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Abstract
State-of-the-art natural language processing
systems rely on supervision in the form of an-
notated data to learn competent models. These
models are generally trained on data in a sin-
gle language (usually English), and cannot be
directly used beyond that language. Since col-
lecting data in every language is not realis-
tic, there has been a growing interest in cross-
lingual language understanding (XLU) and
low-resource cross-language transfer. In this
work, we construct an evaluation set for XLU
by extending the development and test sets of
the Multi-Genre Natural Language Inference
Corpus (MultiNLI) to 15 languages, includ-
ing low-resource languages such as Swahili
and Urdu. We hope that our dataset, dubbed
XNLI, will catalyze research in cross-lingual
sentence understanding by providing an infor-
mative standard evaluation task. In addition,
we provide several baselines for multilingual
sentence understanding, including two based
on machine translation systems, and two that
use parallel data to train aligned multilingual
bag-of-words and LSTM encoders. We find
that XNLI represents a practical and challeng-
ing evaluation suite, and that directly translat-
ing the test data yields the best performance
among available baselines.

1 Introduction

Contemporary natural language processing sys-
tems typically rely on annotated data to learn how
to perform a task (e.g., classification, sequence
tagging, natural language inference). Most com-
monly the available training data is in a single lan-
guage (e.g., English or Chinese) and the resulting
system can perform the task only in the training
language. In practice, however, systems used in
major international products need to handle inputs
in many languages. In these settings, it is nearly
impossible to annotate data in all languages that a
system might encounter during operation.

A scalable way to build multilingual systems
is through cross-lingual language understanding
(XLU), in which a system is trained primarily on
data in one language and evaluated on data in
others. While XLU shows promising results for
tasks such as cross-lingual document classification
(Klementiev et al., 2012; Schwenk and Li, 2018),
there are very few, if any, XLU benchmarks for
more difficult language understanding tasks like
natural language inference. Large-scale natural
language inference (NLI), also known as recog-
nizing textual entailment (RTE), has emerged as a
practical test bed for work on sentence understand-
ing. In NLI, a system is tasked with reading two
sentences and determining whether one entails the
other, contradicts it, or neither (neutral). Re-
cent crowdsourced annotation efforts have yielded
datasets for NLI in English (Bowman et al., 2015;
Williams et al., 2017) with nearly a million exam-
ples, and these have been widely used to evaluate
neural network architectures and training strate-
gies (Rocktäschel et al., 2016; Gong et al., 2018;
Peters et al., 2018; Wang et al., 2018), as well as to
train effective, reusable sentence representations
(Conneau et al., 2017; Subramanian et al., 2018;
Cer et al., 2018).

In this work, we introduce a benchmark that
we call the Cross-lingual Natural Language In-
ference corpus, or XNLI, by extending these NLI
corpora to 15 languages. XNLI consists of 7500
human-annotated development and test examples
in NLI three-way classification format in English,
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, Hindi, Swahili and Urdu, making a total of
112,500 annotated pairs. These languages span
several language families, and with the inclusion
of Swahili and Urdu, include two lower-resource
languages as well.

Because of its focus on development and test



Language Premise / Hypothesis Genre Label

English
You don’t have to stay there.
You can leave.

Face-To-Face Entailment

French
La figure 4 montre la courbe d’offre des services de partage de travaux.
Les services de partage de travaux ont une offre variable.

Government Entailment

Spanish
Y se estremeció con el recuerdo.
El pensamiento sobre el acontecimiento hizo su estremecimiento.

Fiction Entailment

German
Während der Depression war es die ärmste Gegend, kurz vor dem Hungertod.
Die Weltwirtschaftskrise dauerte mehr als zehn Jahre an.

Travel Neutral

Swahili
Ni silaha ya plastiki ya moja kwa moja inayopiga risasi.
Inadumu zaidi kuliko silaha ya chuma.

Telephone Neutral

Russian
И мы занимаемся этим уже на протяжении 85 лет.
Мы только начали этим заниматься.

Letters Contradiction

Chinese
让我告诉你，美国人最终如何看待你作为独立顾问的表现。

美国人完全不知道您是独立律师。
Slate Contradiction

Arabic Nine-Eleven Contradiction

Table 1: Examples (premise and hypothesis) from various languages and genres from the XNLI corpus.

data, this corpus is designed to evaluate cross-
lingual sentence understanding, where models
have to be trained in one language and tested in
different ones.

We evaluate several approaches to cross-lingual
learning of natural language inference that lever-
age parallel data from publicly available corpora
at training time. We show that parallel data can
help align sentence encoders in multiple languages
such that a classifier trained with English NLI data
can correctly classify pairs of sentences in other
languages. While outperformed by our machine
translation baselines, we show that this alignment
mechanism gives very competitive results.

A second practical use of XNLI is the eval-
uation of pretrained general-purpose language-
universal sentence encoders. We hope that this
benchmark will help the research community build
multilingual text embedding spaces. Such embed-
dings spaces will facilitate the creation of multi-
lingual systems that can transfer across languages
with little or no extra supervision.

The paper is organized as follows: We next sur-
vey the related literature on cross-lingual language
understanding. We then describe our data collec-
tion methods and the resulting corpus in Section 3.
We describe our baselines in Section 4, and finally
present and discuss results in Section 5.

2 Related Work

Multilingual Word Embeddings Much of the
work on multilinguality in language understand-
ing has been at the word level. Several approaches
have been proposed to learn cross-lingual word
representations, i.e., word representations where
translations are close in the embedding space.
Many of these methods require some form of
supervision (typically in the form of a small bi-
lingual lexicon) to align two sets of source and tar-
get embeddings to the same space (Mikolov et al.,
2013a; Kociský et al., 2014; Faruqui and Dyer,
2014; Ammar et al., 2016). More recent stud-
ies have showed that cross-lingual word embed-
dings can be generated with no supervision what-
soever (Artetxe et al., 2017; Conneau et al., 2018).

Sentence Representation Learning Many ap-
proaches have been proposed to extend word em-
beddings to sentence or paragraph representa-
tions (Le and Mikolov, 2014; Wieting et al., 2016;
Arora et al., 2017). The most straightforward
way to generate sentence embeddings is to con-
sider an average or weighted average of word
representations, usually referred to as continu-
ous bag-of-words (CBOW). Although naïve, this
method often provides a strong baseline. More so-
phisticated approaches—such as the unsupervised
SkipThought model of Kiros et al. (2015) that
extends the skip-gram model of Mikolov et al.
(2013b) to the sentence level—have been pro-



posed to capture syntactic and semantic depend-
encies inside sentence representations. While
these fixed-size sentence embedding methods have
been outperformed by their supervised counter-
parts (Conneau et al., 2017; Subramanian et al.,
2018), some recent developments have shown that
pretrained language models can also transfer very
well, either when the hidden states of the model
are used as contextualized word vectors (Peters
et al., 2018), or when the full model is fine-
tuned on transfer tasks (Radford et al.; Howard and
Ruder, 2018).

Multilingual Sentence Representations There
has been some effort on developing multilingual
sentence embeddings. For example, Chandar et al.
(2013) train bilingual autoencoders with the objec-
tive of minimizing reconstruction error between
two languages. Schwenk et al. (2017) and España-
Bonet et al. (2017) jointly train a sequence-to-
sequence MT system on multiple languages to
learn a shared multilingual sentence embedding
space. Hermann and Blunsom (2014) propose a
compositional vector model involving unigrams
and bigrams to learn document level representa-
tions. Pham et al. (2015) directly train embedding
representations for sentences with no attempt at
compositionality. Zhou et al. (2016) learn bilin-
gual document representations by minimizing the
Euclidean distance between document representa-
tions and their translations.

Cross-lingual Evaluation Benchmarks The
lack of evaluation benchmark has hindered the
development of such multilingual representations.
Most previous approaches use the Reuters cross-
lingual document classification corpus Klemen-
tiev et al. (2012) for evaluation. However, the clas-
sification in this corpus is done at document level,
and, as there are many ways to aggregate sen-
tence embeddings, the comparison between differ-
ent sentence embeddings is difficult. Moreover,
the distribution of classes in the Reuters corpus is
highly unbalanced, and the dataset does not pro-
vide a development set in the target language, fur-
ther complicating experimental comparisons.

In addition to the Reuters corpus, Cer et al.
(2017) propose sentence-level multilingual train-
ing and evaluation datasets for semantic textual
similarity in four languages. There have also been
efforts to build multilingual RTE datasets, either
through translating English data (Mehdad et al.,

2011), or annotating sentences from a parallel cor-
pora (Negri et al., 2011). More recently, Agić and
Schluter (2018) provide a corpus, that is very com-
plementary to our work, of human translations for
1332 pairs of the SNLI data into Arabic, French,
Russian, and Spanish. Among all these bench-
marks, XNLI is the first large-scale corpus for
evaluating sentence-level representations on that
many languages.

In practice, cross-lingual sentence understand-
ing goes beyond translation. For instance, Mo-
hammad et al. (2016) analyze the differences in
human sentiment annotations of Arabic sentences
and their English translations, and conclude that
most of them come from cultural differences. Sim-
ilarly, Smith et al. (2016) show that most of the
degradation in performance when applying a clas-
sification model trained in English to Spanish data
translated to English is due to cultural differences.
One of the limitations of the XNLI corpus is that
it does not capture these differences, since it was
obtained by translation. We see the XNLI evalua-
tion as a necessary step for multilingual NLP be-
fore tackling the even more complex problem of
domain-adaptation that occurs when handling this
the change in style from one language to another.

3 The XNLI Corpus

Because the test portion of the Multi-Genre NLI
data was kept private, the Cross-lingual NLI Cor-
pus (XNLI) is based on new English NLI data. To
collect the core English portion, we follow pre-
cisely the same crowdsourcing-based procedure
used for the existing Multi-Genre NLI corpus, and
collect and validate 750 new examples from each
of the ten text sources used in that corpus for a to-
tal of 7500 examples. With that portion in place,
we create the full XNLI corpus by employing pro-
fessional translators to translate it into our ten tar-
get languages. This section describes this process
and the resulting corpus.

Translating, rather than generating new hypoth-
esis sentences in each language separately, has
multiple advantages. First, it ensures that the data
distributions are maximally similar across lan-
guages. As speakers of different languages may
have slightly different intuitions about how to fill
in the supplied prompt, this allows us to avoid
adding this unwanted degree of freedom. Second,
it allows us to use the same trusted pool of work-
ers as was used prior NLI crowdsourcing efforts,



without the need for training a new pool of work-
ers in each language. Third, for any premise, this
process allows us to have a corresponding hypoth-
esis in any language. XNLI can thus potentially
be used to evaluate whether an Arabic or Urdu
premise is entailed with a Bulgarian or French hy-
pothesis etc. This results in more than 1.5M com-
binations of hypothesis and premises. Note that
we do not consider that use case in this work.

This translation approach carries with it the risk
that the semantic relations between the two sen-
tences in each pair might not be reliably preserved
in translation, as Mohammad et al. (2016) ob-
served for sentiment. We investigate this poten-
tial issue in our corpus and find that, while it does
occur, it only concerns a negligible number of sen-
tences (see Section 3.2).

3.1 Data Collection

The English Corpus Our collection procedure
for the English portion of the XNLI corpus fol-
lows the same procedure as the MultiNLI corpus.
We sample 250 sentences from each of the ten
sources that were used in that corpus, ensuring that
none of those selected sentences overlap with the
distributed corpus. Nine of the ten text sources
are drawn from the second release of the Open
American National Corpus1: Face-To-Face, Tele-
phone, Government, 9/11, Letters, Oxford Uni-
versity Press (OUP), Slate, Verbatim, and Gov-
ernment. The tenth, Fiction, is drawn from the
novel Captain Blood (Sabatini, 1922). We refer
the reader to Williams et al. (2017) for more de-
tails on each genre.

Given these sentences, we ask the same
MultiNLI worker pool from a crowdsourcing
platform to produce three hypotheses for each
premise, one for each possible label.

We present premise sentences to workers using
the same templates as were used in MultiNLI. We
also follow that work in pursuing a second valida-
tion phase of data collection in which each pair of
sentences is relabeled by four other workers. For
each validated sentence pair, we assign a gold la-
bel representing a majority vote between the initial
label assigned to the pair by the original annotator,
and the four additional labels assigned by valida-
tion annotators. We obtained a three-vote consen-
sus for 93% of the data. In our experiments, we
kept the 7% additional ones, but we mark these

1http://www.anc.org/

ones with a special label ’-’.

Translating the Corpus Finally, we hire trans-
lators to translate the resulting sentences into 15
languages using the One Hour Translation plat-
form. We translate the premises and hypotheses
separately, to ensure that no context is added to
the hypothesis that was not there originally, and
simply copy the labels from the English source
text. Some development examples are shown in
Table 1.

3.2 The Resulting Corpus

One main concern in studying the resulting corpus
is to determine whether the gold label for some of
the sentence pairs changes as a result of informa-
tion added or removed in the translation process.

Investigating the data manually, we find an ex-
ample in the Chinese translation where an entail-
ment relation becomes a contradictory relation,
while the entailment is preserved in other lan-
guages. Specifically, the term upright which was
used in English as entailment of standing, was
translated into Chinese as sitting upright thus cre-
ating a contradiction. However, the difficulty of
finding such an example in the data suggests its
rarity.

To quantify this observation, we recruit two
bilingual annotators to re-annotate 100 examples
each in both English and French following our
standard validation procedure. The examples are
drawn from two non-overlapping random subsets
of the development data to prevent the annota-
tors from seeing the source English text for any
translated text they annotate. With no training or
burn-in period, these annotators recover the En-
glish consensus label 85% of the time on the orig-
inal English data and 83% of the time on the trans-
lated French, suggesting that the overall semantic
relationship between the two languages has been
preserved. As most sentences are relatively easy
to translate, in particular the hypotheses generated
by the workers, there seems to be little ambiguity
added by the translator.

More broadly, we find that the resulting corpus
has similar properties to the MultiNLI corpus. For
all languages, on average, the premises are twice
as long as the hypotheses (See Table 2). The top
hypothesis words indicative of the class label –
scored using the mutual information between each
word and class in the corpus – are similar across
languages, and overlap those of the MultiNLI cor-



en fr es de el bg ru tr ar vi th zh hi sw ur
Premise 21.7 24.1 22.1 21.1 21.0 20.9 19.6 16.8 20.7 27.6 22.1 21.8 23.2 18.7 24.1
Hypothesis 10.7 12.4 10.9 10.8 10.6 10.4 9.7 8.4 10.2 13.5 10.4 10.8 11.9 9.0 12.3

Table 2: Average number of tokens per sentence in the XNLI corpus for each language.

pus (Gururangan et al., 2018). For example, a
translation of at least one of the words no, not or
never is among the top two cues for contradiction
in all languages.

As in the original MultiNLI corpus, we ex-
pect that cues like these (‘artifacts’, in Guru-
rangan’s terms, also observed by Poliak et al.,
2018; Tsuchiya, 2018) allow a baseline system to
achieve better-than-random accuracy with access
only to the premise sentences. We accept this as an
unavoidable property of the NLI task over natural-
istic sentence pairs, and see no reason to expect
that this baseline would achieve better accuracy
than the relatively poor 53% seen in Gururangan
et al. (2018).

The current version of the corpus is freely avail-
able23 for typical machine learning uses, and may
be modified and redistributed. The current li-
cense is CC-BY-NC. The majority of the corpus
sentences are released under the OANC’s license
which allows all content to be freely used, modi-
fied, and shared under permissive terms. The data
in the Fiction genre from Captain Blood are in the
public domain in the United States (but may be li-
censed differently elsewhere).

4 Cross-Lingual NLI

In this section we present results with XLU sys-
tems that can serve as baselines for future work.

4.1 Translation-Based Approaches
The most straightforward techniques for XLU rely
on translation systems. There are two natural ways
to use a translation system: TRANSLATE TRAIN,
where the training data is translated into each tar-
get language to provide data to train each clas-
sifier, and TRANSLATE TEST, where a transla-
tion system is used at test time to translate in-
put sentences to the training language. These
two methods provide strong baselines, but both
present practical challenges. The former requires

2http://nyu.edu/projects/bowman/xnli/
3http://github/facebookresearch/xnli

training and maintaining as many classifiers as
there are languages, while the latter relies on
computationally-intensive translation at test time.
Both approaches are limited by the quality of the
translation system, which itself varies with the
quantity of available training data and the similar-
ity of the language pair involved.

4.2 Multilingual Sentence Encoders

An alternative to translation is to rely on language-
universal embeddings of text and build multilin-
gual classifiers on top of these representations. If
an encoder produces an embedding of an English
sentence close to the embedding of its translation
in another language, then a classifier learned on
top of English sentence embeddings will be able to
classify sentences from different languages with-
out needing a translation system at inference time.

We evaluate two types of cross-lingual sen-
tence encoders: (i) pretrained universal multilin-
gual sentence embeddings based on the average
of word embeddings (X-CBOW), (ii) bidirectional-
LSTM (BiLSTM) (Hochreiter and Schmidhuber,
1997) sentence encoders trained on the MultiNLI
training data (X-BILSTM). The former evaluates
transfer learning while the latter evaluates NLI-
specific encoders trained on in-domain data. Both
approaches use the same alignment loss for align-
ing sentence embedding spaces from multiple lan-
guages which is present below. We consider
two ways of extracting feature vectors from the
BiLSTM: either using the initial and final hid-
den states (Sutskever et al., 2014), or using the
element-wise max over all states (Collobert and
Weston, 2008).

The first approach is commonly used as a strong
baseline for monolingual sentence embeddings
(Arora et al., 2017; Conneau and Kiela, 2018;
Gouews et al., 2014). Concretely, we consider
the English fastText word embedding space as be-
ing fixed, and fine-tune embeddings in other lan-
guages so that the average of the word vectors
in a sentence is close to the average of the word
vectors in its English translation. The second ap-



English encoder English encoder

A) Learning NLI English encoder and classifier B) Aligning sentence encoders with parallel data C) Inference in the other language

Classifier

Entailment

"You don’t have
to stay there."

"You can leave."

English encoder Spanish encoder

English parallel
sentence

Spanish parallel
sentence

English contrastive sentence vector

Spanish contrastive sentence vector

:

:

Spanish encoder Spanish encoder

Classifier

Contradiction

"Y eso te hace
sentir fatal."

"Te hace sentir 
estupendamente."

Figure 1: Illustration of language adaptation by sentence embeddings alignment. A) The English
encoder and classifier in blue are learned on English (in-domain) NLI data. The encoder can also be
pretrained (transfer learning). B) The Spanish encoder in gray is trained to mimic the English encoder
using parallel data. C) After alignment of the encoders, the classifier can make predictions for Spanish.

proach consists in learning an English sentence en-
coder on the MultiNLI training data along with
an encoder on the target language, with the ob-
jective that the representations of two translations
are nearby in the embedding space. In both ap-
proaches, an English encoder is fixed, and we train
target language encoders to match the output of
this encoder. This allows us to build sentence rep-
resentations that belong to the same space. Joint
training of encoders and parameter sharing are
also promising directions to improve and simplify
the alignment of sentence embedding spaces. We
leave this for future work.

In all experiments, we consider encoders that
output a vector of fixed size as a sentence repre-
sentation. While previous work shows that perfor-
mance on the NLI task can be improved by using
cross-sentence attention between the premise and
hypothesis (Rocktäschel et al., 2016; Gong et al.,
2018), we focus on methods with fixed-size sen-
tence embeddings.

4.2.1 Aligning Word Embeddings

Multilingual word embeddings are an efficient
way to transfer knowledge from one language
to another. For instance, Zhang et al. (2016)
show that cross-lingual embeddings can be used
to extend an English part-of-speech tagger to the
cross-lingual setting, and Xiao and Guo (2014)
achieve similar results in dependency parsing.
Cross-lingual embeddings also provide an ef-
ficient mechanism to bootstrap neural machine
translation (NMT) systems for low-resource lan-
guage pairs, which is critical in the case of un-
supervised machine translation (Lample et al.,

2018; Artetxe et al., 2018). In that case, the use
cross-lingual embeddings directly helps the align-
ment of sentence-level encoders. Cross-lingual
embeddings can be generated efficiently using a
very small amount of supervision. By using a
small parallel dictionary with n = 5000 word
pairs, it is possible to learn a linear mapping to
minimize

W ? = argmin
W∈Od(R)

‖WX − Y ‖F = UV T ,

where d is the dimension of the embeddings, and
X and Y are two matrices of shape (d, n) that cor-
respond to the aligned word embeddings that ap-
pear in the parallel dictionary, Od(R) is the group
of orthogonal matrices of dimension d, and U and
V are obtained from the singular value decompo-
sition (SVD) of Y XT : UΣV T = SVD(Y XT ).
Xing et al. (2015) show that enforcing the ortho-
gonality constraint on the linear mapping leads to
better results on the word translation task.

In this paper, we pretrain our embeddings using
the common-crawl word embeddings (Grave et al.,
2018) aligned with the MUSE library of Conneau
et al. (2018).

4.2.2 Universal Multilingual Sentence
Embeddings

Most of the successful recent approaches for learn-
ing universal sentence representations have re-
lied on English (Kiros et al., 2015; Arora et al.,
2017; Conneau et al., 2017; Subramanian et al.,
2018; Cer et al., 2018). While notable recent ap-
proaches have considered building a shared sen-
tence encoder for multiple languages using pub-
licly available parallel corpora (Johnson et al.,



fr es de el bg ru tr ar vi th zh hi sw ur

XX-En BLEU 41.2 45.8 39.3 42.1 38.7 27.1 29.9 35.2 23.6 22.6 24.6 27.3 21.3 24.4
En-XX BLEU 49.3 48.5 38.8 42.4 34.2 24.9 21.9 15.8 39.9 21.4 23.2 37.5 24.6 24.1
Word translation P@1 73.7 73.9 65.9 61.1 61.9 60.6 55.0 51.9 35.8 25.4 48.6 48.2 - -

Table 3: BLEU scores of our translation models (XX-En) P@1 for multilingual word embeddings.

2016; Schwenk et al., 2017; España-Bonet et al.,
2017), the lack of a large-scale, sentence-level se-
mantic evaluation has limited their adoption by the
community. In particular, these methods do not
cover the scale of languages considered in XNLI,
and are limited to high-resource languages. As a
baseline for the evaluation of pretrained multilin-
gual sentence representations in the 15 languages
of XNLI, we consider state-of-the-art common-
crawl embeddings with a CBOW encoder. Our
approach, dubbed X-CBOW, consists in fixing the
English pretrained word embeddings, and fine-
tuning the target (e.g., French) word embeddings
so that the CBOW representations of two transla-
tions are close in embedding space. In that case,
we consider our multilingual sentence embeddings
as being pretrained and only learn a classifier on
top of them to evaluate their quality, similar to so-
called “transfer” tasks in (Kiros et al., 2015; Con-
neau et al., 2017) but in the multilingual setting.

4.2.3 Aligning Sentence Embeddings
Training for similarity of source and target sen-
tences in an embedding space is conceptually and
computationally simpler than generating a trans-
lation in the target language from a source sen-
tence. We propose a method for training for cross-
lingual similarity and evaluate approaches based
on the simpler task of aligning sentence represen-
tations. Under our objective, the embeddings of
two parallel sentences need not be identical, but
only close enough in the embedding space that the
decision boundary of the English classifier cap-
tures the similarity.

We propose a simple alignment loss function to
align the embedding spaces of two different lan-
guages. Specifically, we train an English encoder
on NLI, and train a target encoder by minimizing
the loss:

Lalign(x, y) = dist(x, y)− λ(dist(xc, y) + dist(x, yc))

where (x, y) corresponds to the source and
target sentence embeddings, (xc, yc) is a con-
trastive term (i.e. negative sampling), λ controls

the weight of the negative examples in the loss.
For the distance measure, we use the L2 norm
dist(x, y) = ‖x − y‖2. A ranking loss (Weston
et al., 2011) of the form

Lrank(x, y) = max(0, α− dist(x, yc) + dist(x, y)) +

max(0, α− dist(xc, y) + dist(x, y))

that pushes the sentence embeddings of a trans-
lation pair to be closer than the ones of negative
pairs leads to very poor results in this particular
case. As opposed toLalign, Lrank does not force the
embeddings of sentence pairs to be close enough
so that the shared classifier can understand that
these sentences have the same meaning.

We use Lalign in the cross-lingual embed-
dings baselines X-CBOW, X-BILSTM-LAST and
X-BILSTM-MAX. For X-CBOW, the encoder is
pretrained and not fine-tuned on NLI (transfer-
learning), while the English X-BiLSTMs are
trained on the MultiNLI training set (in-domain).
For the three methods, the English encoder and
classifier are then fixed. Each of the 14 other lan-
guages have their own encoders with same archi-
tecture. These encoders are trained to "copy" the
English encoder using theLalign loss and the paral-
lel data described in section 5.2. Our sentence em-
bedding alignment approach is illustrated in Fig-
ure 1.

We only back-propagate through the target en-
coder when optimizing Lalign such that all 14 en-
coders live in the same English embedding space.
In these experiments, we initialize lookup tables
of the LSTMs with pretrained cross-lingual em-
beddings discussed in Section 4.2.1.

5 Experiments and Results

5.1 Training details

We use internal translation systems to translate
data between English and the 10 other languages.
For TRANSLATE TEST (see Table 4), we translate
each test set into English, while for the TRANS-
LATE TRAIN, we translate the English training



en fr es de el bg ru tr ar vi th zh hi sw ur

Machine translation baselines (TRANSLATE TRAIN)

BiLSTM-last 71.0 66.7 67.0 65.7 65.3 65.6 65.1 61.9 63.9 63.1 61.3 65.7 61.3 55.2 55.2
BiLSTM-max 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6

Machine translation baselines (TRANSLATE TEST)

BiLSTM-last 71.0 68.3 68.7 66.9 67.3 68.1 66.2 64.9 65.8 64.3 63.2 66.5 61.8 60.1 58.1
BiLSTM-max 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3

Evaluation of XNLI multilingual sentence encoders (in-domain)

X-BiLSTM-last 71.0 65.2 67.8 66.6 66.3 65.7 63.7 64.2 62.7 65.6 62.7 63.7 62.8 54.1 56.4
X-BiLSTM-max 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4

Evaluation of pretrained multilingual sentence encoders (transfer learning)

X-CBOW 64.5 60.3 60.7 61.0 60.5 60.4 57.8 58.7 57.5 58.8 56.9 58.8 56.3 50.4 52.2

Table 4: Cross-lingual natural language inference (XNLI) test accuracy for the 15 languages.

data of MultiNLI4. To give an idea of the trans-
lation quality, we give BLEU scores of the auto-
matic translation from the foreign language into
English of the XNLI test set in Table 3. We use
the MOSES tokenizer for most languages, falling
back on the default English tokenizer when neces-
sary. We use the Stanford segmenter for Chinese
(Chang et al., 2008), and the pythainlp package for
Thai.

We use pretrained 300D aligned word embed-
dings for both X-CBOW and X-BILSTM and only
consider the most 500,000 frequent words in the
dictionary, which generally covers more than 98%
of the words found in XNLI corpora. We set
the number of hidden units of the BiLSTMs to
512, and use the Adam optimizer (Kingma and
Ba, 2014) with default parameters. As in (Con-
neau et al., 2017), the classifier receives a vector
[u, v, |u − v|, u ∗ v], where u and v are the em-
beddings of the premise and hypothesis provided
by the shared encoder, and ∗ corresponds to the
element-wise multiplication (see Figure 1). For
the alignment loss, setting λ to 0.25 worked best
in our experiments, and we found that the trade-
off between the importance of the positive and the
negative pairs was particularly important (see Ta-
ble 5). We sample negatives randomly. When fit-
ting the target BiLSTM encoder to the English en-
coder, we fine-tune the lookup table associated to
the target encoder, but keep the source word em-
beddings fixed. The classifier is a feed-forward
neural network with one hidden layer of 128 hid-
den units, regularized with dropout (Srivastava

4To allow replication of results, we share the MT transla-
tions of XNLI training and test sets.

et al., 2014) at a rate of 0.1. For X-BiLSTMs,
we perform model selection on the XNLI valida-
tion set in each target language. For X-CBOW, we
keep a validation set of parallel sentences to eval-
uate our alignment loss. The alignment loss re-
quires a parallel dataset of sentences for each pair
of languages, which we describe next.

5.2 Parallel Datasets

We use publicly available parallel datasets to learn
the alignment between English and target en-
coders. For French, Spanish, Russian, Arabic and
Chinese, we use the United Nation corpora (Ziem-
ski et al., 2016), for German, Greek and Bul-
garian, the Europarl corpora (Koehn, 2005), for
Turkish, Vietnamese and Thai, the OpenSubtitles
2018 corpus (Tiedemann, 2012), and for Hindi,
the IIT Bombay corpus (Anoop et al., 2018). For
all the above language pairs, we were able to
gather more than 500,000 parallel sentences, and
we set the maximum number of parallel sentences
to 2 million. For the lower-resource languages
Urdu and Swahili, the number of parallel sen-
tences is an order of magnitude smaller than for
the other languages we consider. For Urdu, we
used the Bible and Quran transcriptions (Tiede-
mann, 2012), the OpenSubtitles 2016 and 2018
corpora (Tiedemann, 2012) and LDC2010T21,
LDC2010T23 LDC corpora, and obtained a total
of 64k parallel sentences. For Swahili, we were
only able to gather 42k sentences using the Global
Voices corpus and the Tanzil Quran transcription
corpus5.

5http://opus.nlpl.eu/



Figure 2: Evolution along training of alignment
losses and X-BILSTM XNLI French (fr), Arabic
(ar) and Urdu (ur) accuracies. Observe the cor-
relation between Lalign and accuracy.

5.3 Analysis

Comparing in-language performance in Table 4,
we observe that, when using BiLSTMs, results are
consistently better when we take the dimension-
wise maximum over all hidden states (BiLSTM-
max) compared to taking the last hidden state
(BiLSTM-last). Unsuprisingly, BiLSTM results
are better than the pretrained CBOW approach for
all languages. As in Bowman et al. (2015), we
also observe the superiority of BiLSTM encoders
over CBOW, even when fine-tuning the word em-
beddings of the latter on the MultiNLI training
set, thereby again confirming that the NLI task
requires more than just word information. Both
of these findings confirm previously published re-
sults (Conneau et al., 2017).

Table 4 shows that translation offers a strong
baseline for XLU. Within translation, TRANS-
LATE TEST appears to perform consistently better
than TRANSLATE TRAIN for all languages. The
best cross-lingual results in our evaluation are ob-
tained by the TRANSLATE TEST approach for all
cross-lingual directions. Within the translation
approaches, as expected, we observe that cross-
lingual performance depends on the quality of
the translation system. In fact, translation-based
results are very well-correlated with the BLEU
scores for the translation systems; XNLI perfor-
mance for three of the four languages with the best
translation systems (comparing absolute BLEU,
Table 3) is above 70%. This performance is still
about three points below the English NLI perfor-
mance of 73.7%. This slight drop in performance
may be related to translation error, changes in

style, or artifacts introduced by the machine trans-
lation systems that result in discrepancies between
the training and test data.

For cross-lingual performance, we observe a
healthy gap between the English results and the
results obtained on other languages. For instance,
for French, we obtain 67.7% accuracy when clas-
sifying French pairs using our English classifier
and multilingual sentence encoder. When using
our alignment process, our method is competitive
with the TRANSLATE TRAIN baseline, suggesting
that it might be possible to encode similarity be-
tween languages directly in the embedding spaces
generated by the encoders. However, these meth-
ods are still below the other machine translation
baseline TRANSLATE TEST, which significantly
outperforms the multilingual sentence encoder ap-
proach by up to 6% (Swahili). These production
systems have been trained on much larger train-
ing data than the ones used for the alignment loss
(section 5.2), which can partly explain the supe-
riority of this method over the baseline. At infer-
ence time, the multilingual sentence encoder ap-
proach is however much cheaper than the TRANS-
LATE TEST baseline, and this method also does
not require any machine translation system. In-
terestingly, the two points difference in accuracy
between X-BiLSTM-last and X-BiLSTM-max is
maintained across languages, which suggests that
having a stronger encoder in English also posi-
tively impacts the transfer results on other lan-
guages.

fr ru zh

ft = 1, λ = 0.25 [default] 68.9 66.4 67.9
ft = 1, λ = 0.0 (no negatives) 67.8 66.2 66.3
ft = 1, λ = 0.5 64.5 61.3 63.7
ft = 0, λ = 0.25 68.5 66.3 67.7

Table 5: Validation accuracy using BiLSTM-
max. Default setting corresponds to λ = 0.25
(importance of the negative terms) and uses fine-
tuning of the target lookup table (ft =1).

For X-BILSTM French, Urdu and Arabic en-
coders, we plot in Figure 2 the evolution of XNLI
dev accuracies and the alignment losses during
training. The latter are computed using XNLI
parallel dev sentences. We observe a strong cor-
relation between the alignment losses and XNLI
accuracies. As the alignment on English-Arabic
gets better for example, so does the accuracy on



XNLI-ar. One way to understand this is to recall
that the English classifier takes as input the vector
[u, v, |u− v|, u ∗ v] where u and v are the embed-
dings of the premise and hypothesis. So this cor-
relation between Lalign and the accuracy suggests
that, as English and Arabic embeddings [uen, ven]
and [uar, var] get closer for parallel sentences (in
the sense of the L2-norm), the English classifier
gets better at understanding Arabic embeddings
[uar, var, |uar − var|, uar ∗ var] and thus the accu-
racy improves. We observe some over-fitting for
Urdu, which can be explained by the small num-
ber of parallel sentences (64k) available for that
language.

In Table 5, we report the validation accuracy
using BiLSTM-max on three languages with dif-
ferent training hyper-parameters. Fine-tuning the
embeddings does not significantly impact the re-
sults, suggesting that the LSTM alone is ensuring
alignment of parallel sentence embeddings. We
also observe that the negative term is not critical
to the performance of the model, but can lead to
slight improvement in Chinese (up to 1.6%).

6 Conclusion

A typical problem in industrial applications is
the lack of supervised data for languages other
than English, and particularly for low-resource
languages. Since annotating data in every lan-
guage is not a realistic approach, there has been
a growing interest in cross-lingual understanding
and low-resource transfer in multilingual scenar-
ios. In this work, we extend the development and
test sets of the Multi-Genre Natural Language In-
ference Corpus to 15 languages, including low-
resource languages such as Swahili and Urdu. Our
dataset, dubbed XNLI, is designed to address the
lack of standardized evaluation protocols in cross-
lingual understanding, and will hopefully help the
community make further strides in this area. We
present several approaches based on cross-lingual
sentence encoders and machine translation sys-
tems. While machine translation baselines ob-
tained the best results in our experiments, these ap-
proaches rely on computationally-intensive trans-
lation models either at training or at test time. We
found that cross-lingual encoder baselines provide
an encouraging and efficient alternative, and that
further work is required to match the performance
of translation based methods.
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Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
ICLR.

Rafael Sabatini. 1922. Captain Blood. Houghton Mif-
flin Company.

Holger Schwenk and Xian Li. 2018. A corpus for mul-
tilingual document classification in eight languages.
In LREC, pages 3548–3551.

Holger Schwenk, Ke Tran, Orhan Firat, and Matthijs
Douze. 2017. Learning joint multilingual sentence
representations with neural machine translation. In
ACL workshop, Repl4NLP.

Laura Smith, Salvatore Giorgi, Rishi Solanki, Jo-
hannes C. Eichstaedt, H. Andrew Schwartz,
Muhammad Abdul-Mageed, Anneke Buffone, and
Lyle H. Ungar. 2016. Does ’well-being’ translate on
twitter? In EMNLP, pages 2042–2047.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. In ICLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In LREC, Istanbul, Turkey. European
Language Resources Association (ELRA).

Masatoshi Tsuchiya. 2018. Performance impact
caused by hidden bias of training data for recogniz-
ing textual entailment. In LREC.

Alex Wang, Amapreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. Wsabie: Scaling up to large vocabulary im-
age annotation. In IJCAI.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. ICLR.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL.

Min Xiao and Yuhong Guo. 2014. Distributed word
representation learning for cross-lingual dependency
parsing. In CoNLL, pages 119–129.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. NAACL.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag–
multilingual pos tagging via coarse mapping be-
tween embeddings. In NAACL, pages 1307–1317.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2016.
Cross-lingual sentiment classification with bilingual
document representation learning. In ACL.

Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel corpus
v1. 0. In LREC.


