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Abstract

The process of revising (or constructing) a pol-
icy immediately prior to execution—known as
decision-time planning—is key to achieving su-
perhuman performance in perfect-information set-
tings like chess and Go. A recent line of work has
extended decision-time planning to more general
imperfect-information settings, leading to super-
human performance in poker. However, this line
of work involves subgames whose sizes scale ex-
ponentially in the number of bits of non-public
information, making them unhelpful when the
amount of non-public information is large. Mo-
tivated by this issue, we introduce an alternative
perspective on decision-time planning: the frame-
work of update equivalence. In this framework,
decision-time planning algorithms are viewed as
implementing updates of synchronous learning
algorithms. This enables us to introduce a new
family of principled decision-time planning al-
gorithms that do not rely on public information,
opening the door to sound and effective decision-
time planning in settings with large amounts of
non-public information. In experiments, members
of this family produced comparable or superior
results compared to state-of-the-art approaches in
Hanabi and improved performance in 3x3 Abrupt
Dark Hex and Phantom Tic-Tac-Toe.

1. Introduction
Decision-time planning (DTP) is the process of revising (or
even constructing from scratch) a policy immediately prior
to using that policy to make a decision. In settings involving
strategic decision making, the benefits of DTP can be quite
large. For example, while DTP approaches have achieved
superhuman performance in chess (Campbell et al., 2002),
Go (Silver et al., 2016), and poker (Moravčı́k et al., 2017;
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Brown & Sandholm, 2018; 2019), approaches without DTP
remain non-competitive with top humans in these domains.

Currently, the dominant conceptual paradigm for DTP is
based on the idea of solving (or improving the policy as
much as possible for) subgames. In perfect-information
games, a subgame is defined naturally as a game begin-
ning from the current history that proceeds according to
the same rules as the original game. In contrast, the
definition of a subgame is significantly more nuanced in
imperfect-information games, where counterfactual depen-
dencies make naively considering subtrees in isolation un-
sound. While multiple definitions have been proposed, all
those that facilitate sound guarantees (Nayyar et al., 2013;
Burch et al., 2014; Moravcik et al., 2016; Brown & Sand-
holm, 2017; Moravčı́k et al., 2017; Brown et al., 2020;
Sokota et al., 2023b) rely on a distribution known as a pub-
lic belief state (PBS)—i.e., the posterior over histories given
public information and a historical joint policy.

Unfortunately, PBS-based planning has a fundamental lim-
itation: It is not useful in settings with large amounts of
non-public information. This shortcoming arises because
the number of decision points in the support of the PBS
distribution scales exponentially with the number of bits of
non-public information. When the amount of non-public in-
formation is small, such as in poker, it is feasible to construct
strong policies for all of these decision points. However, as
the amount of non-public information grows, this becomes
intractable under a fixed time budget. Indeed, in cases where
there is no public information, PBS-based subgame solving
requires solving the entire game.

In this work, motivated by the insufficiency of subgame-
based conceptualizations, we advocate for an alternative per-
spective on DTP that we call the framework of update equiv-
alence. Rather than viewing DTP algorithms as solving
subgames, the framework of update equivalence views DTP
algorithms as implementing updates of synchronous learn-
ing algorithms. Importantly, because these synchronous
algorithms needn’t involve PBSs, the framework of update
equivalence has no inherent limitations arising from the
amount of non-public information.

To facilitate the application of the update equivalence frame-
work, we provide a general procedure for converting any
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synchronous learning algorithm using action-value feedback
and local updates into a decision-time planner. The resulting
approaches can be summarized as using search to estimate
the current policy’s action values and using the synchronous
algorithm’s update rule to update the policy. They are sim-
ple to implement, highly parallelizable, and can be scaled
to settings with large amounts of private information using
sequential generative modeling.

Using this procedure, we apply the update equivalence
framework to justify two new DTP algorithms that we call
mirror descent update equivalent search (MD-UES) and
magnetic mirror descent update equivalent search (MMD-
UES). We test these algorithms in Hanabi (Bard et al., 2020),
a fully cooperative game with a substantial amount of pub-
lic information, and in two adversarial games with virtually
no public information—3x3 Abrupt Dark Hex and Phan-
tom Tic-Tac-Toe. In Hanabi, we find that MD-UES yields
results that are competitive with or superior to modern PBS-
based methods, which are considered state-of-the-art. In
3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe, we find
that MMD-UES substantially lowers the approximate ex-
ploitability of a uniform random blueprint policy (i.e., the
policy on top of which search is performed) and improves
head-to-head performance against a variety of baselines.

Based on these results, we argue that the framework of up-
date equivalence opens the door to sound and effective DTP
and expert iteration (Anthony et al., 2017; Anthony, 2021)
in settings with large amounts of non-public information.

2. Background and Notation
This section introduces the requisite information on finite-
horizon partially observable stochastic games (POSGs), syn-
chronous learning algorithms, and DTP algorithms neces-
sary to discuss the update equivalence framework.

Partially Observable Stochastic Games The set of finite-
horizon POSGs (Hansen et al., 2004) is a class of games
that is equivalent to perfect recall timeable (Jakobsen et al.,
2016) extensive form games (Kovarı́k et al., 2022). To
describe POSGs, we use:

• g to notate the game itself,
• s ∈ S to notate Markov states,
• ai ∈ Ai to notate player i’s actions,
• oi ∈ Oi to notate player i’s observations,
• hi∈Hi =

⋃
t(Oi×Ai)

t×Oi to notate i’s decision points,
• a ∈ A = ×iAi to notate joint actions,
• h ∈ H = ×iHi to notate histories,
• Ri : S× A → R to notate player i’s reward function,
• T : S× A → ∆(S) to notate the transition function,
• Oi : S×A → Oi to notate player i’s observation function.

Each player i interacts with the game via a policy πi, which

maps decision points to distributions over actions

πi : Hi → ∆(Ai).

Given a joint policy π = (πi)i, player i’s expected return is

Ji(π) := E

[∑
t

Ri(S
t, At)

∣∣∣ π]

where we use capital letters to denote random variables.

If the reward function for each player is the same, we say
the game is common payoff. If there are two players and the
reward functions of these players are the negations of one
another, we say the game is two player zero sum.

We notate the expected value for an agent at a history ht

under joint policy π as

vπi (h
t) = E

∑
t′≥t

Ri(S
t′ , At′)

∣∣∣∣∣∣π, ht

 .

We notate the expected action value for an agent at a history
ht taking action ati under joint policy π as

qπi (h
t, ati) = E

[
Ri(S

t, At) + vπi (H
t+1)

∣∣π, ht, ati
]
.

The expected value of a decision point ht
i is the weighted

sum of history values, where each history is weighted by its
probability, conditioned on the decision point and historical
joint policy

vπi (h
t
i) = E

[
vπi (H

t) | π, ht
i

]
.

Similarly, the expected action value for action ati at a deci-
sion point ht

i is defined as

qπi (h
t
i, a

t
i) = E

[
qπi (H

t, ati) | π, ht
i

]
.

Synchronous Learning Algorithms We say a learning algo-
rithm is synchronous if its update function U sync : (πt, g) 7→
πt+1 operates on the entire joint policy π simultaneously.
We say a synchronous algorithm operates with local action
value feedback if there exists U sync

local such that, for each hi,

U sync(πt, g)(hi) = U sync
local (πt(hi), q

πt
i (hi, ·)) .

In other words, the update at a decision point depends only
on the policy and action values at the decision point itself.

Decision-Time Planning Algorithms As mentioned, a
DTP algorithm is used to revise (or, in the extreme case,
construct altogether) a policy immediately prior to using
that policy to make a decision; we call a policy that is to be
revised by a DTP algorithm a blueprint policy. We can think
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of a DTP algorithm as implementing an update function
mapping each decision point to a revised policy,

UDTP : (hi, ∗) 7→ δ where δ ∈ ∆(Ai)

where hi is the decision point from which planning is being
performed and ∗ acts as a stand in for any other information
that a DTP algorithm may use, including (but not limited to)
a blueprint policy or the transition model of the game.

3. The Framework of Update Equivalence
The framework of update equivalence is built on the ob-
servation that DTP algorithms and synchronous algorithms
may induce the same updates, as is formalized below.
Definition 3.1 (Update Equivalence). For a game g, a syn-
chronous learning algorithm with updater U sync and a DTP
algorithm with updater UDTP are update equivalent if, for
any policy πt and decision point hi of any player, the syn-
chronous learning algorithm and the decision-time planning
algorithm induce the same updates:

U sync(πt, g)(hi) = UDTP(hi, ∗(πt, g)),

where ∗(πt, g) denotes the policy and game specific infor-
mation used by the DTP algorithm.

There are at least two benefits to considering update equiva-
lence relationships in the context of decision-time planning.

First, it begets an approach to analyzing DTP algorithms via
their synchronous learning algorithm counterparts. (Note
that, given any DTP algorithm, it is always possible to con-
struct an update equivalent synchronous algorithm—simply
define the synchronous algorithm’s update to be that of
Definition 3.1.) This avenue of analysis circumvents non-
locality issues that have traditionally made the analysis of
DTP algorithms painful by considering the global change
induced by planning across all decision points.

Second, it enables the construction of new DTP algorithms.
Specifically, it allows synchronous algorithms with desir-
able guarantees and locally structured updates to be used
to generate new principled DTP algorithms. That these
updates possess some local structure is important because
DTP operates in a heavily time-constrained regime, making
performing arbitrarily unstructured updates intractable.

We illustrate these benefits in the two coming subsections.
In Section 3.1 we focus on synchronous learning algorithms
that operate using local action-value feedback, providing a
general procedure to generate DTP analogues of these algo-
rithms and discussing three DTP algorithms generatable by
this procedure, as well as their soundness. In Section 3.2
we also discuss synchronous algorithms that do not oper-
ate using local action-value feedback, demonstrating how
framework of update equivalence can be used to generate or
justify DTP algorithms with more complex structure.

Algorithm 1 Update Equivalent Search for U sync
local

Input: decision point ht
i, joint policy π

Initialize q̂[a] as running mean tracker for a ∈ Ai

repeat
Sample history Ht ∼ P(Ht | ht

i, π)
for a ∈ Ai do

Sample conditional return G ∼ P(G | Ht, a, π)
q̂[a].update running mean(G)

end for
until search budget is exhausted
return U sync

local(π(h
t
i), q̂)

3.1. Action-Value-Based Planners

The general procedure for converting synchronous algo-
rithms whose update functions are continuous U sync

local and
operate on local action-value feedback into decision-time
planners is given by Algorithm 1. In words, Algorithm 1
repeatedly samples histories conditioned upon the occupied
decision point and the joint policy and acquires estimates
of the sample returns for these histories via rollouts. When
the computational budget available for DTP has been ex-
hausted, Algorithm 1 returns the policy induced by the ap-
plication of the local updater U sync

local to the current joint policy
and the estimated action values. As is formalized by the
proposition below, decision-time-planning algorithms pro-
duced via Algorithm 1 approach update equivalence with
the synchronous algorithms that induce them in the limit as
computational budget grows large.

Proposition 3.2. Let U sync by a synchronous update in-
duced by local action value updates U sync

local. Then, as the
number of rollouts goes to infinity, the output of Algorithm 1,
conditioned on U sync

local and given inputs ht
i, π, converges in

probability to U sync(π, g)(ht
i).

This proposition holds because q̂ converges in probability to
qπi (hi) by the law of large numbers and U sync

local is continuous.

Policy Iteration Update Equivalent Search Algorithm 1
allows us to relate synchronous learning algorithms with
DTP counterparts. A notable existing instance of such a
relationship that has already been identified in literature
is that between policy iteration and Monte Carlo search
(Tesauro, 1995; Tesauro & Galperin, 1996), which is the
name of the DTP algorithm resulting from plugging policy
iteration’s local update function into Algorithm 1. This local
update can be written as

U sync
local : (πt, q) 7→ δ where δ ∈ ∆(arg maxaq(a)),

and where we abuse notation by using πt and q to refer to
elements of ∆(Ai) and R|Ai|, respectively, rather than the
full joint policy and full action-value function. Because pol-
icy iteration possesses desirable properties in single-agent
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settings and two-player zero-sum (2p0s) games with perfect
information (Littman, 1996), Monte Carlo search is also a
sound approach to such settings.

Mirror Descent Equivalent Search Algorithm 1 also al-
lows us to give novel justification to DTP approaches in
settings in which acquiring guarantees has been historically
difficult. One example of such as a setting is common-
payoff games, where a naive application of Monte Carlo
search can lead to bad performance as a result of the poste-
rior over histories induced by the search policy diverging
too far from the blueprint policy’s posterior (Sokota et al.,
2022). We show that this issue can be resolved using mir-
ror descent (Beck & Teboulle, 2003; Nemirovsky & Yudin,
1983), which is a general approach to optimizing objectives
that penalizes the distance between iterates. In the context
of sequential decision making, a natural means of leveraging
mirror descent is to instantiate simultaneous updaters U sync

local
at each decision point of the following form:

U sync
local : (πt, q) 7→ argmax

π
⟨q, π⟩ − 1

η
KL(π, πt),

where πt is a local policy, η is a stepsize, and q is a local
action value vector; in the case of discrete action spaces,
this update reduces to the following closed form, which is
sometimes called hedge:

U sync
local(πt, q) ∝ πte

ηq.

We can show that the approach induced by conditioning
Algorithm 1 on mirror descent’s update function, which we
call mirror descent update equivalent search (MD-UES), is
principled by proving that its synchronous analogue (i.e.,
mirror descent) has a desirable improvement property. In
the appendix, we provide such a proof, which leads to the
theorem below.

Theorem 3.3. Consider a common-payoff game. Let πt be
a joint policy having positive probability on every action
at every decision point. Then, if we run mirror descent at
every decision point with action-value feedback, for any
sufficiently small stepsize η > 0,

J (πt+1) ≥ J (πt).

Magnetic Mirror Descent Equivalent Search Another
example of a setting that has been historically difficult
for DTP is 2p0s games. In such settings, neither policy
iteration- nor mirror descent-based approaches yield useful
policies—instead, these approaches tend to cycle in rock-
paper-scissors-like ways without converging. In practice,
this issue can be resolved using magnetic mirror descent
(Sokota et al., 2023a), which is an extension of mirror de-
scent with additional proximal regularization to a magnet
that dampens these cycles. As with mirror descent, in the

context of sequential decision making, a natural means of
leveraging magnetic mirror descent is to instantiate simulta-
neous updaters U sync

local at each decision point:

U sync
local : (πt, q) 7→ argmax

π
⟨q, π⟩−1

η
KL(π, πt)−αKL(π, ρ),

where α is a regularization temperature and ρ is a local
magnet; in the case of discrete action spaces, this update
reduce to the following closed form:

U sync
local(πt, q) ∝ [πte

ηqρηα]
1

1+αη .

We observe that the approach induced by conditioning Al-
gorithm 1 on magnetic mirror descent’s update function,
which we call magnetic mirror descent update equivalent
search (MMD-UES), is principled if it is true that magnetic
mirror descent with action-value feedback is principled in
2p0s games. Encouragingly, there is empirical evidence that
this is true.
Remark 3.4. Sokota et al. (2023a) show that magnetic mir-
ror descent with action-value feedback empirically exhibits
reliable last-iterate convergence in 2p0s games.

3.2. Beyond Action-Value Based Planners

There are many DTP algorithms that cannot be derived from
Algorithm 1 that nevertheless may be useful to view from
the perspective of update equivalence. One class of such
approaches are those that make updates at future decision
points during search. Approaches of this form, such as
Monte Carlo tree search (MCTS) (Coulom, 2006; Kocsis &
Szepesvári, 2006; Browne et al., 2012), played an important
role in successes in perfect information games (Silver et al.,
2016; 2018; Schrittwieser et al., 2019; Antonoglou et al.,
2022). Another class of such approaches are those than
fine-tune the belief model (Sokota et al., 2022) to track the
search policy.

To illustrate how the framework of update equivalence can
help justify such approaches in the context of 2p0s games
with imperfect information, we examine the synchronous
counterparts to three variants of MMD-based searches. 1)
With subgame updates: A variant in which the planning
agent also performs MMD updates at its own future deci-
sion points. 2) With belief fine-tuning (BFT): A variant that
implements an MMD update on top of a posterior fine-tuned
to the search policy. 3) With opponent updates: A vari-
ant that implements an MMD update assuming a subgame
joint policy in which the opponent has performed an MMD
update at its next decision point.

Results are shown in Figure 1. The plot measures divergence
to agent quantal response equilibrium (AQRE) (McKelvey
& Palfrey, 1998) as a function of number of update iterations.
We find that all three synchronous analogues exhibit empiri-
cal convergence, suggesting that these DTP algorithms may
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Figure 1. Divergence to AQRE as a function of iterations for synchronous analogues of variants of MMD-based search algorithms.
Encouragingly, each variant exhibits empirical convergence.

be sound in 2p0s settings. More generally, these findings
hint that, so long as MMD is used as a local updater, one
has wide leeway in designing principled DTP algorithms
for 2p0s games.

4. Experiments
In the previous section, we introduced the framework of
update equivalence and showed how it enables us to both
i) generate novel DTP algorithms, and ii) provide new ana-
lytical grounding for them. In this section, we add further
evidence for the utility of this framework by showing that
the novel DTP algorithms induced by it also perform well
in practice. We focus on two settings with imperfect infor-
mation: i) two variants of Hanabi (Bard et al., 2020), a fully
cooperative card game in which PBS-based DTP approaches
are considered state-of-the-art; and ii) 3x3 Abrupt Dark Hex
and Phantom Tic-Tac-Toe, 2p0s games with virtually no
public information.

4.1. Hanabi

We consider two versions of two-player Hanabi, a standard
benchmark in the literature. The first variant, which is com-
monly played by humans, uses 5 cards and 8 hints. The sec-
ond variant uses 7 cards and 4 hints and was first investigated
by Hu et al. (2021) to illustrate the additional issues that
arise when it becomes intractable to maintain a tabular pos-
terior. To begin, we trained instances of independent PPO
(Schulman et al., 2017) for each setting. We intentionally se-
lected instances whose final performance roughly matched
those of R2D2 (Kapturowski et al., 2019) instances that
have been used to benchmark DTP algorithms (Fickinger
et al., 2021; Sokota et al., 2022). Next, we trained a be-
lief model for each PPO policy using Seq2Seq (Sutskever
et al., 2014) with the same setup as Hu et al. (2021); in
this setup, the belief model takes in the decision point of

one player and predicts the private information of the other
player, conditioned on the PPO policy having been played
thus far.

We adapted our implementation of MD-UES from that of
single-agent SPARTA with a learned belief model (Hu et al.,
2021). Our adaptation involves three important changes.
First, MD-UES performs search for all agents, rather than
only one agent as was done in (Hu et al., 2021). Second,
MD-UES plays the argmax1 of a mirror descent update,
rather than the argmax of the empirical Q-values from
search, as SPARTA does. Third, MD-UES always plays
its search policy. This contrasts both SPARTA (Lerer et al.,
2020; Hu et al., 2021) and RLSearch (Fickinger et al., 2021),
which, after doing search, perform a validation check to de-
termine whether the search policy outperforms the blueprint
policy; if the validation check fails, the blueprint policy is
played instead of the search policy. This validation check
is expensive and usually fails (SPARTA and RLSearch only
play their search policies on a handful of turns). Thus, that
MD-UES does not require it is a significant advantage.

We show the results of our experiments for 5-card 8-hint
Hanabi in Table 1 with standard error over 2000 games. We
compare MD-UES using a PPO blueprint policy against
single- and multi-agent SPARTA and RLSearch, which are
considered state-of-the-art, with exact belief models and
an R2D2 blueprint policy; we also compare against single-
agent SPARTA using the same PPO blueprint policy and
Seq2Seq belief model. We find that, even with an approxi-
mate belief model, MD-UES matches the performance state-
of-the-art approaches using exact beliefs. We show the
results of our experiments for 7-card 4-hint Hanabi in Table
2 with standard error over 2000 games. In 7-card 4-hint
Hanabi, the number of possible histories is too large to

1Note that this differs slightly from our description in the previ-
ous section in that we are playing the argmax, rather than sampling,
from the updated policy.
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Table 1. MD-UES (bold) compared to SPARTA and RLSearch in 5-card 8-hint Hanabi. Despite only using approximate beliefs, MD-UES
roughly matches performance of prior methods using exact beliefs.

(a) — R2D2 Blueprint (b) — PPO Blueprint
Search
Agents planned
Belief model

-
-
-

SPARTA
Single
Exact

RLSearch
Single
Exact

SPARTA
Multi
Exact

RLSearch
Multi
Exact

-
-
-

SPARTA
Single

Seq2Seq

MD-UES
Multi

Seq2Seq

Expected return
Standard error

24.23
± 0.04

24.57
± 0.03

24.59
± 0.02

24.61
± 0.02

24.62
± 0.03

24.24
± 0.02

24.52
± 0.02

24.62
± 0.02

10−1 100 101 102 103
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Blueprint (7-card 4-hint)
MD-UES (7-card 4-hint)

1Figure 2. MD-UES Hanabi performance as a function of stepsize.
Small step sizes provide less improvement over the blueprint;
overly large step sizes cause the search policy to diverge too far
from the blueprint, resulting in less improvement or even detriment.

enumerate. As a result, multi-agent SPARTA is inapplica-
ble altogether, single-agent SPARTA and RLSearch require
an approximate belief model, and multi-agent RLSearch
requires both an approximate belief model and belief fine-
tuning (Sokota et al., 2022). Our results suggest that MD-
UES compares favorably against these approaches.

To offer further intuition for the behavior of MD-UES, we
show the performance in 7-card 4-hint Hanabi as a function
of mirror descent’s stepsize in Figure 2. As might be ex-
pected, we find that improvement is a unimodal function
of stepsize: If the stepsize is too small, opportunities to im-
prove the blueprint policy are neglected; on the other hand,
if the stepsize is too large, the search policy’s posterior di-
verges too far from that of the blueprint for the search to
provide useful feedback.

4.2. 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe

Compared to benchmarking performance in common-payoff
games, benchmarking performance in 2p0s is more difficult
because the usual metric of interest—exploitability (i.e.,
the expected return of a best responder)—is not cheaply
estimable. Indeed, providing a reasonable upper bound
requires training an approximate best response (Timbers
et al., 2022), which may involve many episodes of training.

To facilitate this approximate best response training under a
modest computation budget, we focus our experiments on
a blueprint policy that selects actions uniformly at random
at every decision point so that rollouts may be performed
quickly; furthermore, rather than using a learned belief
model, we track an approximate posterior using particle
filtering (Doucet & Johansen, 2009) with 10 particles. If
there are particles remaining, our implementation of MMD-
UES performs a rollout for each particle for each legal action
to the end of the game and performs an MMD update on
top of the empirical means of the returns. If these particles
have run out (i.e., no particle is consistent with the planning
agent’s decision point), we set the agent to execute the
(uniformly random) blueprint policy.

We empirically investigate MMD-UES in 3x3 Abrupt Dark
Hex and Phantom Tic-Tac-Toe, two standard benchmarks
available in OpenSpiel (Lanctot et al., 2019). We show ap-
proximate exploitability results in Table 3. We computed
these results using OpenSpiel’s (Lanctot et al., 2019) DQN
(Mnih et al., 2015) best response code, trained for 10 mil-
lion time steps. We show standard error over 5 DQN best
response training seeds and 2000 final evaluation games for
the fully trained model. We compare against a bot that plays
the first legal action, the uniform random blueprint, Liang
et al. (2018)’s implementation of independent PPO (Schul-
man et al., 2017), Lanctot et al. (2019)’s implementation of
NFSP (Heinrich & Silver, 2016), and MMD (Sokota et al.,
2023a). For the learning agents, we ran 5 seeds and include
checkpoints trained for both 1 million time steps and 10
million time steps.

We find that MMD-UES reduces the approximate ex-
ploitability of a uniformly random blueprint by more than a
third, despite that it uses a meager 10 particle approximate
posterior. Furthermore, compared to the baselines, MMD-
UES achieves lower approximate exploitability than all of
the non-MMD based approaches.

In addition to approximate exploitability results, we also
investigate the performance of MMD-UES in head-to-head
matchups. We show results using the uniform random
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Table 2. MD-UES (bold) compared to SPARTA and RLSearch in 7-card 4-hint Hanabi; MD-UES compares favorably to these approaches.

(a) — R2D2 Blueprint (b) — PPO Blueprint
Search
Agents planned
Belief model

-
-
-

RLSearch
Single

Seq2Seq

RLSearch
Single

BFT

RLSearch
Multi
BFT

-
-
-

SPARTA
Single

Seq2Seq

MD-UES
Multi

Seq2Seq

Expected return
Standard error

23.67
± 0.02

24.14
± 0.04

24.18
± 0.03

24.18
± 0.03

23.66
± 0.03

24.17
± 0.03

24.28
± 0.02

Table 3. Approximate exploitability in 3x3 Abrupt Dark Hex and
Phantom Tic-Tac-Toe, on a 0 to 100 scale. MMD-UES (bold)
substantially reduces Random’s exploitability.

Agent 3x3 Ab. DH Phantom TTT

1st Legal Action 100± 0 100± 0
Random 74± 1 78± 0
PPO(1M steps) 85± 6 89± 6
PPO(10M steps) 100± 0 90± 4
NFSP(1M steps) 91± 4 95± 1
NFSP(10M steps) 59± 1 78± 5
Random+MMD-UES 50± 1 50± 1
MMD(1M steps) 34± 2 37± 1
MMD(10M steps) 20± 1 15± 1

blueprint with 10 particles and also a MMD(1M) blueprint
with 100 particles in Figure 3. The values shown are aver-
ages over 10,000 games with bootstrap estimates of 95%
confidence intervals. We find that MMD-UES tends to
improve the performance of the blueprint policies in both
cases.

5. Related Work
We subdivide related work into three groups: approaches
to DTP that rely on PBSs, approaches to DTP that are not
handicapped by the amount of non-public information, and
structurally similar approaches to DTP as those that natu-
rally arise out of the framework of update equivalence.

PBS-Based Approaches to Imperfect Information The
first sound approaches to DTP arose in the context of
common-payoff games from the work of Nayyar et al.
(2013). Nayyar et al. (2013) showed that common-payoff
games can be transformed into Markov decision processes
(MDPs) in which the Markov states are the PBSs of the
original game, thereby facilitating planning via PBSs.

Sound DTP algorithms for 2p0s games involve additional
subtlety because solutions of the analogous public belief
game do not generally correspond to solutions of the original
game. The approaches to resolving this non-correspondence

problem involve opt-out values (Brown & Sandholm, 2017;
Moravčı́k et al., 2017), no-regret learning (Brown et al.,
2020), and regularization (Sokota et al., 2023b).

Sound DTP algorithms for two-team zero-sum games
involve using Nayyar et al. (2013)-like transformations
(Carminati et al., 2022a; Zhang et al., 2022a; Carminati
et al., 2022b), which reduce two-team zero-sum games to
2p0s games, resolving the non-correspondence problem.

These techniques have led to successes in common-payoff
games (Lerer et al., 2020; Sokota et al., 2021), 2p0s games
(Moravčı́k et al., 2017; Brown & Sandholm, 2018; Zarick
et al., 2020; Brown et al., 2020; Schmid et al., 2021), and
two-team zero-sum games (Zhang et al., 2022b), in settings
in which the amount of non-public information is small.

The presence of PBSs in these approaches motivated work
improving their scalability to settings with larger amounts
of non-public information. There have been two notable
advancements on this front. First, Fickinger et al. (2021)
show how Lerer et al. (2020)’s approach can be extended
to settings in which the support of the PBS is too large to
separately perform search for each decision point by fine-
tuning the policy in the style of (Anthony et al., 2019).
Second, Sokota et al. (2022) show how Fickinger et al.
(2021)’s approach can be extended to settings in which
the PBS is too large to track tabularly by inductively fine-
tuning the belief model. However, these advancements do
not address the fundamental limitations of PBSs.

Other Approaches to Imperfect Information Motivated
by the deficiencies of PBS-based DTP described above, a
small group of existing works has advocated for alternative
approaches to DTP for common-payoff games (Tian et al.,
2020) and 2p0s games (Zhang & Sandholm, 2021).

Tian et al. (2020)’s approach relies on a result that shows that
it is possible to decompose the change in expected return
for two different joint policies across decision points. By
leveraging this result, Tian et al. (2020) introduce a search
procedure called joint policy search (JPS) that is guaranteed
to not decrease the expected return.

Zhang & Sandholm (2021)’s approach is based around the
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Figure 3. Expected return of MMD-UES compared to uniform
random and MMD(1M) blueprint policies in head-to-head matches
in 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe. MMD-UES
tends to improve head-to-head expected return.

insight that, in practice, it is effective to consider a subgame
that excludes most of the decision points supported by the
PBS. Specifically, Zhang & Sandholm (2021) advocate in
favor of solving a maxmargin subgame (Moravcik et al.,
2016) that includes the planning agent’s true decision point,
as well as any opponent decision points that are possible
from the perspective of the planning agent. Despite prov-
ing the existence of games in which this approach, which
they call 1-KLSS, increases the exploitability of the pol-
icy, Zhang & Sandholm (2021) find experimentally that,
on small and medium-sized benchmark games, 1-KLSS
reliably decreases exploitability.

Comparing JPS and 1-KLSS to the update equivalence
framework, the update equivalence framework may offer
the advantage of being easier to understand, especially for
researchers not coming from imperfect-information games
backgrounds. As far as theoretical grounding, both JPS
and MD-UES possess provable improvement guarantees;
on the other hand, both 1-KLSS and MMD-UES lack for-
mal theoretical grounding (though there is hope that formal

grounding for MMD-UES is possible). Regarding perfor-
mance in common-payoff games, we would describe MD-
UES performing comparably with or superior to PBS-based
methods in Hanabi as a strong result; however, it is difficult
to compare this result with those of JPS, as it is has neither
been benchmarked on Hanabi nor against PBS-based search
methods. It is also difficult to make any definitive statements
regarding relative performance compared to 1-KLSS. We
provide a very limited comparison to some of the numbers
that Zhang & Sandholm (2021) reported for small games
in the appendix; however, it is unlikely that these small
games qualitatively resemble the larger regimes for which
the methods were intended.

Structurally Similar Approaches While the motivation for
the update equivalence framework most closely resembles
of the works of Tian et al. (2020) and Zhang & Sandholm
(2021), natural instances of the update equivalence frame-
work are structurally more similar to search algorithms un-
related to resolving issues with PBS-based planning. As
discussed previously, arguably the most fundamental in-
stance of the framework of update equivalence is Monte
Carlo search (MCS) (Tesauro & Galperin, 1996), which was
used prominently in TD-Gammon (Tesauro, 1995). MCS’s
synchronous equivalent is policy iteration, as was articu-
lated by Tesauro & Galperin (1996) themselves: “[MCS]
basically implements a single step of policy iteration.”

Anthony et al. (2019); Anthony (2021); Hamrick et al.
(2021); Lerer et al. (2020); Hu et al. (2021) recently in-
vestigated MCS in a variety of settings and report positive
results. Anthony et al. (2019); Anthony (2021) investigate
MCS in the context of Hex, finding that it yields perhaps
surprisingly good performance relative to MCTS. Hamrick
et al. (2021) also report positive results for MCS, finding
that it achieves comparable performance with MCTS across
a variety of settings, with the exception of Go. Lerer et al.
(2020) and Hu et al. (2021) investigate a variant of MCS in
the context of Hanabi (under the name single-agent SPARTA
and learned belief search) and also show strong results.

In their work, Anthony (2021) also investigate a search al-
gorithm called policy gradient search that performs policy
gradient updates at future decision points. They find that
a variant of this approach that involves persistent regular-
ization toward this blueprint policy tends to outperform not
regularizing. This approach is very similar to some of the
variants of MMD-UES investigated in Section 3.2. We feel
that the combination of policy gradient search and the frame-
work of update equivalence may be a fruitful direction in
the pursuit of algorithms that perform well in both perfect
and imperfect information games.

Separately from Anthony (2021), Jacob et al. (2022) also
investigate approaches to DTP involving regularization to-
ward a blueprint. Jacob et al. (2022) show empirically that,
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by performing regularized search, it is possible to increase
expected return of an imitation learned policy without a
loss of prediction accuracy (for the policy being imitated).
The most immediately related experiments to this work are
those concerning Hanabi, in which Jacob et al. (2022) inves-
tigated MD-UES (under the name piKL SPARTA) applied
on top of imitation learned blueprint policies. Jacob et al.
(2022) note that this approach reliably increases the per-
formance of weak policies, but neither recognize that it
possesses an improvement guarantee nor that it is simply
performing a hedge update, as we do in this work. Ja-
cob et al. (2022)’s experiments on Diplomacy (Paquette
et al., 2019) are also related in that their approach is similar
to a follow-the-regularized-leader analogue of MMD-UES.
This approach played an important role in recent empiri-
cal successes for Diplomacy (Bakhtin et al., 2022; Meta
Fundamental AI Research Diplomacy Team et al., 2022),
suggesting that the framework of update equivalence is a
natural approach to general-sum settings.

6. Conclusion and Future Work
In this work, motivated by the deficiencies of subgame-
based search, we advocated for a new paradigm to DTP that
we call the framework of update equivalence. We showed
how the framework of update equivalence can be used to
generate and ground new DTP algorithms for imperfect-
information games. Furthermore, we showed that these al-
gorithms can achieve competitive (or superior) performance
compared with state-of-the-art subgame-based methods in
Hanabi and can reduce approximate exploitability in 3x3
Abrupt Dark Hex and Phantom Tic-Tac-Toe.

We believe the framework of update equivalence opens the
door to many exciting possibilities for DTP and expert it-
eration in settings with large amounts of imperfect infor-
mation. In our opinion, the most exciting of these pos-
sibilities is the prospect of extending algorithms closely
resembling AlphaZero (Silver et al., 2018) and Stochastic
MuZero (Antonoglou et al., 2022) to imperfect-information
and general-sum games. We hope to pursue these directions
in future work.
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A. Theory
In this section, we prove Theorem 3.3. To start, consider the following more general lemma.

Lemma A.1 (Folklore). Let f ∈ C1(X ), where X ⊆ Rd is convex and compact, x0 ∈ X , and x+ be the solution to the
mirror descent step

x+ := argmin
x∈X

{η⟨∇f(x0), x⟩+Dφ(x, x0)} .

where φ is differentiable and 1-strongly convex with respect to a norm ∥ · ∥. Then, for η small enough, if x+ ̸= x0,

f(x+) < f(x0),

Proof. From the first-order necessary optimality conditions for the mirror descent step, we have

⟨η∇f(x0) +∇φ(x+)−∇φ(x0), x̂− x+⟩ ≥ 0 ∀x ∈ X .

Hence, letting x̂ := x0, and using the strong convexity of φ and the assumption that x+ ̸= x0, we obtain

⟨∇f(x0), x
+ − x0⟩ ≤ −1

η
∥x+ − x0∥2 < 0,

and with a further application of the Cauchy-Schwarz inequality,

∥x+ − x0∥ ≤ η∥∇f(x0)∥.

By continuity of the gradient of f , there must exist ϵ > 0 such that

⟨∇f(x), x+ − x0⟩ < 0 ∀x ∈ B(x0, ϵ).

Hence, the mean value theorem guarantees that

f(x+)− f(x0) = ⟨∇f(ξ), x+ − x0⟩

for some ξ on the line connecting x0 to x+. So, as long as η∥∇f(x0)∥ < ϵ, we have

f(x+) < f(x0),

as we wanted to show.

Theorem 3.3 Consider a common-payoff game. Let πt be a joint policy having positive probability on every action at
decision point. Then, if we run mirror descent at every decision point with action-value feedback, for any sufficiently small
stepsize η,

J (πt+1) ≥ J (πt).

Proof. This follows immediately from Lemma A.1.

B. Experiments
In this section, we provide further details about some of our empirical results and also show some additional results.

B.1. Beyond Action-Value-Based Planners

First, we describe in greater detail the DTP algorithms that we investigated in Section 3.2.

With Subgame Updates With subgame updates differs from MMD-UES in the feedback it uses. In particular, rather than
using the action values for the current policy, with subgame updates uses the action-values for the joint policy induced by
performing MMD updates at its own future decision points (but leaving the opponent’s policy fixed). Because the opponent
is fixed, in tabular settings, we can compute the feedback for the synchronous analogue of this approach using one backward
induction pass for each player.
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With Belief Fine-Tuning With BFT differs from MMD-UES in the distribution it samples histories from. In particular,
rather than sampling from the distribution induced by the current policy, it samples from the distribution induced by the
search policy for each player.

With Opponent Update With opponent update differs from MMD-UES in the feedback it uses. In particular, rather than
using the action values for the current policy, with opponent update uses the action values for the joint policy induced by
performing an MMD update for the opponent at the next time step. Note that, as a DTP algorithm, this approach would
involve two belief model sampling steps: one to sample an opponent decision point for updating and one to sample an
unbiased history for that opponent information state.

Agent Quantal Response Equilibria Solving In Figure 4, we show the convergence results from the main body, along
with the exploitabilities of the corresponding iterates. For these experiments, we used α = 0.1 and η = α/10, except for
with opponent updates on Leduc, where we used η = α/20, and with subgame updates on Leduc, where we used η = α/50.

Standard With Subgame Updates With BFT With Opponent Update
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Figure 4. Solving for agent quantal response equilibria using synchronous analogues of variants of MMD-UES.

MiniMaxEnt Equilibrium Solving In Figure 5, we show convergence results for solving for MiniMaxEnt equilibria,
which are the solutions of MiniMaxEnt objectives (Perolat et al., 2021). A MiniMaxEnt objective is an objective of the form

Ji : π 7→ E

[∑
t

Ri(S
t, At) + αH(πi(H

t
i ))− αH(π−i(H

t
−i)) | π

]
.

We used α = 0.1 and η = α/10, except for with opponent update on Leduc, where we used η = α/20, and with subgame
updates on Leduc, which used η = α/50. We again observe empirical convergence.
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Figure 5. Solving for MiniMaxEnt equilibria using synchronous analogues of variants of MMD-UES.

Solving for Nash Equilibria Next we show that these synchronous analogues can be made to converge to Nash equilibria
by annealing the amount of regularization used. We show that these results in Figure 6 compared against CFR (Zinkevich
et al., 2007). The hyperparameters for these results are shown in Table 4.
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Figure 6. Exploitability of different MMD-UES analogues with annealed regularization.
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Method\Game Kuhn Poker 2x2 Abrupt Dark Hex 4-Sided Liar’s Dice Leduc Poker
Standard αt =

1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

With Subgame Updates αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1
2
√
t

αt =
5√
t
, ηt =

1
5
√
t

With BFT αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1
2
√
t

With Opponent Update αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
5√
t
, ηt =

1
2
√
t

Table 4. Schedules for Figure 6.

Solving for Nash Equilibria with MiniMaxEntRL objectives We also show analogous results for MiniMaxEnt objectives
in Figure 7. The hyperparameters for these experiments are shown in Table 5.

CFR
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Figure 7. Exploitability of different MMD-UES analogues under MiniMaxEnt objectives with annealed regularization.

Method\Game Kuhn Poker 2x2 Abrupt Dark Hex 4-Sided Liar’s Dice Leduc Poker
One-Step Search αt =

1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

Multi-Step Search αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1
2
√
t

αt =
5√
t
, ηt =

1
5
√
t

BFT Search αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

Opponent Search αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
1√
t
, ηt =

1√
t

αt =
5√
t
, ηt =

1
2
√
t

Table 5. Schedules for Figure 7.

B.2. Hanabi

For our Hanabi experiments, we used η = 20 for the MD-UES results in Tables 1 and 2. We performed search with 10,000
samples. On average, search took about 1.86 seconds per move using two GPUs.

B.3. 3x3 Abrupt Dark Hex and Phantom-Tic-Tac-Toe

For our 3x3 Abrupt Dark Hex and Phantom-Tic-Tac-Toe experiments with a uniform blueprint, we used η = 50, α = 0.01,
and set ρ to be uniform. For the MMD(1M) blueprint, used η = 10, α = 0.05, and set ρ to be uniform. For particle filtering,
we sampled 10 particles for the uniform blueprint and 100 particles for the MMD(1M) blueprint from the start of the game
independently at every decision point to reduce bias. For the baselines, we used the same setup as Sokota et al. (2023a).

B.4. Small Comparison to 1-KLSS

We provide a very limited comparison between MMD-UES and 1-KLSS (Zhang & Sandholm, 2021) in two of the small
games in which Zhang & Sandholm (2021) provided results: Kuhn poker and 2x2 Abrupt Dark Hex. We computed blueprints
of similar exploitability values using MMD. We show results in Table 6. In Kuhn Poker, we find that 1-KLSS yields a larger
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improvement while, in 2x2 Abrupt Dark Hex, we find that MMD-UES yields a larger improvement. We emphasize that
these results should not be read into too much, as this comparison is very limited and in a very different qualitative regime
from the large games for which 1-KLSS and MMD-UES are intended.

1-KLSS MMD-UES
BP Search BP Search

Kuhn Poker .0124 .0015 .0123 .0114
2x2 Abrupt Dark Hex .0683 .0625 .0664 .0282

Table 6. Small comparison against 1-KLSS. For MMD we used η = 8, α = 0.2; for 2x2 Abrupt Dark Hex we used η = 0.2, α = 0.05


