
Presto: A Decade of SQL Analytics at Meta
Yutian “James” Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling,
Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer
Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan†, Amit Dutta, Varun

Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal
Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak

Majeti‡, Aditi Pandit‡, Biswapesh Chattopadhyay
Meta Platform, Inc1 †Alluxio, Inc ‡Ahana Cloud, Inc

ABSTRACT
Presto is an open-source distributed SQL query engine that sup-
ports analytics workloads involving multiple exabyte-scale data
sources. Presto is used for low-latency interactive use cases as well
as long-running ETL jobs at Meta. It was originally launched at
Meta in 2013 and donated to the Linux Foundation in 2019. Over
the last ten years, upholding query latency and scalability with the
hyper growth of data volume at Meta as well as new SQL analytics
requirements have raised impressive challenges for Presto. A top
priority has been ensuring query reliability does not regress with
the shift towards smaller, more elastic container allocation, which
requires queries to run with substantially smaller memory head-
room and can be preempted at any time. Additionally, new demands
from machine learning, privacy, and graph analytics have driven
Presto maintainers to think beyond traditional data analytics. In
this paper, we discuss several successful evolutions in recent years
that have improved Presto latency as well as scalability by several
orders of magnitude in production at Meta. Some of the notable
ones are hierarchical caching, native vectorized execution engines,
materialized views, and Presto on Spark. With these new capabili-
ties, we have deprecated or are in the process of deprecating various
legacy query engines so that Presto becomes the single piece to
serve interactive, ad-hoc, ETL, and graph processing workloads for
the entire data warehouse.

CCS CONCEPTS
• Information systems→Database query processing; Parallel
and distributed DBMSs;Online analytical processing engines.

KEYWORDS
Data Warehouse, Presto, OLAP, SQL, Distributed Database, Data
Analytics, ETL
ACM Reference Format:
Yutian “James” Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha
Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta,
Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan†, Amit Dutta,
Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Per-
shin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor,
Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti‡, Aditi Pandit‡,
Biswapesh Chattopadhyay . 2023. Presto: A Decade of SQL Analytics at
Meta. In Proceedings of In Proceedings of the 2023 International Conference
on Management of Data (SIGMOD ’23). ACM, New York, NY, USA, 14 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Presto [44] is an open-source distributed query engine that has
supported production analytical workloads at Meta since 2013. It
provides a SQL interface to query data stored on different storage
systems, such as distributed file systems. Since its donation to Linux
Foundation in 2019, Presto has continued growth in utilization
and contribution among US tech industry leaders including Uber,
Twitter, Intel, Ahana, etc. After the donation, Meta remains active
in Presto contributions with 50% commits coming from Meta. The
deployment of the Presto fleet at Meta is also on top of the trunk
to ensure every release is battle tested at Meta scale.

Within Meta, Presto is used for interactive, ad-hoc, and extract-
transform-load (ETL) workloads at scale. Use cases include dash-
boarding, A/B testing, ad-hoc analysis, data cleaning, and transfor-
mation. With the effort of migrating all SparkSQL [6] workloads to
Presto at Meta, Presto will soon provide the only SQL interface to
the warehouse in the company.

While Presto was originally designed for exclusively in-memory
processing of interactive SQL querying, various trends at Meta
challenged its capabilities. Due to its efficiency, employees started
to use it for lightweight ETL workloads [44] that run for up to tens
of minutes, and, as data grew exponentially, Presto became slower.
The transition to a more flexible and elastic resource management
model with smaller, ephemeral containers resulted in reduced re-
liability. Moreover, while there was a growing demand for richer
analytics, such as machine learning feature engineering, and graph
analytics, they were not well supported. Finally, honoring Meta’s
data privacy policies required new data abstractions and data stor-
age mechanisms to support privacy enforcement efficiently. The
main focus of this paper is to describe how we have improved the
architecture of Presto to address these challenges with the following
three perspectives.

First, latency and efficiency. As data increases, the scan cost
of the same query increases leading to longer wait time. As the
1Authors without superscripts are still or used to contribute to Presto at Meta

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

number of RPC connections of machines in a cluster cannot increase
arbitrarily large, adding more machines to a cluster will reach a
limit. Also, more machines in use inherently increases the chance of
a single machine failure. Other latency improvements are needed to
ensure users can still have a low-latency dashboarding experience
with large, scalable data scans. Especially for important dashboards,
users expect Presto to perform as if the data is already pruned or
stored in memory with arbitrary slicing and dicing.

Second, scalability and reliability. SQL is preferred for Meta’s
ETL workloads, which drives Presto’s popularity. As Presto does
not provide fault tolerance and memory is limited by hardware,
new approaches are needed for Presto to support ETL workloads
that are orders of magnitude heavier in terms of CPU, memory, and
runtime than what Presto currently supports in [44]. In addition,
Meta has adjusted the container allocation to be more elastically
manageable with a smaller memory footprint. Elasticity allows
more flexible capacity to balance peak and off-peak usage across
different types of workloads in the company. However, it casts a
complex challenge as machines can go down arbitrarily. With these
constraints, new design principles are needed to scale the workload
to handle arbitrarily large memory consumption and arbitrarily
long runtime with an unstable underlying infrastructure.

Lastly, requirements going beyond data analytics. The mod-
ern warehouse has become a data lake to allow data usage according
to the needs of diverse use cases. A typical use case is machine
learning feature engineering. Meta’s machine learning related data
volume has already exceeded that of analytics. Machine learning
engineers leverage analytical engines like Presto or SparkSQL to
extract features from raw data for training purposes. Privacy is
another important requirement. Facebook, Instagram, and What-
sApp users can decide to opt out of personal data use for content
recommendation or any other use cases for the data that has already
been collected by Meta. Presto is on the path to ensure the data is
properly protected. Moreover, Meta is all about social graphs. We
have seen users asking for SQL-like graph analytics through Presto
to express complex logic with billions of nodes and edges.

The remainder of the paper is structured as follows. Section 2
provides an overview of Presto’s original architecture and the chal-
lenges based on the architecture in the past few years at Meta.
Sections 3, 4, and 5 introduce the evolution of Presto to improve
latency, scalability, and efficiency respectively. Section 6 discusses
spaces including machine learning, privacy, and graph analytics
to illustrate how users leverage Presto as an engine to manipulate
Meta warehouse data for richer analytics. Section 7 demonstrates
how these evolutions can help to improve the performance on
production data at Meta’s scale. Section 8 discusses the related
work in this space and Section 9 summarizes remaining challenges
and planned work to address them. Our conclusion in Section 10
highlights the improvements discussed in the paper and our depre-
cation of various engines as Presto becomes the centerpiece of our
warehouse.

2 ARCHITECTURE AND CHALLENGES
As of 2022, Meta has 21 data centers [12] worldwide. Each of these
data centers is millions of square feet in size. Meta’s data warehouse
has a non-trivial amount of storage across these data centers. The

Coordinator

parser /
optimizer scheduler

metadata storage connector

task
processor

data storage
connector

external
storage

Workers

Query

Result

Queue

schedule tasks

metadata
path

da
ta

 p
at

h

task
processor

data storage
connector

task
processor

Figure 1: Original Presto architecture

majority of all Meta employees use Presto daily directly or indirectly
through other tools to access those data.

With Meta’s warehouse data growing exponentially, Presto has
faced various difficulties to guarantee the same latency and scal-
ability experience for users. As dashboards became slower with
larger scans, users started to leverage in-memory or collocated-
storage compute engines [40, 44] for better performance. On the
ETL side, more scalable engines like Spark [57] were preferred as
builtin fault tolerance can guarantee long-running jobs finish even
with container crashes. The growing trend of using elastic capacity
requires allocating and deallocating containers at a much higher
frequency. Today, there is no guarantee that a container can be
dedicated to a Presto cluster uninterrupted for hours. The original
architecture of Presto with disaggregated storage and in-memory
processing can only optimally handle queries running between a
few seconds to minutes. As the demands of Presto evolved beyond
its original requirements, we engineered ways to evolve Presto
itself to overcome the challenges presented.

Figure 1 illustrates the original architecture of a Presto clus-
ter [44]. It consists of a single coordinator and a number of workers
that can scale to thousands. The coordinator is responsible for
queueing and parsing a query string, then turning it into a plan.
Optimizations will be applied to the plan and later fragmented into
plan fragments or simply fragments based on shuffle boundaries.
These fragments will be scheduled to workers in parallel. Work-
ers are responsible for query processing with all data in memory
and data shuffling through streamed RPCs over the network. Each
worker will launch tasks to process the data based on the fragments
received. The processed data will be shuffled into different buffers
in memory waiting for the different downstream tasks to fetch. A
cluster can run multiple queries and their tasks concurrently with
full multi-tenancy sharing memory, IO, network, and CPU. Presto
also supports storage connectors to allow scanning heterogeneous
data sources for the same query.

As we can tell from the original architecture, the latency can
be bottlenecked by IO due to external storage being disaggregated
from compute engines. Moreover, all workers are currently written
in Java, which is programmatically slower than native code with-
out fine control over memory allocation. The storage connectors
have also become a double-edged sword: to support low-latency
dashboards, systems like Raptor [44] were built to dump warehouse
data to local memory or disk with specialized types of machines so
dashboards can load faster. The collocated storage not only intro-
duced data management overhead but also diminished the benefit
of independent scaling of storage and compute.

From the scalability perspective, the coordinator being a single
point of failure and the lack of fault tolerance of workers have
been magnified with the data growth as well as the introduction of

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA

stats store

external storage

Query
extra

metadata

sh
uf

fle

worker (with
vectorized exec.)

SSD cache

coordinator
as a library

function
service

type store

remote
function

eval.

data path,
materialized views, and

delta for mutabilitysp
ill

Presto clusters Spark clusters
multi

coordinators

Presto fleet

worker as a
library

temporary storage

metadata
path

func. store

intermediate data
materialization
and recovery

Figure 2: New Presto architecture

elastic capacity. The in-memory processing design also defines an
upper bound of how much data the system can hold. The network-
based shuffle cannot scale beyond thousands of workers due to
connection limitations.

In addition to the latency and scalability challenges, the growing
trend of machine learning-focused and privacy-focused require-
ments has gradually shifted the traditional analytics-focused data
warehouse into a more open and flexible “data lake” setup. Analyti-
cal data is no longer immutable. Meta needs the ability to remove
user data in response to users’ privacy choices. Columns can also
be added with high flexibility to try out different candidate features
during machine learning feature engineering.

In the remainder of this paper, we discuss several Presto evolu-
tions that have been rolled out successfully at Meta to solve the
above challenges. Some of the improvements have more in-depth
discussion in our prestodb blogs [1, 8, 17, 29, 37, 54, 55]. Figure 2
illustrates the high-level idea of the new Presto architecture. When
a query is sent to the Presto fleet, it can be run on either (1) the
original Presto architecture but with multiple coordinators to avoid
single point failure, native vectorized execution to boost perfor-
mance, data cache on flash to avoid IO bottleneck, and many other
improvements that will be discussed later in the paper or (2) Presto
on Spark that leverage Spark as the runtime and Presto as the
evaluation library for scalability. In both setups, we provide mate-
rialized views to improve query performance and data mutability
for machine learning feature engineering and privacy use cases.
Moreover, both setups can spill the in-memory data to temporary
storage to overcome memory limitations. The original Presto ar-
chitecture now is also enhanced with recoverability to materialize
intermediate data. The Presto on Spark setup, on the other hand,
leverages the temporary storage for shuffle. Extra metadata is also
introduced. Type store is used for supporting user-defined types,
function store is for supporting SQL function authoring and evalu-
ation, and statistics store is used for better optimization decisions.
Remote functions are built for running user-defined functions.

3 LATENCY IMPROVEMENTS
As data grows, the query latency will naturally suffer from degra-
dation. This section introduces several enhancements to Presto to
improve latency from CPU, IO, and memory perspectives.

3.1 Caching
Disaggregated storage enables scaling and independent computa-
tion. However, the disaggregation introduces new challenges for

query latency since scanning huge amounts of data or even meta-
data over the wire can be IO bound when the network is saturated.
To solve this problem, we introduced caches at various levels. In the
remainder of this paper, we use the concept of files that represent
slices of data that are physically stored in the remote storage.

Raw Data Cache: Data cache on local flash devices on workers
can help to reduce IO time from remote storage nodes. A Presto
worker caches remote data in its original form (compressed and
possibly encrypted) on local flash upon read. If in the future, there
is a read request covering the range that can be found on the local
flash, the request will return the result directly. The caching units
are with the aligned sizes to avoid fragmentation. For example, if
a read request covers range [2.3𝑀𝐵, 4.5𝑀𝐵), Presto will issue a
remote read of range [2𝑀𝐵, 5𝑀𝐵) and caches as well as indexes for
the blocks of [2𝑀𝐵, 3𝑀𝐵), [3𝑀𝐵, 4𝑀𝐵), and [4𝑀𝐵, 5𝑀𝐵). For any
future read that overlaps the range of [2𝑀𝐵, 5𝑀𝐵), the overlapped
part will be fetched from the local disk directly. The eviction policy
on these caching units is LRU (least recently used).

Fragment Result Cache: Moreover, a task that is running a
leaf stage, which is a task that is responsible for pulling data from
remote storage, can decide to cache the partially computed results
on local flash. This is to prevent duplicated computation upon
multiple queries. A typical approach is to cache the plan fragment
results on leaf stages with one level of scan, filter, projection, and/or
aggregation. For example, users may decide to query the aggregated
result of a reporting over the past 1 day. Later on, they could adjust
the dashboard to see the aggregated result of the past 3 days. Then
for the second query, we could prevent the duplicated computation
of the first 1 day by caching the fragment results from the previous
query. Only the remaining 2 days’ data need scanning and partial
aggregation.

Note that the fragment result is based on the leaf query fragment,
which could be highly variable as users can adjust filters or pro-
jections. To maximize the cache hit rate even when users change
the filters or projections frequently, we rely on statistics-based
canonicalization. The canonicalization first performs an isomor-
phic mapping from different variable names into fixed ones so that
queries with different aliases with the same meaning end up with
the same plan. Then, it sorts the expressions so that expressions
like 𝑎 > 𝑏 and 𝑏 < 𝑎 will have the same format. Finally, it prunes
predicates in filters. Given a filter 𝜙 in the form of a conjunction of
predicates, predicate pruning generates a new filter by removing all
satisfied predicates in 𝜙 . Note that the approach is not limited to
conjunctions, other general representations like disjunctions are
also applicable. Because each worker only reads part of the data, it
can prune more predicates of a filter at runtime than the coordina-
tor at planning time. For a file read by a worker, the worker takes
the statistics of the file (usually minima and maxima) to check if the
statistics ranges satisfy some of the predicates or not. The worker
will remove fully satisfied predicates in the filter or evaluate the
entire filter to False if any predicate not satisfied.

Metadata Cache and Catalog Servers: Various metadata-level
caches are also introduced on coordinators and workers. Hot data
like file indexes (which are also called “footers” or “headers” in
other contexts) are cached in memory. Mutable metadata like table
schemas or file paths is cached with versioning in the coordinators.
There is also an option to host the metadata cache in catalog servers

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.
se
co
nd
s

0
10
20
30
40
50

C
P

U
 s

ec
on

ds

0

2500

5000

7500

10000

Java

Native
execution

Wall time in seconds CPU time in seconds

Figure 3: Native execution acceleration on TPC-H queries

to further scale the cache. Catalog servers can be a standalone
deployment in addition to the coordinator or could be collocated
with the coordinator. However, at Meta, we do not use standalone
catalog servers to avoid deployment fragmentation.

Cache locality: To maximize the cache hit rate on workers (in
either memory or local flash), the coordinator needs to schedule
the read requests of the same file to the same worker with a hash
function. To avoid hotspot workers, the scheduler will fall back to
its secondary picked worker for caching or just skip the cache when
necessary. Various hashing policies like simple modular hashing or
consistent hashing are available. The same logic is also applied to
query routing. As Presto is deployed globally across several data
centers, the router will redirect the query to a cluster that has the
cached data with hotspot prevention as a fallback.

With all of the above mechanisms implemented, we were able to
completely deprecate collocated storage connectors like Raptor [44]
and in-memory database like Cubrick [40] at Meta [14] by providing
the same or faster query latency. More details, including TPC-H
benchmarks, can be found in our blogs [1, 29].

3.2 Native vectorized execution
Presto is written in Java. Not only does this prevent precise memory
management but also renders us unable to leverage modern vec-
torized CPU execution like SIMD. Velox [41] is a project originally
incubated from Presto at Meta to support C++ vectorized execution.
It later became a general-purpose vectorized execution library that
could benefit use cases like machine learning acceleration.

Presto has tight integration with Velox to leverage vectorized
execution. To host the C++ library, native C++ workers are built to
directly communicate with the coordinator. The shuffle and IO are
in native Velox formats so no extra copy is paid to transform into
Presto formats. When a query starts, the coordinator will schedule
the query plan fragments to C++ workers. The workers receive
the plan fragments and translate them into Velox plans. A native
thread is spawned on receiving a Velox plan directly inside the C++
workers to fully leverage the memory fungibility.

Within an execution thread of Velox, functions, expressions,
and IO are executed in a vectorized fashion. Simple expressions
are evaluated once for multiple values through SIMD. Velox has
compatible type and function semantics with Presto so that the
same function signature can produce the same result on both Java
and C++ executions.

Figure 3 illustrates the average query latency and CPU time on
all TPC-H queries with a scale factor of 1000 for both Java and
native execution. The benchmark is done on the same cluster with
the same number of cores and memory configuration. The overall
improvements in latency and CPU are at around 2 - 3X. The more
detailed comparison of production data is discussed in Section 7.

3.3 Adaptive filtering
Efficient pruning is important as users can slice and dice the di-
mensions arbitrarily. This section introduces filtering and pruning
techniques newly built in Presto over the last few years.

Subfield Pruning: Complex types like maps, arrays, and structs
are widely used in modern data warehouses. Machine learning
workloads, for instance, often produce largemaps with thousands of
embedded features that are stored within table columns. A subfield
of a complex type instance, denoted as 𝜏 , refers to a nested element
within 𝜏 . As an illustration, if 𝜏 is an array type instance, 𝜏 [2] refers
to the second subfield of 𝜏 . It is important to note that subfields
can be recursively nested, based on the types involved. Extracting
the subfields effectively without reading the entire complex object
is required for CPU efficiency. Presto supports subfield pruning by
signaling to the reader the needed indices or keys of the complex
objects. The reader will skip subfields based on the columnar format
like ORC [38] or Parquet [39] to avoid reading the unused subfields.
In the previous example of array type instance 𝜏 , only 𝜏 [2] is read
from the disk; all other indices of 𝜏 are skipped. The pruning is
recursive to support arbitrary levels of nesting.

Filter reordering: In addition to subfield pruning, filter push-
down is a common strategy to reduce the scan size by applying
filtering while scanning so that some of the columns or rows do
not have to be materialized even if they are explicitly required in
the query plan. In various cases, some filters are more effective
than others; they drop more rows in fewer CPU cycles. During
runtime, Presto automatically reorders the filters so that the more
selective filters are evaluated before the less selective ones. Prior
to reading any data, each function within the filter is initialized
with (1) a “CPU cycle estimation”, which is calculated based on
the function’s arity and input types, and (2) a fixed selectivity. As
the reader begins to scan and filter data, the selectivity of each
function is profiled, and the CPU cycle estimation is adjusted to
reflect actual CPU cycles. At runtime, the order of functions within
the filter is dynamically reordered based on the product of their
selectivity and average CPU cycles. As the data changes during
the scan, the selectivity and CPU cycles are constantly adjusted to
adaptively reorder the filter.

Filter-based lazy materialization: While applying a set of
filters in some order for a batch of rows, Presto keeps track of the
rows that have satisfied the filter predicates. For the rows that have
failed the early filters in that batch, there is no need to evaluate or
even materialize the rows of the columns that are needed for the
other filters in the same batch. For example, if we are to apply filter
“col1 > 10 AND col2 = 5” on columns col1 and col2, the scan
will first evaluate col1 > 10 against all the rows in col1, which
must be materialized. However, only the rows that pass col1 > 10
in col2 need to be materialized for evaluating col2 = 5. This is a
technique implemented in most modern databases. However, it was
not introduced in [44]. The gain of the overall filtering improvement
in production is detailed in Section 7.

Dynamic join filtering: In Presto, the filter pushdown can be
further enhanced to work with “dynamic join filtering”. For an inner
join, the build side can provide a “digest” in the format of bloom
filters, ranges, or distinct values to serve as a filter for the probe side.
The digest can be pushed down through the above framework as

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA

-1.0

Without materialized views With materialized views

C
P

U
 h

ou
rs

0
5

10
15
20
25

R
ow

s
in

 b
ill

io
ns

0
10
20
30
40
50

W
al

l t
im

e
in

 s
ec

0

5

10

15

20

CPU time Scanned rows Latency

Figure 4: Subquery optimization with materialized views

an extra filter during the scan, so that the probe side reader will not
materialize the data that is not matching the join key. The format
of the digest is dependent on the number of distinct values of the
build side so the size of the digest should be small and relatively
effective on filtering but not “overfitting”.

3.4 Materialized views and near real-time data
Data warehouses typically write data for tables with columnar
formats in an incremental manner hourly or daily. The written data
becomes immutable after the time increment passes. Historically,
Presto could only read immutable data. Recently, we have extended
the capability to read in-flight data ingested into the warehouse
to provide near real-time (NRT) support. At Meta, NRT support is
available with a tens of seconds delay from the time data is created.

With the NRT support, More NRT dashboards are being built
to reflect more frequent metrics changes. Presto powers the ma-
jority of the dashboards at Meta. Rarely do users build dashboards
against the raw data which is in general too large to provide a low-
latency experience. Pre-computed tables are preferred to reduce
cardinality ahead of time. However, such methods do not apply
to NRT use cases as data is coming continuously. To satisfy both
low-latency requirements as well as data freshness, materialized
view functionality is built into Presto.

A materialized view is a view represented by a query whose
result is stored. When a materialized view is created by Presto, an
automatic job will be created to materialize the data for the view.
As long as some units (hours or days usually) of the base tables
become immutable, the automatic job will run the view query to
materialize the view data. The continuous incoming NRT data,
on the other hand, will not be materialized for the view until it
becomes immutable. When a user queries the materialized view,
Presto identifies which part of the view has been materialized and
which has not. Presto then breaks the query into a UNION ALL query
to combine the materialized data as well as the non-materialized
fresh data from the base table. This allows the query to provide
both freshness as well as low latency due to reduced data size.

Another use case of the materialized view is subquery optimiza-
tion. Given a query, Presto retrieves all the materialized views
associated with the queried tables. Presto attempts to match if a
materialized view is a subquery of the received one. If there is a
match, the received query will be rewritten to leverage the ma-
terialized view instead of fetching data from the base tables. The
current supported query pattern only allows scan, filter, project,
and aggregation. A handful of aggregation functions are supported
like SUM, MIN, MAX, AVG, COUNT, etc.

As materialized view support is only rolled out for pilot users at
Meta without general availability, we only showcase the wins from

early users. Figure 4 illustrates the improvements with materialized
views on one of the largest single-table interactive workloads at
Meta. The workload on this table includes all simple aggregation
queries on an NRT table, which contains hundreds of billions of
rows with half PB compressed size. Five materialized views were
created for this table as a result of the most frequently used common
subqueries of the entire workload. There is no user-side change as
the subquery optimization happens automatically on the engine
side.With thematerialized views, there aremore than 2X reductions
in CPU, scanned rows, and latency as on the 90th percentile.

4 SCALABILITY IMPROVEMENTS
Presto has been leveragedmore andmore to support heavy ETL jobs.
When entering the realm of hours of runtime and PB-size scans,
the original Presto architecture will not adequately scale. Various
improvements as well as re-architecturing have been integrated
into Presto to handle single-point failures, worker crashes, data
skews, and memory limitation.

4.1 Multiple coordinators
The coordinator has been a single point of failure for Presto. This is
especially a challenge for long-running queries, thousands of which
could be queued in the coordinator during peak hours. A crash of
the coordinator means all queries will fail. From a scalability aspect,
horizontally scaling a coordinator would reach a limit with more
queries running in parallel since query scheduling takes a non-
trivial amount of memory and CPU. Moreover, Meta infrastructure
design is trending toward containers with less memory, currently all
query queuing, query scheduling, and cluster management cannot
be achieved with smaller memory.

Presto solves this problem by separating the life cycles of queries
and clusters. The coordinators only control the life cycles of queries
and the newly introduced resource managers are in charge of the
queueing and resource utilization monitoring of a cluster. Figure 5
demonstrates the topology of multiple coordinator and multiple
resource manager architecture, which all originally resided in a
single coordinator. A query will first be sent to an arbitrary coor-
dinator. The coordinators are independent of each other without
communication among them. The query will then optionally be
sent to the resource managers for queueing. The resource managers
are highly available. The queued queries and cluster control panel
information are replicated across all instances. Consensus protocol
like Raft [36] is used to guarantee a crash of a resource manager
does not result in any loss of queued queries. Coordinators fetch
the queueing information from the resource managers periodically
to decide what queries to execute. Using periodical information
fetching, if a coordinator finds there is no query queued in the
resource manager or if the queries in the queue are low priority, it
can decide to execute a newly submitted query to avoid enqueue
overhead or network hop latency.

The introduction of multiple coordinators not only eliminates the
single point of failure, but also overcomes issues around the elastic
capacity and Meta’s infrastructure pushing for smaller containers.
Now coordinators or resource managers can be deallocated more
frequently without having to keep the queueing states for hours.
More details can be found in our blog [17].

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

Coordinator

parser/optimizer scheduler

metadata storage connector

Resource mgrs
queue

control panel

Coordinator

Coordinator

Sync states

Resource mgrs
queue

control panel

Resource mgrs
queue

control panel

Figure 5: Multiple coordinators
col1 col2
1 a
4 b
1 a
7 d
7 bp

a
r
t
i
t
i
o
n
1 col1 col2

5 b
2 b
2 b
5 e
2 ap

a
r
t
i
t
i
o
n
2 col1 col2

6 a
6 a
3 c
3 d
3 cp

a
r
t
i
t
i
o
n
3

Figure 6: Example of modular hash partitions

4.2 Recoverable grouped execution
The Presto architecture with streaming RPC shuffle and in-memory
data processing is optimized for latency. However, when it comes
to running ETL queries with PB-size scans or hours of runtime,
it is neither scalable in memory limitation nor reliable in some
guarantee that no worker would crash. To support arbitrarily large
queries, we developed recoverable grouped execution. (More details
can be found in our blog [8]).

In a warehouse, data is usually partitioned. For example, data can
land by day, and thus “day” is a natural partition. This can also be
extended to have other types of partitions like modular hash or z-
ordering. Rows with identical partition keys (which are represented
by table columns) belong to the same partition. Figure 6 shows an
example of hash partitions where the table is partitioned on column
col1 with hash function mod(3) resulting in 3 partitions.

In Presto, a query can be executed in a “grouped” fashion if the
first aggregation, join, or window function key after the table scan
is a superset of the data partition key. In such a case, the engine
will not scan the entire data set and shuffle based on the aggrega-
tion, join, or window function key. It will only scan partition by
partition as the keys will be disjoint across partitions. If execut-
ing the entire query requires more memory than the cluster can
provide, a grouped execution is preferred to lower peak memory
consumption. Continuing with the example in Figure 6, suppose a
user has a query “SELECT COUNT() from table1 GROUP BY col1”.
A normal scan will read all 3 partitions in parallel and shuffle them
based on the aggregation key col1. Then, the aggregation stage
will receive all 7 distinct values in memory before emitting the
final aggregated result. On the contrary, grouped execution will
scan one partition at a time. Because the partition key col1 is the
same as the aggregation key col1 in the query, it will first scan
everything in partition 1 and build the hash table with only 3
distinct values (1, 4, and 7) in memory and emit the final results for
the 3 values. Then it will continue the processing with only two
values for partition 2 and 3 each. In such a case, peak memory
usage would be smaller than scanning everything in parallel.

The grouped execution can be extended beyond the first shuffle
or when the data is not partitioned by the aggregation, join, or
window function key. The way to achieve this is by injecting a
shuffle phase to materialize the source data in a partitioned way
based on the downstream keys. The benefit is to allow grouped
execution to apply to arbitrary queries with arbitrary source data.
The downside is the overhead of intermediate data materialization.

. . .

. . .

scan

scan

scan

write

write

write

. . .

. . .

scan

scan

scan

agg

agg

agg
. . . output

persist
data

RPC Shuffle
on col

Execute one or more groups
a time with recoverability

Figure 7: Recoverable grouped execution

With the intermediate data materialized, we further built support
for failure recovery of grouped execution at the boundary of shuffle
points. If a worker crashes, the scheduler will rerun the failed
execution directly from the materialized intermediate data instead
of from the source. From an architectural perspective, it is also
possible to support more fine-grain recovery prior to shuffle with a
fault-tolerant local disk-based or distributed disaggregated shuffle
service (for example, Cosco [25] integration).

Figure 7 shows an example of the recoverable grouped execution
for query “SELECT COUNT() FROM table1 GROUP BY col1” where
table1 contains trillions of distinct values for col1 that cannot
fit into the memory of a whole cluster. To overcome the memory
limitation, the first shuffle will be based on col1. Instead of directly
pipelining the shuffled key into COUNT aggregation, writers will
persist the data. Then the aggregation phase can have a grouped
execution (shown in the gray box) on the shuffled data to lower
peak memory consumption. Each grouped execution is recoverable
as the immediate data on col1 has persisted.

4.3 Presto on Spark
Recoverable grouped execution enables Presto to overcome the
memory limitation with the support of failure recovery. While the
failure recovery boundary is at the shuffle point, which could be
too coarse. There are several mature general-purpose data compute
engines that have builtin failure recovery mechanisms with finer
granularity. Spark [57] is one of them. Spark provides resilient dis-
tributed dataset (RDD), which is a collection of elements partitioned
across the nodes of the cluster that can be operated on in parallel.
RDDs automatically recover from container or task failures. Presto
on Spark is a new architecture that completely gets rid of the exist-
ing Presto cluster topology with multi-tenancy. It leverages Presto
as a library and runs on top of the Spark RDD interface to provide
scalability and reliability for no additional cost.

The Presto on Spark architecture replaces the Presto builtin
scheduler, shuffle, resource management, and task execution with
Spark ones demonstrated in Figure 8. To start a Presto on Spark
query, Spark first launches a simplified Presto coordinator as a
library inside its process to parse and optimize the query. The
simplified coordinator will then discover all necessary tasks and
compile them together with the optimized physical plan into RDD
tasks that are sent to Spark for scheduling. An RDD task instance
carries the original Presto plan fragment. Once scheduled, the RDD
execution thread will run on a simplified Presto worker as a library
based on the Presto plan fragment. External shuffle execution will
need to be implemented on the worker to leverage the external
shuffle service. An external shuffle service can avoid the shortage of
RPC shuffle in terms of connection limitation and failure boundary.
An RDD thread will be automatically retried by the Spark cluster
manager if the container crashes. Note that the original Presto

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA

Presto coordinator as a library

parser/optimizer task
discovery

metadata storage connector

Spark driver

Spark cluster
manager

Spark executor
task

processor
data storage

connector
Presto worker as a library

Spark executor
task

processor
data storage

connector
Presto worker as a library

Figure 8: Presto on Spark architecture

services like coordinator and worker all serve as libraries. These
libraries do not communicate with each other or manage memory,
threading, or network. All these aspects are removed from the
library for simplification and delegated to the Spark clusters.

Note that we only leverage Spark with its RDD level and below.
The SparkSQL [6] is not used in this scenario as we need to guar-
antee the language syntax and semantics consistency of Presto. At
Meta, originally both Presto and SparkSQL with Meta internal syn-
tax variation2 were used to run ETL jobs. However, the language
differences between the two led to high user friction. The Presto on
Spark project came to unify the stacks with the language semantics
from Presto as well as scalability and reliability from Spark.

Both Presto on Spark and recoverable grouped execution aimed
to solve scalability and reliability challenges. The recoverable grouped
execution still leverages the multi-tenancy mode with more fun-
gibility of memory and CPU. Presto on Spark on the other hand
is with container-level isolation that can provide better scalability
and reliability. In Meta production, due to the uncertainty of elastic
capacity, containers can be drained frequently to balance peak and
off-peak usage. Thus, recoverability is a strong requirement for
long-running jobs to handle containers offline. More details can be
found in our blog [54].

Starting in early 2022, Meta began migrating all SparkSQL work-
loads to Presto on Spark to unify the SQL interface. The parser,
analyzer, optimizer, and operator execution layers of SparkSQL
stack will be completely deprecated in light of Presto. Only the
Spark RDD interface remains as it serves as a major component for
Presto on Spark. We are also working to replace the recoverable
grouped execution after running the stack in production for years
because it is not as scalable as Presto on Spark. More learning is
available in Section 7.

4.4 Spilling
Though Presto has the previous two scalable options to overcome
the cluster-wide memory limitation, data skew can still happen,
causing a single worker to go beyond the local worker memory
limitation. This becomes particularly severe as Meta is moving to-
wards smaller memory-size containers for better elasticity. Spilling
is implemented in Presto to materialize the in-memory hash tables
for aggregation, join, window function, and topN operators to disk.
Having application-level spilling instead of relying on operating
systems to swap memory pages to disk helps to have finer control
over the query execution. At Meta, interactive and ad-hoc work-
loads spill data to local flash for latency, and ETL workload spill
data to remote storage for scalability.

2Hive [47], another well-known ETL engine used at Meta in the 2010s has been
completely deprecated by SparkSQL. But Hive’s syntax has been kept instead of using
the SparkSQL syntax.

Once the memory limit is hit when building the hash tables for
a query, each hash table will be sorted based on the hash key and
serialized to disk. Then the query will continue processing as if the
hash table is empty. Once the hash table again grows to the limit,
the same process will repeat until all data has been processed. Then,
an external merge of these sorted hash tables will be performed to
limit the memory usage when emitting the results. Note that the
techniques of in-memory hashing and overflow resolution are well
known in industry [22, 45].

5 EFFICIENCY IMPROVEMENTS
In addition to the latency and scalability improvements, efficiency
is also important to query performance. This section illustrates
several enhancements we have made to improve efficiency.

5.1 Cost-Based Optimizer
Optimizers are essential to query engines. A proper plan can lever-
age the best use of the resources in a cluster. Presto has a cost-based
optimizer to assign costs to CPU, IO, and memory to balance these
factors to generate an optimized plan. In detail, cost-based optimiza-
tion is used to make decisions upon (1) join type selection including
broadcast join and redistributed join and (2) join reordering to min-
imize the overall memory usage. To fully leverage the memory yet
provide CPU efficiency without exceeding the memory limit is de-
sired. However, for broadcast join, it can also provide lower latency
and fewer CPU cycles. So the tradeoff is to minimize the memory
usage to a limit to provide the optimized CPU performance. The use
case of filter reordering is not covered by the cost-based optimizer
as it is determined at runtime discussed in Section 3.3.

To make the right decision, external information is needed to es-
timate the cost. At Meta, statistics are stored for each table partition
to describe the data distribution; here a partition is the definition
laid out in Section 4.2. All services, including Presto, that write data
into the warehouse are responsible for calculating and publishing
the partition statistics to the metadata store. These statistics are
dropped with the deletion of their corresponding partition. The
common statistics include histogram, total value count, distinct
value count, null count, minima, maxima, etc. These statistics can
help to estimate the filter selectivity to estimate the cardinalities of
the input tables after filters. It also helps to estimate the join table
sizes for memory estimation. During planning time, the cost-based
optimizer will take the statistics of the input tables and populate the
cost estimation from the leaves of the plan to the root and adjust the
plan accordingly to generate the minimum cost. Simple heuristics
are applied for filter or join selectivity to estimate the cardinalities
and sizes of data in the upper part of the plan.

Figure 9 (a) shows the CPU reduction of a production cluster’s
ETL queries with joins after applying the cost-based optimization.
60% of such queries change plans and reduce their CPU usage. The
column chart demonstrates the CPU ratio of the queries having cost-
based optimization enabled over the same set of queries having the
optimization disabled. The majority of the queries have improved
CPU efficiency (indicated by the area with ratio ≤ 1). Though there
are queries running with more CPU with cost-based optimization,
it does not necessarily mean a regression. For those queries with
increased CPU utilization, 83% of them have lowered memory usage.

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

CPU ratio

Q
ue

ry
 p

er
ce

nt
ag

e

0%
5%

10%
15%
20%
25%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

CPU ratio

Q
ue

ry
 p

er
ce

nt
ag

e

0%

10%

20%

30%

<0
.

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

(a) cost-based over default (b) hist-based over cost-based

Figure 9: CPU ratio of different optimization setup

5.2 History-Based Optimizer
Table statistics in most cases can provide enough information for
plan cost estimation. However, the estimation could be off. Also, the
filter or join selectivity is unknown ahead of time so the estimation
could be increasingly imprecise with more filters embedded in a
query. Therefore, Presto also has support for history-based optimizer.
As Presto is heavily leveraged for ETL jobs at Meta, the queries
are highly repetitive and predictable. The idea of the history-based
optimizer is to leverage the precise execution statistics from the
previously finished repeated queries to guide the planning of future
repeated queries. In addition to the two join strategies mentioned in
Section 5.1, the history-based optimizer also has more fine-grained
control over the plan including (1) adjusting the shuffle fanout sizes
and (2) partial or intermediate aggregation elimination.

When a query plan is generated, the same canonicalization ap-
proach mentioned in Section 3.1 is applied to the query plan. (Note
that the predicate pruning in Section 3.1 is at file level on workers.
For optimizers, only table-level statistics are available). Then, the
constants of the plan are replaced with symbols. The “symbolic
plan” will serve as the key for external statistics storage together
with the value to be the actual execution statistics after the query
is finished. When a query with the same structure but different
constants is scheduled, the cost estimation will be directly fetched
from the external statistics storage with the same symbolic plan.
Because ETL queries only change “date” constant day to day, the
statistics provided by the symbolic plan generated previously can
be precise for the latest ETL processing.

Figure 9 (b) demonstrates the CPU reduction of the ETL queries of
a production cluster similar to the one in Figure 9 (a). We compare
the queries having history-based optimization enabled over the
same set of queries having only cost-based optimization enabled.
The queries are arbitrary ones beyond join queries as history-based
optimization provides improvement for generic queries. 25% of the
queries have plans changed with an overall 10% CPU improvement.

5.3 Adaptive execution
Statistics are helpful for planners to make decisions. Presto’s opti-
mizer strives to statically select the best plan using data statistics as
discussed in the previous sections. However, incomplete statistics,
assumptions about the data (uniformity assumption, lack of infor-
mation about data correlations and skew), and complex queries (for
example, complex functions or multi-way joins) lead to suboptimal
plans. Therefore, adaptive execution is needed to dynamically adjust
the query plan if during runtime the plan is not optimal.

Adaptive execution leverages the finished tasks to report the
statistics back to the coordinator so that the coordinator can use
them to re-optimize the plan for downstream tasks. The types of

optimization are a superset of the ones supported by the history-
based optimizer in Section 5.2; adaptive execution also provides
skew handling for join and aggregation. This is mainly because
detecting the skewed keys at runtime does not require any external
knowledge as many metadata store do not have the proper support
of providing the skewed value for tables or columns.

To leverage the runtime statistics, the scheduler schedules tasks
in a phased manner from the scan tasks all the way up to the root.
Once the upstream tasks are finished, the optimizer will have a
rerun based on the newly collected statistics and the downstream
tasks will be scheduled based on the new plan. As the original
Presto architecture shuffles data in a streaming fashion, adaptive
execution is only available for Presto on Spark mode when phased
execution and disaggregated shuffle are supported.

6 ENABLING RICHER ANALYTICS
In addition to the latency, scalability, and efficiency improvements
for analytical workload, there is a growing trend at Meta of empha-
sizing machine learning feature engineering use cases, increasing
support for privacy requirements, and graph analytics. This section
discusses the support for various such use cases.

6.1 Handling mutability
Data warehouses historically only support immutable data. In re-
cent years, we have seen an increasing trend of mutable data sup-
port with versioning. Examples are Delta Lake [5], Iceberg [28], and
Hudi [27]. Presto integrates with all these table formats. However,
they are not sufficient for use cases within Meta.

There are two major use cases for mutability at Meta: (1) ma-
chine learning feature engineering and (2) row-level deletion for
privacy. For (1), feature engineering is the process of using domain
knowledge to extract useful information in the form of features
that can be consumed by machine learning algorithms. At Meta,
such processes can be done through analytical engines like Presto
or streaming engines with declarative languages (with SQL as an
example) by generating features from raw data. Machine learning
engineers will keep exploring the data to find the proper features to
improve the machine learning models. Before a feature is selected
for a model, a candidate feature is logged and associated with the
main table. Based on the training result, the candidate feature could
be merged into the main table or dropped. There could be hundreds
of exploratory candidate features being developed at the same time.
Frequent change in the main table schema is not ideal. Thus, a more
flexible way of mutating the columns is needed. For (2), Meta users
(including Facebook, Instagram, and WhatsApp) can choose not to
have their personal data collected for content recommendation or
other uses. Meta needs the ability to remove user data in response to
users’ decisions. Warehouse tables are at EB scales. It is not feasible
to rewrite these tables over and over again at high frequency. Thus,
a mutable solution for these immutable data is needed.

To solve the above problems, delta is built into Presto. Delta
is a solution inside Meta that allows mutation of tables with the
flexibility of adding or moving columns or rows. Delta associates
one or more “delta files” to a single main file. The delta files serve
as a change log to the main file to indicate either that there are new
columns added or removed or new rows added or removed from

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA

the main file. Both main files and delta files are aligned with the
same logical row count to recover the logical data from the physical
representation. When Presto reads the main file, it will launch
extra readers to merge these delta files to reflect the changes. The
association and order of the delta files are kept in the metadata store
with versioning. Delta files enable logical deletes for the warehouse
to satisfy privacy requirements. These delta files are compacted
into the main file on a regular basis to avoid read overhead. This
process ensures all corresponding physical bits are removed.

Percentage of deleted rows

S
ca

n
C

P
U

 c
os

t

100%

150%

200%

250%

300%

1 5 10 50

Figure 10: Deletion overhead

In such a case, machine
learning candidate features can
be modeled as extra delta
columns and user data removal
can bemodeled as delta rows to
be deleted. Any new candidate
features added or some users
removing personal data will re-
sult in new delta files to be as-

sociated with the main file in sequence. Note that given personal
data removal activities happen frequently, batching of these row
removals is needed to avoid creating too many delta files.

Delta file merge for column addition or removal does not affect
scan performance as the file formats are columnar. However, for
row deletions, performance will be impacted. Figure 10 shows the
performance impact of scan CPU when merging delta files during
read in production. The x-axis shows the percentage of row counts
deleted and the y-axis represents the CPU cost compared to the one
without deletion. When only 1% of the rows need to be deleted, an
additional CPU cost of 6% is incurred. However, if 60% of the rows
need to be deleted, the cost can increase significantly to 170%.

6.2 User-defined types
User-defined types are allowed in Presto to enrich the semantics.
Types can be defined in hierarchies with inheritance. For example,
a ProfileId type can be defined based on Long type with both
UserId and PageId types to be its subtypes. The user-defined type
definitions are stored in the remote metadata store. In addition
to the type definitions themselves stored, extra information can
be associated with user-defined types. Examples are constraints
expressed by SQL expressions. This allows data quality checks
at runtime. For example, one would not expect a UserId to be a
negative integer or exceed a certain length. Another example is the
policy specification, which relates to the growing requirements for
privacy. There are common requirements in recent years around
user data protection, anonymization, and deletion. To achieve this
goal, a prerequisite is to identify the user data in the warehouse.
User-defined types allow business domain experts to model their
data to reflect the user data in the tables as well as associate the
privacy policy with them. For example, a table owner can define an
Email type that should be anonymized immediately when landed
and deleted after 7 days. The warehouse can apply these policies in
the background to comply with privacy requirements.

6.3 User-defined functions
User-defined functions (UDFs) allow embedding customized logic
into SQL. There are various ways that UDFs are supported in Presto.

In-process UDF: The basic support is the in-process UDFs.
Functions are authored and published in the forms of libraries.
Presto loads the library at runtime and executes them in the same
process as the main evaluation engine. This mode can be efficient as
there is no context switch. However, it is only supported by Presto
on Spark as the function libraries contain arbitrary code that is not
safe to run in multi-tenancy mode.

UDF service: To support UDF in multi-tenancy mode or in
different programming languages, Presto has built UDF servers. The
functions are invoked in remote servers with RPCs from Presto
clusters. The UDF servers update functions frequently (in minutes
to hours) so the function release cadence can be much faster than
the Presto engines. Because an expression can contain both local
executable functions as well as remote UDFs, during the compile
time, an expression will be decomposed into local executable and
remote executable with different projection phases in the plan. The
local executable expressions are compiled into bytecode for fast
execution; while the remote ones are executed in the UDF servers.

SQL functions: Though UDFs provide flexibility, it is necessary
for auditing and privacy purposes that a query should be able to
be “reasoned” about without a blackbox of execution. To balance
between expressiveness and reasonability, SQL functions are intro-
duced. When a function logic can be expressed by SQL, we allow
users to define SQL functions to simplify the query logic by avoid-
ing writing long and hard-to-read SQL statements. A SQL function
is a piece of SQL code with input and output types well defined.
SQL function definitions are also stored in the remote metadata
store. SQL functions will be automatically compiled and option-
ally inlined during execution. A detailed breakdown of how SQL
functions work has been published on our blog [50].

6.4 Graph extensions
Graph datasets arise naturally in several use cases at Meta, ranging
from social networks to lineage graphs representing how data flows
through systems. While users have leveraged specialized systems
for graph querying, like graph databases [2, 9, 35, 48] and graph
analytics engines [15, 19, 56], we could leverage Presto for many
such workloads allowing us to consolidate these specialized engines
on top of Presto. This consolidation has resulted in multiple benefits,
like providing a common frontend for users and allowing us to run
graph workloads on shared infrastructure.

Supporting graph workloads on Presto is challenging for two
main reasons. First, expressing graph queries using vanilla SQL
means performing graph traversals via joins, which is unintuitive,
error-prone, and often impractical due to the complexity. Second,
graph traversal queries are iterative and stateful in nature (for
example, the vertex to visit next depends on the vertices already
visited), typically resulting in queries with many, large joins that
challenge Presto’s ability to optimize execution and scale to large
graphs.

To address these challenges, we extended Presto SQL with graph
querying language constructs, inspired by existing graph query lan-
guages [21, 26, 31, 51]. These language constructs open up graph
querying to more people by providing a declarative interface fa-
miliar to SQL users as opposed to making users learn graph spe-
cific programming frameworks. Moreover, we built a graph query

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

planner that incorporates graph-specific optimizations to execute
iterative queries on the Presto runtime efficiently.

SELECT vertices(path) FROM GRAPH g

MATCH (src:Vertex)-/ path:Edge{1,5}/ -> (dst:Vertex)

WHERE g.date = '2022-09-22' AND src.id IN (1,2,3)

AND all_match(edges(path), e -> e.property = TRUE)

Listing 1: Example query with graph extension

The example query in Listing 1 covers a few of the features that
we have incorporated into the language. First, the FROM GRAPH
clause does not reference a table, but rather references a “graph”.
This is a newmetadata artifact that we introduced in the warehouse
at Meta, which contains a mapping from the schema of a graph
(the vertex or edge types, as well as the names and types of their
properties), to underlying tables where the graph is stored. We omit
details about the way users specify and store graph artifacts, as this
is outside the scope of this paper.

In most cases, queries on graph artifacts aim to compute a set of
paths in a graph. We use the MATCH syntax for specifying a visual
pattern which provides a template for the paths we want to query.
Parentheses like “(src:Vertex)” are used to specify vertices and
“->” arrows with labels like “/:Edge/” to specify edges and their
direction. The above example computes paths from vertices src to
vertices dst with a path of length at least 1 and at most 5. The out-
put of graph queries is a table where each row is a path. The WHERE
clause inherits the standard SQL predicate semantics for filtering
the computed paths. We use graph-specific functions, alongside
existing Presto functions to reference complex predicates on top of
the path array with expressions like “all_match(edges(path), e
-> e.property = TRUE)”. In the same example, vertices(path)
in the SELECT clause returns an array containing all of the vertex
objects in the path in the order they are found.

The high-level expressivity enabled by these language exten-
sions provides the opportunity for graph-specific optimizations.
Under the hood, a graph query is parsed into a special graph logical
plan that is then optimized leveraging the semantics of the graph
query. Eventually, the optimized graph logical plan is translated to
a relational plan that is executed like with any Presto query. Below,
we describe some of these optimizations.

Multi-step execution: A naive implementation of a query like
Listing 1 translates to a relational query with as many joins as the
maximum length of the path. Such queries may reach the memory
limitations of Presto, especially when there are too many paths to
compute. To address this, we have implemented an optimization
that translates a graph query plan into a series of smaller Presto
query plans. Each smaller query plan computes paths up to a certain
length and stores them into a temporary intermediate table, which is
used to then continue extending the paths. This keeps each iteration
within the memory limitations.

Efficient path extension: Taking Listing 1 again, a naive plan
would compute paths of length 1, 2, and so on, and conducts a UNION
ALL over them. This results in redundant computation. Computing
paths of length 𝑁 requires the same work as computing paths of
length 𝑁 − 1, plus the work to extend them to paths of length
𝑁 . However, it is not straightforward for the Presto optimizer to
eliminate the redundant work in a plan like this in a general way.

Instead, in the query plan we produce, once we have computed
paths of length 𝑁 − 1, we generate two copies of each path. We
then extend one of the copies to paths of length 𝑁 , keeping the
other copy around, effectively reusing computation.

Efficient subgraph computation: Given a set of vertices 𝑉 ,
we define a subgraph as a subset of the graph consisting of only
edges that are reachable from any of the vertices in 𝑉 . Computing
paths versus subgraphs have different requirements. For example,
when computing a subgraph, there is no need to track paths and
extend them by joining the edge table. We just need to track the
edges that have been visited. This allows the subgraph computation
plan to scan the edge table from storage once, and then operate on
it by marking edges as visited if they can be extended, minimizing
IO.

Complex filter pushdown: Users can specify filters on the
paths with functions like all_match, which allows for specifying
arbitrary predicates that apply to all elements of the input paths.
For example, Listing 1 only queries paths where all edges have
property=TRUE. This predicate is hard for the current general-
purpose Presto optimizer to push down. Instead, graph semantic
information allows us to directly push these filters down after every
join, each of which computes the next hop, thus minimizing the
number of intermediate paths that are computed.

Query

C
P

U
 ra

tio
 (P

re
st

o
/ G

ira
ph

)

0.0

0.2

0.4

0.6

Q1 Q2 Q3 Q4

Figure 11

We demonstrate the practicality and ef-
ficiency of running graph workloads on top
of Presto with a benchmark . We compare
Presto against Apache Giraph [15], an en-
gine designed specifically for batch graph
analytics workloads at Meta. Note that part
of Giraph functionality is also undergoing
deprecation in light of these Presto graph ex-
tensions. Figure 11 showcases the efficiency
of the two engines in terms of CPU ratio
running on Presto over Giraph. We have 4

graph queries executed to illustrate the CPU gains of using Presto.
Queries Q1-3 compute a set of paths starting from a specific vertex.
The connectivity of the vertex is high resulting in an exponential
increase in the number of paths. Q1 computes all paths up to hop
10, Q2 up to hop 15, and Q3 up to hop 20. In total, after 20 hops we
compute 1.2 billion paths. The majority of these paths are found
between hops 10 and 16. Q4 is a query that computes a “subgraph”
(set of reachable edges downstream of a given vertex) over a larger
graph. Regarding the observed performance, Giraph allows a high
degree of customizability in the implementation of each algorithm,
which can be a double-edged sword. Even though it enables high
levels of job-specific optimization, this also makes it more prone
to inefficiencies introduced by custom code. Presto, on the other
hand, has a declarative SQL interface, trading off expressibility with
always using highly optimized implementations of each operator
(scan, join, aggregation, etc). These declarative graph constructs en-
able users to express graph analytics logic that we can transparently
translate into the SQL required to efficiently execute them.

7 PERFORMANCE IN PRODUCTION
This section illustrates the Meta production workload performance
and learnings during the iterative developments introduced in this

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA
D

at
a

sc
an

 g
ro

w
th

La
te

nc
y

(s
ec

on
d)

0%
100%
200%
300%
400%
500%
600%

0

10

20

30

2019-07-01 2020-01-01 2020-07-01 2021-01-01 2021-07-01 2022-01-01 2022-07-01

Data growth P75 interactive/ad-hoc latency P90 interactive/ad-hoc latency

Figure 12: Interactive/ad-hoc latency with data growth

paper. [12] provides a rough idea of the scale at Meta. Given we
cannot disclose the detailed numbers, we demonstrate to a point
that the effort of this paper has led us to overcome the hyper growth
in data volume in the past few years.

7.1 Interactive and ad-hoc workload scalability
Even with increasing data, Presto’s pruning, filtering, and caching
allow the latency to be consistent to provide the same user experi-
ence year after year. Figure 12 illustrates the P75 (75th percentile)
and P90 interactive and ad-hoc workload latency as well as the data
growth over the past 3 years. The red and yellow series are the P75
and P90 latencies respectively that are relatively stable over the
past 3 years. However, if we use the data scan volume in mid of
2019 as the baseline, the scanned data has been growing close to
600% in 3 years leading to a 5X growth. Within the same period, the
number of cores added to the interactive cluster fleet is only 82%.
Note that Figure 13 demonstrates the latency for both interactive
and ad-hoc workload mixed; in general, ad-hoc workload latency
is higher and more fluctuated than interactive ones due to their
exploratory nature.

7.2 Interactive workload latency
In this section, we compare the interactive workloads at Meta. The
entire fleet of such workload has been fully migrated out of the
original Presto architecture discussed in [44]. Any collocated in-
memory or on-disk storage connectors have also been deprecated
in light of the new architecture.

To illustrate the improvement despite the complete deprecation
of the original architecture and connectors, we manually set up
the cluster with the same cores, threading, and memory as the one
in production to shadow production traffic. The four settings on
the such cluster to compare are: (1) the original architecture with
disaggregated storage [44], (2) caching improvements discussed
in Section 3.1 on top of (1), (3) adaptive filtering improvements
discussed in Section 3.3 on top of (2), and (4) native vectorized
execution integration discussed in Section 3.2 on top of (3).

Figure 13 illustrates the latency comparison of the four settings
against the Meta production workload at P75 (75th percentile), P90,
and P95. The Y-axis is the latency in seconds. In general, across
all percentiles of the execution latency, caching provides about
60% improvement compared to the original architecture. Adaptive
filtering adds another 10 - 20%. Another major improvement of over
50% comes from native vectorized execution.

7.3 ETL workload scalability
Similar to the one discussed in Section 7.1, Figure 14 illustrates
the data scan footprint for ETL workload in the past 3 years. We

se
co

nd
s

0

10

20

30

40

P75 P90 P95

original architecture

caching only

adaptive filtering + caching

adaptive filtering + caching +
native execution

Figure 13: Interactive workload latency comparison

D
at

a
sc

an
 g

ro
w

th

0%

100%

200%

300%

400%

500%

2019-07-01 2020-01-01 2020-07-01 2021-01-01 2021-07-01 2022-01-01 2022-07-01

presto on spark recoverable grouped execution original architecture

Figure 14: ETL scan footprint with data growth

also use the data scan volume in mid of 2019 as the baseline. The
scanned data has been growing to 450% leading to 3.5X growth.
The figure also shows the launch of recoverable grouped execution
in mid of 2020 and the launch of Presto on Spark in mid of 2021.
After launch, both these two new architectures started to have rapid
growth to handle heavier workloads. As mentioned in Section 4,
we initially developed recoverable grouped execution as a means
of supporting large-scale ETL queries. However, we found that this
approach was not as scalable as we had hoped, mainly due to its
emphasis on reducing memory consumption and its inadequate
fault tolerance for worker crashes. Consequently, with the launch of
Presto on Spark, we have seen a decrease in the usage of recoverable
grouped execution, as depicted in Figure 14. Users have been rapidly
migrating to Presto on Spark, prompting us to begin the deprecation
process for recoverable grouped execution.

8 RELATEDWORK
Interactive and ad-hoc analytical engines are offered widely by
cloud providers. Representative ones include BigQuery powered
by Dremel [33, 34], Snowflake [18], and Redshift [7]. Various in-
ternal ones are Procella [13] and F1 [43]. Similar techniques like
disaggregate storage and caching are also used in these systems.

Regarding analytical SQL batch engines, SparkSQL [6] is a pop-
ular open-source engine supporting long-running ETL jobs. Spark-
SQL, as a SQL evaluation engine, is built on top of Spark [57] which
is the general-purpose compute engine. Presto in this paper started
directly with a SQL evaluation engine and gradually evolved with
fault-tolerance support on top of Spark. F1 [43] is another example
of leveraging the interactive engine as a library and running on
MapReduce framework [20] to support fault tolerance.

Vectorized engines are an industry trend to boost query perfor-
mance. Notable ones are DuckDB [42], Photon [10], ClickHouse [16],
and Alibaba’s Hologres [30].

Mutability, versioning, and time traveling are supported in vari-
ous open-source solutions including Delta Lake [5], Iceberg [28],
and Hudi [27]. Presto has integration with all these table formats
yet still only relies on Meta’s solution called “delta” to support more
flexible data mutation.

Giraph [15] is an open-source solution to do graph analytics. Part
of its functionality has been replaced and migrated to the Presto

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

graph extension. GraphX [56] and GraphFrames [19] are alternative
open-source solutions built on top of Spark [57].

There have been many iterations of graph query language syn-
tax solutions over the years, one popular being Cypher [26] used
by Neo4j [35]. PGQL [51] is Oracle’s vision of such a syntax, and
GCORE [3] attempts to formalize the core concepts around build-
ing property graph query languages. TigerGraph [48] is another
language developed with different syntax. There has been progress
made on an ISO standard for property graph query languages called
GQL [31], the same way SQL is a standard. Recently, SQL/PGQ [21]
has been proposed which will ultimately merge into GQL, all of
which are still under active development. Gremlin [49] is an API
for querying graphs that follows more of a dataflow structure and
differs from declarative SQL-like languages.

9 FUTUREWORK
The techniquesmentioned in this paper are our initial exploration of
handling more complex workloads. Recoverable grouped execution
in Section 4.2 is one example of our early exploration and was later
replaced by a more general solution (Presto on Spark in Section
Section 4.3). A list of some of the remaining challenges and our
most recent attempts at engineering solutions follows.

Non-SQL API: GraphSQL in Section 6.4 is a SQL extension only
working for graph-related use cases. We are exploring a general-
purpose non-SQL API in Python similar to Snowpark [4] or PyS-
park [23] to allow execution of control flow on the coordinator
and data flow with SQL-equivalent semantics on the workers. The
new non-SQL API aims to provide a procedural-like programming
experience with richer semantics that could cover graph processing.

Distributed Caching: The caching strategy in Section 3.1 relies
on machines having local flash. This is a strong assumption at Meta
as compute machines are mostly without disks. We are exploring
a remote flash cache strategy directly embedded into Meta’s dis-
tributed file system. In such a design, caching responsibility can be
hidden from Presto. It also provides opportunities for other services
using distributed caching beyond a data warehouse.

Unified Container Scheduling: Presto on Spark relies on
schedulers to allocate containers for isolation. The current scheduler
is a home-built one similar to the open-source offering Yarn [52]. In
addition, Meta’s streaming engine also relies on its own home-built
scheduler [32]. Both of these schedulers have overlapping function-
alities with Meta’s container solution Tupperware [46] similar to
Kubernetes [11]. We are currently prototyping a lightweight model
with Tupperware to support fast and frequent container allocation.
The new architecture aims to consolidate the scheduling strategy
for Presto on Spark, streaming engines, and other general-purpose
cluster management.

Unified UDFs: The UDFs in Section 6.3 only support Presto.
They cannot be used by machine learning services like training
or inference. This has caused friction for users to write multiple
versions of UDFs for the same purpose deployed to different services.
Machine learning services and Presto are migrating to the Velox
execution library mentioned in Section 3.2. We are in the process
of extending the UDF offering so that functions will only need to
be authored once. This will further defragment the various UDF
authoring platforms at Meta.

More Privacy Challenges: In addition to data mutation dis-
cussed in Section 6.1, we also face additional privacy-related chal-
lenges. One major challenge is query rewrite, which allows users to
obtain insight into the data from the warehouse without exposing
sensitive data. For example, it is allowed to show the approximate
distribution of Facebook’s user ages; yet, it is not allowed to show
the exact distribution or not to say the individual user’s age. This
is commonly known as differential privacy [24]. Unfortunately,
various query rewrite techniques to achieve differential privacy
mentioned in works like [53] could generate overly complex SQL
leading to higher CPU or memory usage. Several explorations have
been done at Meta without a successful rollout. Another main
challenge is lineage. To understand sensitive data usage, a perfect
lineage graph is needed to track how sensitive data is flowed into
the warehouse and how it is used. However, customized UDFs, com-
plicated SQL logic, or downloading data out of the warehouse can
make tracking hard to achieve. Today, we rely on users to tell the
lineage service how data is used and flowed, which is error-prone.

10 CONCLUSIONS
Presto has continued its evolution to handle fast-growing data
volume with better latency for interactive workload and better scal-
ability for ETL workload. Various evolutions took place to improve
these two. The design principle of supporting both low-latency and
long-running queries has considered future data growth instead
of doing incremental improvements. Various techniques discussed
including caching strategies, vectorized execution, or compiling
execution libraries on MapReduce-like framework are well known
in the industry. However, to our knowledge, it is the first time a
company can illustrate concrete impact by implementing these
techniques and open sourcing them with battle-tested quality at
Meta scale for community use. Through these efforts, we have suc-
cessfully consolidated our data warehouse design by centralizing
the traditional ETL workload (previously handled by SparkSQL),
ad-hoc analysis (previously handled by Presto), interactive serving
(previously handled by Raptor or Cubrick), and graph processing
(previously handled by Giraph) on Presto. This has eliminated the
need for multiple query engines and simplified our data warehouse
design. Any new requirements (for example, security or privacy
asks) coming to the data warehouse do not need to be implemented
in previously fragmented engines. Going forward, one single change
in Presto covers all entry points.

ACKNOWLEDGMENTS
We would like to thank Jim Apple, Philip Bell, Leiqing Cai, Naveen
Cherukuri, Steve Chuck, Serge Druzkin, Victoria Dudin, Ge Gao,
Shrinidhi Joshi, Konstantinos Karanasos, Shaloo Kshetrapal, Jiexi
Lin, Eric Liu, Lin Liu, Ryan Lim, Mengdi Lin, Ruslan Mardugal-
liamov, Guy Moore, Sara Narayan, Daniel Ohayon, Sourav Pal,
Pedro Eugenio Rocha Pedreira, Harsha Rastogi, Michael Shang,
Chandrashekhar Kumar Singh, Ying Su, Ariel Weisberg, Zhan Yuan,
and many others who are or used to work at Meta for their con-
tributions to this paper and Presto. We are very grateful for the
contributions from the Presto open-source community. These engi-
neering accomplishments would not have been possible without
contributions from Ahana, Alluxio, Uber, Twitter, and many others.

Presto: A Decade of SQL Analytics at Meta SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA

REFERENCES
[1] RaptorX: Building a 10X Faster Presto. 2021. https://prestodb.io/blog/2021/02/04/

raptorx.
[2] Oracle Labs PGX: Parallel Graph AnalytiX. 2022. https://www.oracle.com/

middleware/technologies/parallel-graph-analytix.html.
[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan
Sequeda, et al. 2018. G-CORE: A core for future graph query languages. In
Proceedings of the 2018 International Conference on Management of Data. 1421–
1432.

[4] Snowpark API. 2022. https://docs.snowflake.com/en/developer-guide/snowpark/
index.html.

[5] Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun, Peter A.
Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja Luszczak,
Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski, Pieter Senster,
and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (2020), 3411–3424.

[6] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia. 1383–1394.

[7] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subrama-
nian, and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD ’22:
International Conference on Management of Data. ACM, 2205–2217.

[8] Presto Unlimited: MPP SQL Engine at Scale. 2019. https://prestodb.io/blog/2019/
08/05/presto-unlimited-mpp-database-at-scale.

[9] Bradley R Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal,
Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Mike Personick, Karthik Rajan,
et al. 2018. Amazon Neptune: Graph Data Management in the Cloud.. In ISWC
(P&D/Industry/BlueSky).

[10] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson,
Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa
Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van
Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia.
2022. Photon: A Fast Query Engine for Lakehouse Systems. In SIGMOD ’22:
International Conference on Management of Data. ACM, 2326–2339.

[11] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and John
Wilkes. 2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (2016), 50–57.

[12] Meta Data Centers. 2022. https://datacenters.fb.com/.
[13] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-

Cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-Ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil Mckay, Selcuk Aya, Vera
Lychagina, and Brett Elliott. 2019. Procella: Unifying serving and analytical data
at YouTube. Proc. VLDB Endow. 12, 12 (2019), 2022–2034.

[14] Biswapesh Chattopadhyay, Pedro Eugenio Rocha Pedreira, Sundaram Narayanan,
Sameer Agarwal, Yutian Sun, Peng Li, Suketu Vakharia, and Weiran Liu. 2023.
Shared Foundations: Modernizing Meta’s Data Lakehouse. In 13th Conference on
Innovative Data Systems Research, CIDR.

[15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-Scale.
Proc. VLDB Endow. 8, 12 (2015), 1804–1815.

[16] ClickHouse. 2016. https://clickhouse.com/.
[17] Disaggregated Coordinator. 2022. https://prestodb.io/blog/2022/04/15/

disggregated-coordinator.
[18] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016. ACM, 215–226.

[19] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei
Zaharia. 2016. GraphFrames: an integrated API for mixing graph and relational
queries. In Proceedings of the Fourth International Workshop on Graph Data Man-
agement Experiences and Systems, Redwood Shores, CA, USA, June 24 - 24, 2016,
Peter A. Boncz and Josep Lluís Larriba-Pey (Eds.). ACM, 2.

[20] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004). 137–150.

[21] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. 2022. Graph
pattern matching in gql and sql/pgq. In Proceedings of the 2022 International
Conference on Management of Data. 2246–2258.

[22] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael
Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main
Memory Database Systems. In SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984. ACM Press, 1–8.

[23] Tomasz Drabas and Denny Lee. 2017. Learning PySpark. Packt Publishing Ltd.
[24] Cynthia Dwork. 2006. Differential privacy. In Automata, Languages and Program-

ming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33. Springer, 1–12.

[25] Cosco: An efficient facebook-scale shuffle service. 2020. https://databricks.com/
session/cosco-an-efficient-facebook-scale-shuffle-service.

[26] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 International Conference on Management of Data. 1433–
1445.

[27] Apache Hudi. 2017. https://hudi.apache.org.
[28] Apache Iceberg. 2018. https://iceberg.apache.org.
[29] Avoid Data Silos in Presto in Meta: the journey from Raptor to RaptorX. 2022.

https://prestodb.io/blog/2022/01/28/avoid-data-silos-in-presto-in-meta.
[30] Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,

Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, and Kai Zeng.
2020. Alibaba Hologres: A Cloud-Native Service for Hybrid Serving/Analytical
Processing. Proc. VLDB Endow. 13, 12 (2020), 3272–3284.

[31] GQL: One Property Query Language. 2022. https://gql.today/.
[32] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques-

Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat
Yilmaz, Weitao Chen, and Guoqiang Jerry Chen. 2020. Turbine: Facebook’s
Service Management Platform for Stream Processing. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 1591–1602.

[33] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. Proc. VLDB Endow. 3, 1 (2010), 330–339.

[34] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. Proc. VLDB Endow. 13, 12 (2020), 3461–3472.

[35] Neo4j. 2022. https://neo4j.com/.
[36] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC
’14. 305–319.

[37] Common Sub-Expression optimization. 2021. https://prestodb.io/blog/2021/11/
22/common-sub-expression-optimization.

[38] Apache ORC. 2013. https://orc.apache.org/.
[39] Apache Parquet. 2013. https://parquet.apache.org/.
[40] Pedro Pedreira, Chris Croswhite, and Luis Carlos Erpen De Bona. 2016. Cubrick:

Indexing Millions of Records per Second for Interactive Analytics. Proc. VLDB
Endow. 9, 13 (2016), 1305–1316.

[41] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proc. VLDB Endow. 15, 12, 3372–3384.

[42] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference. ACM, 1981–1984.

[43] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, FelixWeigel, David
Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur, Qiang
Zeng, Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gubichev, Amr
El-Helw, Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do, Colin
Zheng, Goetz Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal, Ashish
Gupta, and Shivakumar Venkataraman. 2018. F1 Query: Declarative Querying at
Scale. Proc. VLDB Endow. 11, 12 (2018), 1835–1848.

[44] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 35th IEEE International
Conference on Data Engineering, ICDE. IEEE, 1802–1813.

[45] Leonard D. Shapiro. 1986. Join Processing in Database Systems with Large Main
Memories. ACM Trans. Database Syst. 11, 3 (1986), 239–264.

[46] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulka-
rni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibrewal,
Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Unified Cluster Manage-
ment System for Shared Infrastructure. In 14th USENIX Symposium on Operating

https://prestodb.io/blog/2021/02/04/raptorx
https://prestodb.io/blog/2021/02/04/raptorx
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://docs.snowflake.com/en/developer-guide/snowpark/index.html
https://docs.snowflake.com/en/developer-guide/snowpark/index.html
https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale
https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale
https://datacenters.fb.com/
https://clickhouse.com/
https://prestodb.io/blog/2022/04/15/disggregated-coordinator
https://prestodb.io/blog/2022/04/15/disggregated-coordinator
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service
https://hudi.apache.org
https://iceberg.apache.org
https://prestodb.io/blog/2022/01/28/avoid-data-silos-in-presto-in-meta
https://gql.today/
https://neo4j.com/
https://prestodb.io/blog/2021/11/22/common-sub-expression-optimization
https://prestodb.io/blog/2021/11/22/common-sub-expression-optimization
https://orc.apache.org/
https://parquet.apache.org/

SIGMOD ’23, June 18–23, 2023, Seattle, WS, USA Yutian “James” Sun, et al.

Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020.
USENIX Association, 787–803.

[47] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning
Zhang, Suresh Anthony, Hao Liu, and RaghothamMurthy. 2010. Hive - a petabyte
scale data warehouse using Hadoop. In Proceedings of the 26th International
Conference on Data Engineering, ICDE. 996–1005.

[48] TigerGraph. 2022. https://www.tigergraph.com/.
[49] Apache Tinkerpop. 2022. https://tinkerpop.apache.org/.
[50] Tutorial: How to Define SQL Functions With Presto Across All Connectors.

2021. https://dzone.com/articles/tutorial-how-to-define-sql-functions-with-
presto-a.

[51] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems.
1–6.

[52] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,

and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet another resource
negotiator. In ACM Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA,
USA, October 1-3, 2013, Guy M. Lohman (Ed.). ACM, 5:1–5:16.

[53] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. 2020. Differentially private SQL with
bounded user contribution. Proceedings on privacy enhancing technologies 2020,
2 (2020), 230–250.

[54] Scaling with Presto on Spark. 2021. https://prestodb.io/blog/2021/10/26/Scaling-
with-Presto-on-Spark.

[55] Getting Started with PrestoDB and Aria Scan Optimizations. 2020. https://
prestodb.io/blog/2020/08/14/getting-started-and-aria.

[56] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. 2013.
GraphX: a resilient distributed graph system on Spark. In First International
Workshop on Graph Data Management Experiences and Systems, GRADES, co-
located with SIGMOD/PODS. CWI/ACM, 2.

[57] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10.

https://www.tigergraph.com/
https://tinkerpop.apache.org/
https://dzone.com/articles/tutorial-how-to-define-sql-functions-with-presto-a
https://dzone.com/articles/tutorial-how-to-define-sql-functions-with-presto-a
https://prestodb.io/blog/2021/10/26/Scaling-with-Presto-on-Spark
https://prestodb.io/blog/2021/10/26/Scaling-with-Presto-on-Spark
https://prestodb.io/blog/2020/08/14/getting-started-and-aria
https://prestodb.io/blog/2020/08/14/getting-started-and-aria

	Abstract
	1 Introduction
	2 Architecture and Challenges
	3 Latency Improvements
	3.1 Caching
	3.2 Native vectorized execution
	3.3 Adaptive filtering
	3.4 Materialized views and near real-time data

	4 Scalability Improvements
	4.1 Multiple coordinators
	4.2 Recoverable grouped execution
	4.3 Presto on Spark
	4.4 Spilling

	5 Efficiency Improvements
	5.1 Cost-Based Optimizer
	5.2 History-Based Optimizer
	5.3 Adaptive execution

	6 Enabling Richer Analytics
	6.1 Handling mutability
	6.2 User-defined types
	6.3 User-defined functions
	6.4 Graph extensions

	7 Performance in Production
	7.1 Interactive and ad-hoc workload scalability
	7.2 Interactive workload latency
	7.3 ETL workload scalability

	8 Related Work
	9 Future Work
	10 Conclusions
	Acknowledgments
	References

