data. For example, whether to use
Spark or Presto, how to best partition their data or what
hyper-parameters to tune to resolve various query or pipeline
problems. Furthermore, warehouse users are often unaware of
big performance opportunities around data skew, multi-query
optimization, query materialization and more. In this paper we
describe the Smarter Warehouse initiative that aims to automate
or simplify many of these optimization decisions. Our long
term vision is for a large portion of the Smarter Warehouse
optimizations to be seamlessly incorporated into the compute
and I/O layers of the stack, leading to a simpler warehouse user
experience and large amounts of resource savings.

I. INTRODUCTION

We often rely on Warehouse users to optimize their queries

and tune an increasing number of knobs in order to realize

efficiency gains. What if the warehouse could automate its

optimization process while simplifying the user experience?

In this paper, we describe the Smarter Warehouse project

the goal of which is to make the warehouse more efficient and

easier to use by replacing heuristics with automated solutions.

We focus on sustainable efficiency wins in terms of compute

savings while tracking usability/developer efficiency including

‘hours of tuning effort’, ‘maintenance’, ‘days until stability’

and more.

The motivation for the Smarter Warehouse comes from

the fact that data warehouse users have to make too many

decisions about their queries, pipelines, workflows and data

that significantly impact the resources they use as well as the

quality and the availability of their data:

1) Which engine to use (e.g., Presto vs. Spark),

2) Various pipeline characteristics (e.g., decide whether to

store in a managed table or use a view),

3) Which optimizations to apply to a given query (e.g., tune

query hyper-parameters),

4) Perform Root Cause Analysis and other exploratory

analysis (e.g., if a pipeline or workflow fails, figure-out

why and fix),

5) Re-do the cycle when data volume or pipeline complex-

ity changes.

The current trend in the data warehouse is unsustainable due

to its fast growth of compute and storage required, and it is not

surprising that capacity & efficiency is becoming a top priority

in the industry. Everywhere that we give users the ability to

make choices we raise a risk that many of them will make

the wrong ones, often resulting in efficiency losses. The ideal

smart infrastructure simplifies these decisions and pushes them

“under the hood”, leaving the users to focus on the query or

ML model logic while still allowing for a rare manual tuning if

desired. In this model, tuning, data storage, optimizations and

fault tolerance are handled by the infrastructure itself which

is seamlessly:

• deciding how to run jobs

• optimizing the usage of compute resources

• optimizing physical and logical storage of data

• optimizing queries

• monitoring, diagnosing and recovering from faults

These are ambitious goals and we propose to take an incre-

mental approach, starting from automating simpler decisions

and moving on to more advanced settings as we learn more and

develop system expertise. The advantage of such a journey is

that every step along the way can result in significant developer

and system efficiency wins.
The industry is trending towards warehouse automation [3],

[6], [8]–[10], [15]. For example authors in [2], [11], [19]

explore the benefit of tunable parameters in a database system

and emphasize the need for a system that learns from the

parameters used by engineers. Authors in [16] discuss how

leveraging data collected from previous query runs can be

used to train ML models and recommend configurations that

are as good or better than ones generated by human experts.

Authors in [4] demonstrate how adaptive sampling of database

parameters can be used to find good parameter values for

improving memory distribution, I/O, query plans, parallelism

and many aspects of logging. While these and other ongoing

efforts tackle a part of the warehouse automation space, there

does not yet exist a holistic approach that focuses on joint

automation of warehouse queries, systems, data and pipelines.
By realizing the vision of making the warehouse smarter

we have the potential to save significant resources in terms of

memory, I/O and compute. This estimate is based on our initial

results from hyper-parameter tuning, presented in Section II-A

and observations such as the fact that 90% of our pipelines

run daily, while the majority of produced tables are not queried

daily.
A smarter warehouse will not only have impact on compute

but also on engineering productivity, reducing the number

of warehouse-related decisions that engineers have to make.

While it is challenging to measure engineer efficiency wins,

ultimately at the company level, people’s efficiency matters far

more than compute: the savings on people always have a much
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Pillar Description Initiatives
Systems Make core compute engines easier to use. Hyper-parameter tuning
Queries Focus engineers on query logic instead of engine-specific optimizations. Give

engineers fast feedback and preempt inefficient (or destined-to-fail) queries.
Query Optimization

Pipelines Pipelines run continuously and therefore have a lot of history in terms of data
accesses that can be leveraged to perform additional optimizations.

Table materialization and virtualization

Data Instead of only focusing on query history when performing optimizations, focus
also on the underlying data to optimize partitioning, bucketing and more.

Auto-partitioning, auto-bucketing.

Insights By analyzing a large set of computationally expensive queries, insights around
common patterns can be learned.

Learning patterns from repeated query runs.

TABLE I
SUMMARY OF THE SMARTER WAREHOUSE PILLARS

higher multiplication factor and higher impact. Nevertheless,

some of the ways we aim to measure people efficiency include

tracking the number of relevant user group posts, number

of code changes for a pipeline after launch, or number of

pipelines per year per engineer.
These resource savings are distributed across data con-

sumers and data producers. Data consumers benefit from

the Smarter Warehouse in terms of higher data availability.

Data producers benefit in terms of less complexity (e.g.,

when writing pipelines) and less service support load. Finally,

warehouse providers benefit from the reduced resource spend

on power, hardware and overall maintenance and planning.
Note that a Smarter Warehouse does not imply that we

no longer need manual optimization tools. We still need to

understand trends and there will still be optimization patterns

that require a user’s knowledge of the problem and intent.

Specific pillars within the Smarter Warehouse include Smarter

Systems, Queries, Pipelines, Data and Insights, a summary of

which is provided in Table I and are described in more detail,

with their applications in subsequent sections.

II. SMARTER SYSTEMS

Having learnable system components is important to achiev-

ing good performance in our datastore systems. One example

of a system component that must be made learnable is query

and application hyper-parameters, current progress of which

is described in Section II-A. This is particularly challenging

due to having many configuration knobs such as the number

of shuffle partitions or the size of off-heap memory in Spark.

Furthermore, the number of knobs in systems like Spark and

Presto is constantly increasing with the new versions released.

Many of these knobs are not independent, which means that

changing one knob may affect the optimal setting for another

one. It is hard enough for humans to understand the impact of

one knob, let alone the interactions between multiple knobs.

Lastly, one often cannot reuse the same configuration from one

application/pipeline to the next. This is because the optimal

configuration depends heavily on the pipeline’s workload and

the database server’s underlying hardware. The best config-

uration for one pipeline may not be the best for another.

Section II-A provides more details around Presto and Spark

hyper-parameter tuning. There are other learnable components

that we consider under the Smarter System umbrella including

modifying the query scheduler with learned rules instead of a

static collection of rules.

A. Hyper-Parameter Tuning (HPT)

While there are generally good heuristics for DBMS param-

eter tuning, these do not always provide best parameters for all

systems and hardware configurations. Although one can rely

on these rules for a set of DBMS, they are not universal. This is

one of the reasons why companies resort to hiring expensive

DB admins in order to perform knob-tuning. One common

approach that such DBAs take is to copy the workload and

perform offline experiments by tuning a set of knobs and

observing performing. This trial-and-error is expensive and

tedious for many reasons including (1) many of the knobs are

not independent, (2) the values for some knobs are continuous,

(3) one often cannot reuse the same configuration from one

application to the next, and (4) DBMSs are always adding

new knobs [18]. While there has been extensive research in the

area of hyper-parameter tuning, our work differs from the past

in terms of a tighter compute engine integration, specifically

with Presto and Spark, as well as the focus on leveraging

compute engine query plan to determine relevant parameters

to optimize.

Compute engines such as Presto and Spark have plenty of

knobs, also known as hyper-parameters, that affect query pro-

cessing performances. Often these knobs are set to suboptimal

values, which then yields drastically lower performance. This

creates a need to tune knobs for performance improvements.

Nevertheless, the configuration space is exponentially large in

the number of knobs. Moreover, these knobs are often not

independent from each other. Therefore changing the value

of one knob may affect some other knobs’ effect in query

processing performance. Another difficulty is that a knob

tuning that improves the processing performance of some

queries may deteriorate performance on others.

In general, knob tuning relies on human expertise. Even in

the best case scenario where an expert tunes a subset of knobs

while having a very clear understanding of how they affect the

processing performance, they will choose to validate perfor-

mance improvements by rigorous experimentation. Typically,

one needs to run a controlled experiment where a control group

of queries are run with existing parameter settings while a

test group is run with new parameter values. Unfortunately,

multiple steps of this process, including but not limited to de-

signing and running the experiment, collecting and analyzing

the results require human intervention which renders the whole

process too cumbersome to repeat considering the large space
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of potential knob settings.

We started investigating a room for improvement for Presto

and Spark engines. Our estimations have shown that the

majority of parameters for both engines are set to default

values and we can potentially have significant savings in terms

of power. This estimate was based on creating a system that au-

tomatically generates code changes for pipelines where query-

level hyper-parameters can be updated by running a shadow

test which leverages Bayesian search to explore parameter

search space efficiently.

This was then extended to auto set certain parameters based

on historical statistics, such as partial aggregation and join
distribution type in Presto, for all queries. The idea of partial

aggregation is to run the aggregate’s state transition function

over different subsets of the input data independently, and

then to combine the state values resulting from those subsets

to produce the same state value that would have resulted

from scanning all the input in a single operation [5]. Partial

aggregation will have an unnecessary cost if the output size

is not effectively reduced. Since most of the recurring batch

processing jobs are very stable in terms of the amount of data

processed from run to run, we leveraged the historical statistics

of output to input size ratio to decide if the partial aggregation

can be disabled automatically based on certain threshold.

For join distribution type optimization, although Presto

already has cost based optimization (CBO), in a lot of cases

the lack of good cardinality/size information of intermediate

or even input tables makes it hard to make optimal decisions

when broadcast join is applicable. Similarly, we also leveraged

the historical statistics of input data size of join operators

to guide the join type determination. One limitation of this

strategy is that currently Presto only allows parameter tuning

on the query level (ie, enable/disable partial aggregation for

all the aggregation operators in one query). One possible reso-

lution is replacing the operator-level cardinality estimates with

historical statistics and then letting the optimizers themselves

make better decisions.

We also experimented with setting cluster level parameters

for Spark, which is in contrast to the query level parameter

setting. For example we noticed that Spark queries spend

1/5 of their processing resources on garbage collection (GC)

operations. We aimed to improve cluster level GC performance

by experimenting with GC-related configurations such as GC-

algorithm and GC-parallelism. While our search resulted in

parameter settings that reduced GC time by 20%, we have not

observed improvements in total processing times beyond our

measured noise level.

We are also exploring leveraging open source parameter

search initiatives to integrate with our Presto and Spark

compute engines. For example the prototype system (BAO:

Bandit optimizer) showed impressive results on both single

node DBMS [12] and big data workload [14]. This system

does not modify the optimizers directly. Instead, it steers the

existing optimizers and rules to choose more promising query

plans from ML predictions. We are exploring plugging it in

Presto as a standalone service to generate more efficient query

TABLE II
TESTED GARBAGE COLLECTION PARAMETERS

Algorithm Parameter Description Values Tried

Parallel GC ParallelGCThreads
Number of threads
that do GC in parallel

2, 4 (default),
6, 8, 10, 12

G1 GC
InitiatingHeapOccupancyPercent

Maximum percentage
of heap occupied
before GC cycle starts

25, 35

ConcurrentGCThreads
Number of concurrent
GC threads

2, 4

ParallelGCThreads Same as above 6, 8

plans on the per query basis to achieve efficiency/latency wins

and then extending it to work for Spark as well. We also plan to

try leveraging the predictive model to mine more optimization

insights for queries with certain patterns.

We have noticed that Presto and Spark hyper-parameter

tuning can be unified behind a single interface of a stand-

alone parameter tuning engine that we term Warehouse HPT.

In the initial stage, the engine will conduct controlled experi-

ments and analyze results to find insights that are statistically

significant and stable improvement for at least a significant

subset of queries. It will then leverage the experiment data

to mine rules (e.g., via a simple decision tree model) to be

applied to queries in production. The rule will be in the format

of “if a query Q meets criteria A and B, then apply parameter

value x, otherwise y”. Thus Warehouse HPT will enable engine

experts to list past parameter value trials with their analyses,

and to seamlessly invoke new parameter value trials with a

few clicks, without dealing with the details of preparing and

conducting controlled experiments, collecting results, running

an analysis on the results, and trying to come up with rules that

allow to yield maximum benefit from the parameter change.

Overall, by extending our Presto and Spark engines with the

open source HPT techniques we believe that parameter setting

for our warehouse will be made easier and more efficient for

both our systems and our customers.

For Presto, where we tuned per query partial aggregation

and join distribution type parameter, we had seen initial results

of ∼3% CPU improvement and 2-3% latency wins over the

entire production workload. For Spark Garbage Collection

(GC) tuning we have observed improvements in GC time

but not in overall CPU. The details of tuned parameters are

presented in Table II.

Table II shows a subset of algorithms and parameters with

their values we experimented to improve garbage collection

for Spark. Our analyses showed that particularly ParallelGC

with ParallelGCThread equal 8 improves GC time by around

20%, yet we could not secure a consistent improvement in

CPU usage.

III. SMARTER QUERIES

Classical query optimization focuses on crafting heuristic

rules around best join type or join ordering to use or how to

perform predicate push-down [17]. While these optimizations

are still relevant to the Smarter Warehouse, our goal is to

automatically learn the best optimizations to apply in order to

create the most optimal query plan.
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Engineers writing a query often have to worry about exe-

cuting the given query on Spark, Presto or another compute

engine each with a different set of parameters (see Smarter

Systems section above). Instead, our vision is to have a

common query optimizer that not only decides which batch

compute engine to use, but may also decide whether to perform

some early computation in WWW/logging stack, in streaming

prior to ingestion, at ingestion time, or in NRT/micro-batch

allowing for easier query/pipeline authoring. This will extend

the current rule-and-heuristic-based optimizer with learned

components for more efficient query plan generation.

An example of where the common query optimization layer

will be useful is in interactive data analysis, which is often

inundated with common computations across multiple queries.

These redundancies considerably increase the resource cost

for interactive query sessions. Reusing common computations

could lead to substantial cost savings, but it is difficult for the

users to manually detect and reuse the common computations

themselves (especially during ad hoc analyses).

Most of our batch workload consists of the same queries

running day after day, which makes learning query optimiza-

tions possible. In fact, the majority of today’s workload is from

pipelines over a year ago. Thus we (a) have plenty of data to

train a query-specific optimizer and (b) the resource savings

we attain will accrue over a long period of time. Sections

III-A, III-B, III-C and III-D demonstrate our initial prototype

for query optimization.

A. Query Optimization Overview

Traditionally, query optimizations are done in database

engines (i.e. Presto and Spark). While eventually we want to

enable smarter warehouse optimizations within these engines,

our current query optimization efforts focus on a variety of

SQL-to-SQL rewrites outside of the engines. The reasons for

this are four-fold.

First, query optimizers in the database engines are conven-

tionally cost-based, and thus do not take into account historical

stats which can be helpful in query optimization. For example,

computationally expensive join orderings can potentially be

corrected by looking at past runs. As another example, looking

at the frequency of subqueries in the past is helpful in deciding

what materialized views to create [1].

Second, we can afford running shadow tests to see if

an optimization works. This can be worthwhile because

most queries are recurring, including dashboard queries and

hourly/daily/weekly ETL jobs.

Third, we can propose bolder and riskier code change

optimizations to the users, and only ship the optimizations

if users accept the code changes. For example, the use of the

UNION clause without the ALL clause requires a compu-

tationally expensive deduplication process. Oftentimes this is

not intended. Users just forget to add ALL. However, it is

still not 100% safe to perform a transparent optimization that

adds ALL regardless. In this case, we assign a ticket to the

query owner to let them double check if deduplication is really

desired.

Lastly, proposing query optimizations as code changes has a

great benefit of facilitating better engineering practices. Given

the scale of the warehouse at large companies, it is easy to find

an existing piece of code and reuse it in a different context.

This is a common practice adopted by users, especially new

engineers. As a result, anti-patterns propagate rapidly through

copy-and-paste engineering. By automatically proposing code

changes and asking the users to review, we are able to raise

the awareness of anti-patterns and promote good practices.

B. Example Optimization Patterns

We are currently working on extensive single and multi-

query optimization patterns. Here we describe some examples

of the SQL-to-SQL rewrite patterns.

Missing Date Filter. In the data warehouse, tables are often

partitioned on the date column by default. A query usually

accesses only one or a few date partitions by specifying a

filter on the date column. Sometimes users forget to specify

the date filter, leading to computationally expensive scans of

all data. We detect the missing date filters and assign tickets

to users asking them to check whether this is intended. Most

of the time, the users add a date filter after seeing the ticket

and it saves a lot of computing resources.

Inefficient Expressions. In many cases, a computationally

expensive expression can be replaced/removed without af-

fecting downstream application logic. For example, users

would write the ORDER BY clause in an ETL INSERT

query, which is often the result of copy & paste and not

necessary. Now, consider an example of “risky” optimization

that needs user confirmation. COUNT DISTINCT is very

computationally expensive, but in many cases an exact count

of distinct values is not needed. An approximate count offered

by APPROX DISTINCT can be sufficient and much more

efficient.

Unnecessary Sharding. Query sharding is a “trick” well-

known in the company to avoid out-of-memory errors in

Presto. Basically, users can breakdown a computationally

expensive INSERT query into smaller ones by appending

WHERE predicates to it. For example, users would rewrite

INSERT INTO a SELECT * FROM b as 40 smaller queries

INSERT INTO a SELECT * FROM b WHERE id % 40 = i,
0 ≤ i < 40. Presto can potentially be architectured to support

this pattern better, but this trick has become so popular that

sometimes it is the default thing to do whenever the user feels

that a query is going to run out of memory, even though it may

not run out of memory at all. We detect such patterns and run

shadow tests to show to the users that the query sharding is

not necessary. Users would often accept our suggestion. Based

on our initial results we have saved on average over 60% of

compute by leveraging these rewrite strategies for this pattern.

C. Action Recommendations for Warehouse Users

Data warehouse users spend time on a variety of internal

tooling systems. Ideally, we want action recommendations

based on the optimization patterns (e.g. add missing date filter)

to be visible as much as possible. While we have a few systems
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presenting action recommendations in a variety of ways such

as assigning tickets, UI popups and linting suggestions, they

are far from unified, and present an inconsistent and frag-

mented user experience. Looking ahead, we envision a future

where a centralized engine dispatches action recommendations

that cover every user surface possible, enabling a coherent and

consistent user experience and eliminating anti-patterns to the

greatest extent possible.

D. Query Cost Prediction

Predicting query execution time is useful in many

database management issues including admission control,

query scheduling, progress monitoring, and system sizing [20].

As part of the Smarter Warehouse we are also working on a

machine learned model for query cost prediction. Our initial

results show that using a very simple and fast machine learning

model, we can predict 20% of all query failures with 95%

precision (before the query is executed). If deployed only to

our interactive query operations, this model might reduce the

amount of time the average user spends every day waiting on

failed queries by over 10 minutes.

Predicting when a query will succeed or fail enables us to

warn users, saving time they would otherwise lose to waiting

(that amounts to tens of minutes per user-day and thousands

of engineering hours every day). Alternatively, we can redirect

the destined-to-fail queries to a different queue in the engine

to reduce the side effects of the hundreds of thousands of CPU

hours a day spent on failed interactive queries.

Before a SQL query gets executed by our query engines

(Presto and Spark), it is first compiled into a “query plan”

that represents the set of basic operators (scan a file, join

on a key, ...) for execution. These plans take very little

time to generate compared to the cost of running the query

(�1%). In addition to the query plan, we use a meta-store to

get information about the size of the input tables and other

such statistics. These two sources contribute the only features

currently in use. Importantly, no features related to the SQL,

join ordering, or filters that a user applied in the query are

utilized, which are the features that intuitively would be best

at predicting success and failure (we plan to use them in the

future).

After training the model we are seeing a peak classification

accuracy of >95% on test data, but what is more important

is observing the model’s ability to separate those queries that

are likely to succeed from those that are likely to fail. When

applying the model we produce a query failure likelihood

(using nearest neighbor over the model outputs on the training

data) that can be used for binning and making warnings for

users. Figure 1 shows the the precision and recall curves for

this initial model predicting query failures.

The current prototype model is using a very small set

of features, so we are hopeful that this already-promising

performance can be significantly improved. For training we

sampled one hundred thousand interactive queries from a two

week window, and fit a multilayer perceptron (MLP) with 10

layers and 128 nodes per layer (totaling 150K parameters at

Fig. 1. Precision, recall, and 1000 nearest-neighbor query failure rate curves
based on model output on test data (where output being larger means a
query is more likely to fail). A very simple model based on query plans
and input table sizes alone can capture 20% of failures with 95% precision.
This model was trained on 100K randomly sampled queries over a two week
time period and tested on 100K queries from the second day after the training
time period. In addition to confidently capturing 20% of failures, the 2-norm
neighborhoods around model outputs are relatively homogeneous and allow
for “failure likelihood” estimation via nearest neighbor over the training data.

a size of 600KB). A single forward pass (prediction) takes

only 7 milliseconds. To test the model we collected a new set

of one hundred thousand of queries from two days after the

training data window, which prevents any feature spillage and

ensures we have time to train a model similarly in production.

We have deployed this model as part of a service to make

the predictions accessible to internal tools. The service takes as

input the query plan JSON and the list of input table names for

the query. From there it parses out the features and passes them

into a model, returning a prediction that includes the likelihood

of success. By making the model available through a service, it

will allow rapid testing and integration with compute engines

and other tools in our warehouse.

IV. SMARTER PIPELINES

Pipelines at large companies often consist of multiple

queries that are currently executed completely independently

even though there might be shared data, predicates and other

logic among them. For example, previous work observed sig-

nificant overlaps in the computations performed by user jobs

in modern shared analytics clusters [4]. Naively computing

the same sub-expressions multiple times results in wasting

cluster resources and longer execution times. Given that these

shared cluster workloads consist of tens of thousands of jobs,

identifying overlapping computations across jobs is of great

interest to both cluster operators and users. Therefore learning

to select common parts of job plans and materializing them to

speed-up the evaluation of subsequent jobs will be useful in

making our pipelines smarter. LINT checks can also suggest if

a new pipeline tries to repeat an already existing (sub)query.

Another item that is part of the smarter pipelines umbrella

is learning to use views instead of managed tables. Using

views instead of managed tables is an important database

optimization. For example a lot of the times table T is created

but it is only read by the downstream task in the same pipeline

5



and never again. For cases like this, having a view for T is

likely better in terms of both storage as well as potentially I/O

and CPU. Initial estimate of the number of pipeline-generated

tables that can be replaced by views is > 5%. This estimate

is based on the table access frequency in the last 30 days.

Replacing tables with views may allow for not only a reduced

I/O but also a reduced storage and compute. A similar parallel

direction would be for Presto or Spark to recognize that a

materialized view could better serve a query with a matching

filter predicate, rather than use the base table in Hive. In

other words, materialized views are often preferred in cases

where the cardinally of the query output reduces substantially

compared to the input [13] due to filtering or aggregation and

we aim to automatically determine such opportunities with the

Smarter Warehouse. See section IV-A for more details on our

initial prototype.

Smarter pipeline root cause analysis (RCA) is another item

in this pillar. Currently engineers need to scan potentially hun-

dreds of metrics to find out performance issue symptoms. Cer-

tain metrics are highly correlated and rapid fault propagation

in databases renders them anomalous almost simultaneously

making debugging more challenging due to the added anomaly

noise. As a result, pipeline debugging with various metric

fluctuation patterns likely leads to complex relationships with

diverse root causes. Another pipeline optimization opportunity

involves mining pipelines with a high failure rate and auto-

pausing them until addressed by the user or recommending

switching to a different engine (e.g., from Presto to Spark to

avoid Out-Of-Memory errors (OOMs)). To discover and un-

tangle such relationships, developing smarter pipeline analysis

tools is our first step in this direction.

A. Infrequently Accessed Table Optimization

In this section we describe an infrequently accessed table

optimization based on virtual views, which is orthogonal to

a materialized view optimization. Often data warehouse users

create infrequently accessed/temp tables in their pipelines or

create many tables that are largely based on the same query but

with a different filter. These tables consume storage resources

and potentially increase consuming query complexity.

The scale of the problem is quite large. For example there

are thousands of tables that have been accessed less than 30

times in the last month. Completely removing such tables may

be challenging due to downstream dependencies. Therefore, as

part of the Smarter Warehouse direction, we want to explore

a scalable way of replacing some of these tables by virtual
views thereby reducing complexity by hiding the underlying

physical storage semantics and improving storage efficiency

by not materializing the table.

The idea of using views instead of tables is very important in

database optimization. For example often table T is created but

it is only read by the downstream task in the same pipeline and

never again. For cases like this, having a view for T is likely

better in terms storage. Views can also help in complexity

reduction: if we have tables T1...Tk generated using queries

Q1...Qk that are similar, then we can use a single view that

can potentially replace all or some of Q1...Qk. Thus, by

leveraging views, the logic which would otherwise appear

as boilerplate code can now be consolidated, centralized,

and manageable. Industry-wide, views are starting to gain

popularity, but they are still not widely adopted, partly due

to the lack of awareness.

Our goal is to explore automated table to view conversion

in selected instances to reduce complexity as well as im-

prove storage efficiency. One challenge that we also had to

overcome to make Virtual Views truly a first class citizen in

the warehouse is to add lineage support. Lineage information

is useful to understand how data is flowing through view

tables. With this lineage support, we have more confidence

to push higher adoption of view tables in the warehouse. This

adoption can reduce physical storage and sensitive information

for infrequently accessed tables.

As part of this effort, we have landed multiple pipeline

rewrites. These rewrites remove the need to persist the in-

termediate table and instead use a VIRTUAL VIEW. By using

a VIRTUAL VIEW we have saved many petabytes of logical

storage across the many clusters. Finally, we are closely

monitoring the updated pipeline performance and expect the

compute usage to remain largely unchanged. The reason for

this is because in the updated pipeline Table A is used to

generate Table B and when we convert Table A into a view,

thereby reducing Table A’s computationally cost to 0, the

increased resource cost of generating Table B is offset by the

computational savings we got from converting Table A into a

view.

V. SMARTER DATA

While it is common to leverage previous query runs to

learn potential query optimization patterns [21] leveraging the

underlying data is less explored and is often beneficial for

modeling query cardinality without incurring expensive query

execution costs.

Smarter data implies learning optimal physical data layout

which includes bucketing, partitioning, column ordering, data

compression and auto data type selection to improve query

performance based on the historical workload [7]. For example

partition tuning, i.e., selecting partition columns that are

appropriate for the workload, is a crucial task that is often

set to a default value by users. However, selecting the right

partition is a very difficult optimization problem: there exists a

very large number of candidate partitions for a given schema,

a given partition may benefit some parts of the workload and

also incur storage overhead and other complexity in terms of

the number of directories created due to partition columns

selected.

Therefore a learning system may choose to generate par-

tition recommendations by analyzing the workload online

(i.e., in parallel with query processing), which allows the

recommendations to adapt to shifts in the running workload.

The pipeline owner should also be able to request a recom-

mendation at any time and is responsible for selecting the
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partition at the time of pipeline creation. Another partition-

based optimization is to compute the partition access ratio and

warn users if this ratio is too low (e.g., a given partition is not

frequently accessed). As with previous learning components of

the Smarter Warehouse, the engineer should be able to refine

the automated recommendations by passing indirect domain

knowledge to the tuning algorithm.

VI. QUERY INSIGHTS & OTHER OPTIMIZATIONS

Smarter warehouse exploration and experimentation tools

will allow us to understand how engineers are using the

warehouse and will allow us to bring together the many

disparate datasets into a unified view in order to analyze

the various warehouse patterns to better plan and prioritize

opportunities towards making our warehouse smarter. This

includes building tools that allow for an easier way to explore

engine, query, pipeline and data characteristics to understand

what parts of it may need tuning. While this may not lead to

immediate measurable gains, building such tools is important

as it will allow engineers to explore how the warehouse is used

and to understand optimization gaps and ways to potentially

address them [8]. For example this would involve exploring

warehouse component usage and deprecating components that

are infrequently used or simplifying frequently used compo-

nents (e.g., reducing the number of required operator flags).

Other Optimizations: In addition to the major Data Ware-

house efficiency-related initiatives (e.g., HPT) mentioned ear-

lier in this manuscript, many additional anti-patterns exist.

For these anti-patterns that are not directly and explicitly

covered in the top-down Smarter Warehouse roadmap, an

alternative bottom-up approach is taken to enable Warehouse

power users to report these inefficiencies and to help with

remediation efforts. The Smarter Warehouse’s role here is to

help streamline this entire process.

A. Tables with Low Daily Partition Access Ratio

New partitions are generated daily for most tables in the ma-

jority of data warehouses. However, many of these partitions

are never accessed, which wastes computation and storage.

We used the ratio of daily partitions that were accessed to

detect this anti-pattern. We term this the “partition access

ratio.” We automatically send a message to owners of tables

that are resource intensive to compute and/or store that have a

ratio below a threshold (e.g., 0.3) advising them to write out

partitions less frequently (e.g., every other day).

B. Error-Prone Pipelines

Pipeline owners in the data warehouse are advised when

their pipelines fail to complete successfully due to a system

error. If an owner ignores this message repeatedly, it’s a signal

that the pipeline is no longer producing business-critical data.

In these cases as well, we recommend a reduction in pipeline

frequency.

C. Pipelines with High Resource Consumption Failures

Resource failures (e.g. Out-Of-Memory, exceed time limit)

are often transient errors in the Data Warehouse and, if given

enough retries, may eventually go away. These eventually

successful runs can give the owners a false sense of pipeline

robustness leaving them unaware of the large CPU waste

incurred from the previous failed runs. In these cases, we

surface pipelines that are associated with particularly high

failure CPU and recommend appropriate remediation methods

(e.g., switching from Presto to Spark).

VII. DISCUSSION AND CONCLUSION

The focus of this workshop paper is to introduce the vision

for the Smarter Warehouse and the initial steps we are taking

in this direction. Along this journey, there are a number of

lessons that we have learned:

• Importance of computational savings estimation: having a

reliable way to estimate potential wins of an optimization

direction allows for easier prioritization.

• Unify common project frameworks: Unifying common

parts of the hyper-parameter tuning (HPT) library as well

as query optimization library for Presto and Spark will

allow us to move faster.

• Compute engine alignment: There was a lot of discussion

around implementing HPT / query optimization within

the engine vs. outside of the engine. It is important for

us to align on this across the compute engines.

• Breadth vs. depth strategy to maximize impact: Ware-

house space has huge opportunities for machine learning

impact. To make sure we are working on the most im-

pactful projects, we must have dedicated time to explore

riskier projects such as query cost prediction.

• Focusing on resource savings as an important metric
of progress: To align with company/org priorities and

needs we must align on efficiency wins versus measuring

usability.

• How to systematically source new projects and scope: So

far we have been choosing Smarter Warehouse projects

in an ad hoc way, however the goal is to make the process

more systematic by leveraging internal programs to find

insights in our query authoring workflows that can benefit

from machine learning optimization.

• Aligning with cross-functional teams: It is important to

make sure we can push out intelligence to the end

user in a scalable way and to that end our partnership

with internal compute engine and efficiency teams is

important.

While we have introduced a number of initiatives in this

workshop paper, ultimately it is important to unify the pre-

sented optimizations in order to have a holistic solution for

the Smarter Warehouse. This includes bridging the potential

conflict between HPT, smarter queries, systems & pipelines,

which may be applicable to specific use-cases (e.g., interactive

and batch queries may need different set of optimizations and

a “one size fits all” approach will likely not be applicable).
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The progress we have made so far has already resulted in

sizable power savings and we aim to share further progress

with the Database community in the near future.
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