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ABSTRACT 
Application telemetry refers to measurements taken from 
software systems to assess their performance, availability, 
correctness, efficiency, and other aspects useful to operators, 
as well as to troubleshoot them when they behave 
abnormally. Many modern observability platforms support 
dimensional models of telemetry signals where the 
measurements are accompanied by additional dimensions 
used to identify either the resources described by the 
telemetry or the business-specific attributes of the activities 
(e.g., a customer identifier). However, most of these 
platforms lack any semantic understanding of the data, by not 
capturing any metadata about telemetry, from simple aspects 
such as units of measure or data types (treating all dimensions 
as strings) to more complex concepts such as purpose 
policies. This limits the ability of the platforms to provide a 
rich user experience, especially when dealing with different 
telemetry assets, for example, linking an anomaly in a time 
series with the corresponding subset of logs or traces, which 
requires semantic understanding of the dimensions in the 
respective data sets. 

In this paper, we describe a schema-first approach to 
application telemetry that is being implemented at Meta. It 
allows the observability platforms to capture metadata about 
telemetry from the start and enables a wide range of 
functionalities, including compile-time input validation, 
multi-signal correlations and cross-filtering, and even 
privacy rules enforcement. We present a collection of design 
goals and demonstrate how schema-first approach provides 
better trade-offs than many of the existing solutions in the 
industry. 

1. INTRODUCTION 
Observability is a critical capability of today’s cloud native 
software systems that power products such as Facebook, 
Gmail, WhatsApp, Twitter, Uber Rides, etc. Originally 
defined in control theory, observability provides operators 
with deeper insight into various aspects of the complex 
behavior of systems, including their performance, 
availability, correctness, and efficiency. When the systems 
behave abnormally, observability is used to troubleshoot the 
incidents and mitigate them to bring the behavior back to 
normal, with mean time to mitigation being one of the critical 
success measures. 

To provide observability, the systems are instrumented to 
produce various telemetry signals. The most common types 

of application telemetry used with today’s cloud native 
systems are metrics, logs, events, and traces [12], [21]. A 
common characteristic of different telemetry types is that 
they usually combine one or more measurements with a set 
of identifying dimensions. For example, a metric is a numeric 
observation typically associated with a name, such as 
“request_count”, and some dimensions, such as “host” or 
“endpoint”. Similarly, in a semi-structured log message, the 
measurement part is played by the message text, 
accompanied by searchable dimensions such as log level, 
thread name, etc. 

Modern telemetry platforms, in addition to ingesting vast 
amounts of telemetry data, usually perform extensive 
indexing of the dimensions to allow rich querying and 
aggregations over the raw measurements [17], [10], [2]. Most 
of them treat dimensions as free-form collections of key-
value pairs. Platforms like OpenTelemetry [15] or Jaeger [20] 
allow associating basic types with dimension values, while 
systems like Prometheus [6] allow associating descriptions 
with the metrics while treating all dimensions as strings. 
Little, if any, additional metadata is captured or understood 
by these systems. This puts a burden on the user to understand 
how to interpret the dimensions and how to leverage them 
when querying data. 

The complex nature of cloud native systems often requires 
investigations that involve more than a single source of 
telemetry. A spike in error rate in a single zone might warrant 
a look at the logs or traces from the same zone for better 
diagnosis of the issue. This is where many modern telemetry 
platforms fall short, as they lack semantic understanding of 
the data. Two telemetry signals might share a dimension 
“region”, but in one case referring to the region where the 
software runs and in the other case to the region where the 
user is located. Joining telemetry by this dimension as if it is 
the same thing is probably meaningless. Metadata can be the 
missing link in solving these problems. 

In this paper we define metadata as additional information 
that provides semantic meaning to telemetry data and helps 
in identifying the nature and features of the data. Examples 
of observability metadata include data types, units, 
descriptions, ownership, purpose policies, semantic 
identifiers, etc.  

There are different ways to associate metadata with 
telemetry, such as using naming conventions to imply 
semantic meaning or defining metadata a-posteriori, after the 
telemetry data has been produced and stored. In this paper we 



propose a schema-first approach to capturing metadata for 
application telemetry that we believe provides better trade-
offs compared to other solutions. Schema-first development 
is a well-known technique, especially in the areas of data 
management and API design. However, it is rarely used with 
application telemetry because it can create significant friction 
to developer experience compared to the simplicity of 
conventional telemetry APIs, like logging a message or 
incrementing a counter in a single line of code. 

This paper makes the following contributions: 

• Provide analysis of the existing approaches to telemetry 
metadata that are prevalent in the industry. 

• Demonstrate how schema-first approach can be applied 
to telemetry by addressing the usability and change 
management issues. 

• Propose a comparison methodology for evaluating 
metadata approaches. 

The rest of the paper is organized as follows. Section 2 
describes our motivations for associating metadata with 
application telemetry. In Section 3 we present our design 
goals and evaluation criteria. In Section 4 we review the 
existing approaches from the industry for associating 
metadata with telemetry. In Section 5 we present our schema-
first solution, discuss its implementation details and features, 
and evaluate it against our design goals. And in Section 6 we 
discuss the conclusions, applicability of the approach to other 
situations, and future work. 

2. MOTIVATION FOR METADATA 
Metadata in application telemetry is a means to an end: the 
users of observability platforms do not consume metadata 
directly. However, it is an essential building block to solving 
higher-level problems. 

Discoverability of data: defined as the ability to find the 
relevant telemetry assets at the right time. Discovery has a 
dependency on metadata to answer search queries based on 
metadata (e.g., what are all the telemetry artifacts owned by 
my team?), and to provide semantic information, such as 
human-readable descriptions, so that users can validate that 
the results of the search query match their needs. 

Exploration of data: once a user has discovered the right 
asset, they need to explore it to extract the information they 
are looking for. Exploration has a dependency on metadata 
(a) to determine which operations are allowed on a particular 
asset, e.g., which dimensions are available for filtering or 
grouping, and (b) to allow exploration of data across assets, 
e.g., by joining or cross-filtering on shared dimensions. 

Investigative assistance: the ability to automatically extract 
insights that can help users speed up an investigation. As a 
form of automated data exploration, it depends on metadata 

to have a semantic understanding of the data, for example to 
know which dimension is a region or whether that region is a 
source or destination region in a message transmission. 

Privacy: while application telemetry is generally not meant 
to contain sensitive user data that may be subject to privacy 
policies, it may be possible for the applications to leak 
sensitive data into telemetry by accident, or sometimes to 
include it intentionally with the expectation of certain access 
controls. Metadata helps the systems understand which parts 
of the telemetry assets may contain sensitive data, what 
ownership and access controls exist for this data, what 
policies may govern the retention of this data, and how 
lineage tooling may be used to automatically identify 
sensitive data both entering the telemetry data streams or 
being transformed into other aggregate data sets. 

3. EVALUATION CRITERIA 
When analyzing the costs and benefits of different 
approaches to telemetry metadata, we found the following 
design goals and evaluation criteria to be important to 
engineers at Meta. 

Design considerations. 

• C0: does the approach encourage engineers to think 
through the implication of adding new data to telemetry, 
such as whether it is privacy-sensitive, or whether the 
semantic type of the data already exists somewhere and 
should be reused for possible cross-asset correlations? 

Authoring experience. Most of the existing telemetry APIs 
are designed to make it as simple as possible for developers 
to log telemetry data points. Most logging frameworks 
support the simplicity of a printf statement; many metrics 
libraries allow emitting a new counter with a single line of 
code. This simplicity and low friction are very important 
because if it is cumbersome for engineers to add 
instrumentation to the code, we end up with code that emits 
no telemetry and provides no observability. We consider the 
following criteria in this category: 

• C1: does the approach require more lines of code to emit 
telemetry? 

• C2: does the approach make it more difficult to deploy a 
change, e.g., by requiring the developer to run an 
equivalent of ALTER TABLE command before the code 
hits production? 

• C3: how does the approach affect distributed authoring 
workflow when multiple teams own different parts of a 
data set? 

• C4: can the solution enforce schema consistency across 
different log sites? For example, preventing Java and Go 
programs from emitting the same type of time series with 
incompatible shapes. 



Change management. While many telemetry APIs are 
designed to support free-form dimensions on telemetry, this 
is not a full picture of the life cycle of telemetry data. Once 
an application emits a time series, it can have many 
consumers for that data, from automated detectors analyzing 
the time series for anomalies to visual dashboards configured 
with a certain understanding of the available dimensions. 
Changing the shape of the emitted telemetry, such as adding, 
removing, or renaming a dimension, can easily break those 
consumers, so we pay attention to change management 
practices that a given approach to metadata affords. 

• C5: does the approach allow evolution of telemetry 
shapes and schemas over time, such as the need to 
sometimes rename fields? 

• C6: can the approach automatically identify breaking 
changes to telemetry, e.g., in the form of continuous 
integration checks? 

• C7: can the approach provide compile-time safety 
against incompatible changes, such as supplying 
semantically incompatible value to a dimension, e.g., a 
fully qualified host name instead of a short host name? 

• C8: does the approach support automated code changes 
(often called “codemods” at Meta), like renaming a 
column in both producers and consumers? 

Querying. 

• C9: does the collected metadata allow automated 
introspection of telemetry assets and presenting to users 
only the choices that are applicable? 

• C10: does the metadata allow understanding of 
semantically identical dimensions across data sets, to 
enable cross-asset filtering and consistent querying? 

4. EXISTING APPROACHES 
The need for telemetry metadata is well understood, 
evidenced by solutions going back more than a decade. In this 
section we evaluate some of the popular existing solutions 
against our design goals. We mostly limit the discussion to 
open-source observability products. 

4.1. STATSD 

The Statsd protocol [13] became very popular for system 
metrics due to its simplicity and plain-text exposition format. 
It provided little in the way of capturing metadata of the 
metrics, restricting the observation to a single string name 
and a value associated with a type like “counter” or “gauge”. 
The data model did not provide any dimensional support, but 
in the existing backends, such as Graphite [4], the metric 
name was understood to be structured as a collection of dot-
separated segments, which were used by operators to encode 
interesting dimensions into the metric name. For example, if 

we wanted to count the number of requests received by a 
service and further partition this time series by dimensions 
like service name, protocol, and status code, we could encode 
it as {service}.reqs.{protocol}.{status}. The 
backends explicitly supported query functions that 
understood such notation, e.g., to aggregate all metrics for all 
services but partition them by the status code we could use a 
function groupBy(4), which refers to the fourth segment 
in the metric name. 

It is obvious that Statsd protocol meets none of our metadata 
requirements. In particular, the lack of true dimensional 
model made writing queries on Statsd metrics very 
unintuitive because users needed to refer to segments by their 
index, which also made queries very easy to break by changes 
in the way metrics were produced. 

4.2. DIMENSIONAL MODELS 

Seeing the wide adoption of Statsd protocol, the industry 
practitioners wanted to improve the dimensional aspects of 
the model. Google’s Monarch [2], Uber’s M3 [19], and 
Prometheus [6] are examples of metrics backends that 
explicitly support dimensional data models where a metric 
name can be associated with a group of string key-value pairs 
(often referred to as labels or tags), such that users could write 
queries explicitly referring to dimensions by name, e.g.,  
http_requests{job="foo",	 group="canary"} 
in Prometheus query language. 

Similar free-form dimensional models are supported by other 
telemetry platforms, including the open-source distributed 
tracing systems Jaeger [20] and Zipkin [3], as well as 
instrumentation-oriented projects like OpenTelemetry [15]. 
In OpenTelemetry, every telemetry asset (metrics, traces, and 
structured logs) can be associated with attributes, which are 
still mostly free-form key-value pairs, except that the values 
have types, either primitive (string, number, Boolean) or 
complex types built with nested arrays and maps. 

Named dimensions were a vast improvement over Statsd 
model, resulting in much more intuitive query expressions. 
The queries are also more resilient to upstream changes in the 
telemetry signals, because the order of dimensions is 
irrelevant. Yet the free-form format of the dimensions is still 
far from meeting our requirements for metadata. Essentially, 
all these systems adopt a code-first approach, where the code 
producing the telemetry is the final authority on the schema, 
shape, and semantic meaning of the data, yet none of this 
metadata is captured or made available to the consumers. 
When users query the data, they need to find out, through 
other means, which dimensions are present in the telemetry 
assets, what those dimensions are called, and what values are 
allowed. Usually, this leads to large inconsistencies between 
telemetry data produced by different components. Change 
management is also very complicated; it is very easy to break 



the consumers by changing the producing code, and the 
framework provides no mechanism for a feedback loop. 

4.3. SEMANTIC CONVENTIONS 

To impose more structure on the telemetry data, different 
projects define semantic convention that prescribe how 
certain common dimensions should be named in the 
telemetry and which values can be assign to them. One such 
example is the Elastic Common Schema (ECS) [8], an open-
source specification that defines a common set of fields to be 
used when storing event data, such as logs and metrics, in 
Elasticsearch. ECS specifies field names and datatypes for 
each field and provides descriptions and sample usage. For 
example, instead of dealing with potentially many ways of 
representing a source IP address in different data sets, the 
consumers of ECS-compliant data can rely on this dimension 
always be called source.ip. 

Similar mechanism exists in the OpenTelemetry project 
called semantic conventions [16]. As of v1.9, the conventions 
are defined for metrics, traces, and resources (resource is a 
software component whose behavior is described by the 
telemetry, e.g., a host, a process, or a Kubernetes cluster). 
Similar to ECS, the OpenTelemetry semantic conventions 
specify dimension names, their descriptions and semantic 
meaning, units of measure, and value types. This metadata is 
formally encoded in the YAML files that are a part of the 
OpenTelemetry specification. 

The OpenTelemetry attribute names also use dot-separated 
notation, but it is treated differently than in the Statsd 
protocol. The dot-segments are not used to encode dimension 
values, only to represent dimension namespaces and to group 
attributes by some common characteristic. For example, all 
keys of the form net.* refer to network-related attributes in 
general, while all keys of the form net.peer.* refer to 
network attributes of a remote peer communicating with the 
component producing telemetry. Concrete examples of the 
keys are net.peer.ip and net.peer.port, which 
respectively refer to the IP address and port of the remote 
peer. 

Semantic conventions for telemetry address some of our 
design goals for metadata. Producers have well-defined 
expectations for the shape of the telemetry dimensions and 
for using compatible values across different assets. 
Consumers can rely on the conventions to know which 
dimensions they can use when querying the data. The 
authoring experience of generating compatible telemetry is 
not particularly burdensome, especially when language 
implementations expose static constants for different 
attributes defined in the semantic conventions. 

The main downside of the semantic conventions approach is 
that they are, after all, only conventions. There is no built-in 
mechanism to guarantee that the conventions are used 

correctly and consistently. There is no strict type and value 
checking, for example, to ensure that a field that is meant to 
contain milliseconds is not assigned a value in seconds. There 
is no systematic way of warning developers at coding time if 
they are going to break consumers by changing the shape of 
the data. 

Another downside is the difficulty of retrofitting existing data 
sets to match the new conventions. It requires either full 
migration of the producers and consumers of the data set to a 
new format, which is usually cost prohibitive, or introducing 
a data transformation process into ingestion pipelines, which 
is a more common approach, but it incurs performance 
overhead and a long-term maintenance burden. 

4.4. OPENTELEMETRY SCHEMAS 

The OpenTelemetry authors understood that change 
management is an important aspect of the framework. As of 
v1.8, the OpenTelemetry Specification introduced the notion 
of telemetry schemas [14]. The schemas, despite the name, 
do not actually provide a formal definition of the telemetry 
attributes, as those are already defined by the semantic 
conventions themselves. Instead, schemas support versioning 
of the semantic conventions by describing the changes 
between versions, specifically renaming of the attributes, 
with more transformations possibly supported in the future. 
The emitted telemetry is expected to contain a URI, such as 
https://opentelemetry.io/schemas/1.9.0, 
referring to the schema and its version used by the producer. 
The telemetry backend can use that to automatically upgrade 
or downgrade the telemetry representation for the producers 
or consumers that are using an older version of the 
specification.  

Similar methods are used by other specifications. ECS 
defines a field ecs.version [9] that encodes the version 
of the specification employed by the ingestion pipeline. The 
CloudEvents specification [7] uses a dataschema field to 
encode the URI of the schema used by the events. Both ECS 
and CloudEvents only allow identifying which version of the 
schema is used by a specific instance of telemetry data, but 
do not describe the mechanism for transformation between 
versions that is possible with the OpenTelemetry schemas. 

While knowing the version of the schema used by a telemetry 
asset is important, it does not fundamentally change the 
limitation of the semantic conventions approach that we 
discussed previously. 

4.5. EXTERNALLY AUTHORED METADATA 

So far, we discussed the approaches that attempt to introduce 
some a-priori knowledge of the metadata, before the 
telemetry is produced. The alternative to that is an a-
posteriori enrichment where the metadata is defined after the 
telemetry is produced and captured in the storage backends. 



This approach requires a designation of some system as an 
authoritative source of metadata about various data sets, a 
metadata store. The consumers of telemetry can consult the 
metadata store to know how to interpret the data. At Meta, 
the concept of metadata store has been used for several years, 
especially for the vast amounts of data stored in the data 
warehouse. 

The metadata authored externally in the metadata store 
addresses many of our querying requirements but falls short 
in other areas. One of its drawbacks is the lack of consistency 
between the telemetry authoring and the metadata, which 
means the actual schema of the produced telemetry can easily 
get out of sync with the metadata, since the latter needs to be 
proactively updated after the fact (although some automation 
can be helpful for this). Another challenge is poorly defined 
identity of the telemetry assets. A metadata store requires a 
unique identifier with which it can associate the metadata, but 
not all telemetry types are able to provide that. For instance, 
a stream of structured events written to a Kafka [18] stream 
or a Scribe [11] category may be uniquely identified by the 
name of the destination stream/category, but a certain shape 
of data logged by a specific microservice into a distributed 
tracing platform like Jaeger [20] or Canopy [10] has no well-
defined identity to which a metadata can be attached a-
posteriori. 

4.6. AUTOMATIC DATA ENRICHMENT 

Certain classes of telemetry can be automatically enriched by 
the publishing libraries or the collection pipelines with 
standardized dimensions describing the resources, based on 
the inherent knowledge of the underlying infrastructure. For 
example, an application may emit a time series 
requests_total_count without providing any 
additional dimensions, and the collection pipeline can 
automatically add attributes like service ID, host name, pod 
name, zone, etc. This approach is widely used by commercial 
Observability vendors whose collection pipelines and agents 
support integrations with dozens of popular infrastructure 
components. Because the ownership of all these enriched 
dimensions is centralized, the Observability platforms can 
provide consistent view of telemetry metadata to consumers. 
Automatic data enrichment is complimentary to the schema-
first approach we propose, and can itself be implemented as 
schema-first, but in isolation it does not fully meet our 
requirements because it does not help with any custom, non-
infrastructure related dimensions that applications often want 
to use with the telemetry. 

5. SCHEMA-FIRST TELEMETRY 
After evaluating many options, we concluded that a schema-
first approach to application telemetry will be the most 
beneficial for engineers at Meta, and our team is currently 
working on building the necessary tooling to support it. In 

contrast to the code-first approach that is most prevalent in 
the observability industry, schema-first means that the design 
of the new telemetry assets starts with the schema; the 
schema is formally specified using some interface definition 
language (IDL, in our case, Thrift); and this schema becomes 
the single source of truth about the metadata of the asset. In 
this section we describe some of the implementation details 
of this approach and evaluate it against our design criteria. 

Schema-first approach to data management is not a new 
concept for engineers at Meta, especially for business 
analytics data. A typical path for this type of data starts with 
structured events being logged into Scribe [11], from where 
they are ingested either into Scuba [1] for real-time analytics 
or into the data warehouse for batch processing. Historically, 
the events were written to Scribe using a code-first, free-form 
API, which only captured the types of the fields but no other 
metadata, and the real metadata was then curated in the 
metadata store. Because this approach, as we discussed 
earlier, is prone to emerging inconsistencies between the 
metadata and the data itself, the company developed a 
schema-first logging framework to which many important 
data sets have been migrated, resulting in much better 
stability and reliability, improved controls and privacy, 
automated lineage, and better efficiency. We are extending 
that approach to all types of application telemetry by reusing 
many of the building blocks of the schema-first logging 
framework. 

5.1. IMPLEMENTATION 

Perhaps the biggest trade-off in the schema-first approach is 
the introduction of extra steps in the authoring process. Our 
goal was to minimize this impact, but we were not able to 
eliminate it completely. In the end, we consider this a worthy 
trade-off given the other benefits that we get from strong 
metadata support. It is also helpful that many engineers at 
Meta are already familiar with the proposed workflow. 

Let us first consider the base case of adding an extra piece of 
data to an existing telemetry asset, e.g., a shard ID dimension 
to the request counter in an RPC server. In the code-first 
approach this requires adding a single line (Listing 1). In the 
schema-first approach, this counter would already have a 
schema defined using an IDL (Listing 2) and the application 
code to increment the counter gets one extra line (Listing 3). 
Compared to the code-first approach, the schema-first 
solution requires at least one extra line of IDL code to define 
a new field, or even more lines if we want to provide 
additional metadata, in this example by defining a custom 
type ShardID that later can allow stricter validation of the 
values. 

It is worth noting how the schema-first approach provides 
potential efficiency improvements: in Listing 1 the 
dimensions are passed as a map, so the keys will have to be 



included in the wire format, while in Listing 3 we are using a 

strongly typed data structure that can be efficiently serialized 
into a binary Thrift payload. 

Besides the extra lines of code, we can also see that the 
schema-first solution requires some developer tooling 
support. First, the RequestCounter type is auto-
generated from the Thrift definition. At Meta, this is a 
standard and fully automated process, because the Buck build 
tool [5] knows how to handle Thrift IDL files. Second, if the 
telemetry is indeed serialized on the wire using Thrift binary 
format, then the consumers of this data must have access to 
the schema before they can parse the payload. This part has 
been already solved by Meta’s schema-first logging 
framework we mentioned earlier, which implements a 
schema actualization process executed automatically when 
the code change passes the continuous integration (CI) tests 
and is merged into the main branch. Actualization involves 
validation of the schema changes against backwards-
incompatible changes (such as changing a field type). If the 
validation fails, the code change fails the CI and will not be 

merged. If the validation is successful, then the schema 

change is pushed as a new version to the metadata store, 
where it can be distributed to real-time consumers such that 
when the new shape of telemetry is produced in production 
the consumers already have the new schema and are able to 
parse the data. 

Figure 1 shows the overall process of authoring and 
deploying a change to telemetry. Both the schema change (1) 
and the application code change (3) can be done in a single 
merge request, an important attribute of the solution for a 
better developer experience. CI checks integrate with 
actualization service to validate and update the schema in the 
metadata store. The telemetry is serialized by the SDK into a 
binary payload on the wire (or into Scribe), which is 
deserialized by the telemetry backend having runtime access 
to the updated schema. Consumers and Observability tools 
can consult the metadata store when discovering or accessing 
the data. 

For authoring new telemetry assets, the process requires more 
work on the schema part, that may involve such steps as: 
(a) creating a new IDL file with new data type, (b) adding a 
dependency reference to the application build file to let the 
build system know that Thrift code generation step is required 
before building the application, (c) importing the generated 
package into the application code to make the new data type 
accessible in the code. We envision that these steps can be 
easily automated with a wizard-like command line tool or a 
build target. 

There are several reasons why we chose Thrift as the 
language for defining the schemas. Thrift is the de-facto 
standard at Meta for defining interfaces between services, so 
most engineers are already familiar with it. It has strong 
tooling and IDE support for authoring, code-generation, and 
automatic cross-repository syncing. The code generation and 
serialization are well supported across most languages used 

counter.Increment( 
  service_id  = 'foo', 
  endpoint    = 'bar', 
  status_code = response.code, 
  shard_id    = 'baz',   // added line 
) 

Listing 1. Adding new dimension with traditional API. 

 

typedef string ServiceID 
typedef i32    StatusCode 
typedef string ShardID   // added line 
 
struct RequestCounter { 
  1: ServiceID  service_id 
  2: string     endpoint 
  3: StatusCode status_code 
  4: ShardID    shard_id // added line 
} 

Listing 2. Adding new dimension to the schema. 

 

counter.Increment(RequestCounter( 
  service_id  = 'foo', 
  endpoint    = 'bar', 
  status_code = response.code, 
  shard_id    = 'baz',  // added line 
)) 

Listing 3. Emitting new dimension via a struct. 

 

 
 

Figure 1. Schema-first authoring process. 
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. . .
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struct RequestCounter {
. . .
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(3) Application code:

counter.Inc(RequestCounter(
. . .
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in the company. The IDL itself is language-neutral and very 
expressive, with support for type aliases and annotations, that 
are critical for the rich metadata needs discussed in the next 
section. Thrift also supports namespaces and composition, 
which is important for the reuse of data types and semantic 
annotations, as well as for collaborative authoring of large 
data sets that are shared across multiple teams. 

Special handling is needed when trying to apply schemas to 
distributed tracing data [21]. The other types of telemetry 
usually have a well-defined identity and owners and are 
isolated from each other, e.g., a stream of structured logs 
from a service can have its own schema that is independent 
of all other telemetry assets; similarly, a set of metrics 
produced by an RPC framework can be represented by a 
schema owned by the library authors. In contrast, a single 
trace contains information collected across many different 
services. Some of the data in the trace could follow a common 
schema (such as the infrastructure dimensions that describe a 
service), while other data could be unique to each 
participating service. 

Traces are usually modeled as a collection of spans, where a 
span represents a certain operation performed by the 
software. The granularity of the operation is arbitrary; it 
could represent the whole RPC request handled by a service, 
or it could wrap a single function call within the code. A span 
provides a single generic envelope for capturing debugging 
and performance data, and it is up to the application code to 
decide which data to store there. In order to keep this open-
ended nature of tracing data yet still allow strong 
schematization of the data, our approach is to allow different 
teams to define the schema for their portion of the data and 
their use case, and extend the span model to store these 
schematized binary payloads keyed by the fully qualified 
name of the schema data type, e.g., in a string→[]byte 
dictionary. For example, the Canopy tracing platform 
provides an out-of-box instrumentation for our standard RPC 
framework. The tracing team can define a common schema 
for the way we want to capture data about RPCs; the 
instrumentation will populate this data type and store it in the 
trace under canopy.core.rpc key. Meanwhile, an 
individual service team X that wants to capture some data 
specific to their service can define another schema and store 
the data with serviceX.dataY key. This way we preserve 
the existing flexibility of traces being able to store any kind 
of data, while enjoying all the benefits of the schema-first 
approach. On the reading side, the consumers can access the 
data via strongly typed data structures auto-generated from 
the schema. In cases where more dynamic access is needed, 
e.g., in a generic layer that transfers the data from a queue 
into the data warehouse, the data can be parsed using the 
runtime schema information available from the metadata 
store. 

struct HostResource { 
  @DisplayName{"Host ID"} 
  @Description{"Unique host ID. 
    For Cloud, this must be the 
    instance_id assigned by the 
    cloud provider."} 
  1: string id 
     
  @DisplayName{"Hostname (short)"} 
  @Description{"Name of the host as 
    returned by the 'hostname'command."} 
  2: string name 
     
  @DisplayName{"Architecture"} 
  @Description{"The CPU architecture 
    the host system is running on."} 
  3: string arch 
} 

 

 
// Example: devvm123  
@DisplayName{name="HostName"} 
@SemanticType{InfraEnum.DataCenter_Host} 
typedef string HostName 
 
// Example: devvm123.zone1.facebook.com 
@DisplayName{name="HostName (with FQDN)"} 
@SemanticType{InfraEnum.DataCenter_Host} 
typedef string HostNameWithFQDN 

 

 
enum OneWayMsgExchangeActorEnum { 
  SOURCE = 1, TARGET = 2, 
} 
@SemanticQualifier 
struct OneWayMsgExchangeActor { 
  1: OneWayMsgExchangeActorEnum value 
} 
struct RPC { 
  @OneWayMsgExchangeActor{SOURCE} 
  @DisplayName{"Source service"} 
  1: ServiceID source_service 
     
  @OneWayMsgExchangeActor{TARGET} 
  @DisplayName{"Target service"} 
  2: ServiceID target_service 
} 

 

 

Listing 4. Schema-first model for OpenTelemetry 
semantic conventions for host resources. 

Listing 5. Defining two different representations 
of the same semantic type. 

Listing 6. Qualifying rich type fields with 
additional semantic meaning. 



5.2. RICH METADATA 

The basic workflow we described so far makes the solution 
roughly equivalent to the code-first approach with a-
posteriori metadata. However, once we have a data type 
described in the schema file, we have a strong foundation to 
start adding more metadata that can meet our design goals, 
using annotations and rich types. 

The version of Thrift used at Meta supports adding metadata 
to the basic schema definitions using annotations, which are 
similar to annotations in the Java language. Annotations 
themselves are first declared as data types with fields, and 
then used to annotate the other data. For example, we can 
annotate fields in a struct with additional metadata, such as 
description or a display name. Listing 4 shows how the 
OpenTelemetry semantic conventions for a host resource 
could be represented in the schema. 

The annotations mechanism allows us to describe very rich 
metadata about the fields, such as the types of query operators 
that should be allowed for a field, or the validation rules for 
the input data (e.g., a regular expression). The annotations 
can be used to describe not only the dimensions, but the 
measurements as well, e.g., to emphasize that a numeric field 
represents duration in milliseconds rather than seconds. 

The rich types allow us to take this even further and assign 
semantic meaning to the fields. Notice how the “name” field 
in Listing 4 is described as the short form of the host name, 
as opposed to the fully qualified name that includes the 
domain and sub-domains. This information is only encoded 
in the metadata intended for human readers. Instead, we can 
define HostName as an alias to a string type that can capture 
this additional semantics (Listing 5) and use it as the data type 
for the name field in the HostResource type.  

Listing 5 illustrates several additional benefits of this 
approach. The two rich types share the same semantic type, 
DataCenter_Host, which allows the consumers to 
recognize that even though two telemetry assets may have 
different representation of the host name field, they 
nonetheless refer to the same kind of data, so that, for 
example, we could apply host name filter to both assets 
simultaneously when querying or plotting the data. On the 
other hand, the short-form host name may not have a one-to-
one mapping to the fully qualified host names, which is a fact 
that can also be encoded in the annotation on the rich types. 
In general, we can use annotations to describe detailed 
relationships between the types, such as how to convert 
values from one representation to another. 

The other significant benefit is that these definitions of rich 
types can be easily reused across different telemetry schemas. 
In our example the description and display name annotations 
are defined on the rich type itself, so that they do not need to 
be repeated across field definitions using this type, which 

provides more consistent experience to the consumers of the 
data. 

The semantic annotations allow encoding custom meaning of 
the fields in different data sets. For example, let us assume 
that we defined rich semantic types for such dimensions as 
region, host, service. Now consider a stream of events or 
metrics produced by a service mesh about the RPC activity 
between microservices. It is not enough to have rich types for 
region, host, and service, because an RPC involves two of 
each, a source and a target. If we simply encode this aspect in 
the field names, such as source.service and 
target.service, we are back to the semantic 
conventions situations that relies on the naming of fields. 
However, with annotations we can attach this metadata 
explicitly in machine-accessible way. In Listing 6 we add a 
new annotation type OneWayMsgExchangeActor that 
allows us to distinguish between the source and target service 
IDs at the metadata level, not just the field name level. The 
new annotation is itself tagged as SemanticQualifier 
to allow the platform to recognize it as special type of 
metadata. 

Finally, the annotations can be used to capture privacy-
related metadata on the fields, such as owners and required 
access controls, retention policies, purpose and allowed 
usage policies, etc. 

5.3. EVALUATION 

We can now evaluate the proposed schema-first approach 
against our design goals. 

Design considerations 

• C0: the schema-first approach encourages engineers to 
think through the implication of adding new data to 
telemetry, such as whether it is privacy-sensitive, or 
whether the semantic type of the data already exists 
somewhere and should be reused for possible cross-asset 
correlations. 

Authoring experience 

• C1: the approach requires slightly more code (usually 
one extra line in the IDL) to emit telemetry compared to 
the code-first approach. 

• C2: deploying a change is not more complicated 
provided that the necessary automation exists. 

• C3: the Thrift IDL approach can scale when multiple 
teams own different parts of the same data set, by using 
composition of type definitions. It may require minor 
enhancements to the Thrift compiler to support flattening 
of nested structs into a single struct (similar to struct 
embedding in the Go language). 



• C4: emitting telemetry is done by interacting with the 
datatypes auto-generated from the schema definitions, 
which provides consistent authoring experience and 
shape of data, even when the emitting code is in different 
languages or located in different source repositories. In 
case of different repositories, extending the shape of 
telemetry may require more than one merge request, one 
to author the actual schema change in the repository 
where the primary schema source is defined, and the 
other to sync the changes to the schema to another repo 
(a workflow that is fully automated at Meta). 

Change management 

• C5: the approach is designed to allow evolution of 
telemetry shapes and schemas over time. The schema 
actualization service ensures that the schema changes are 
backwards compatible. 

• C6: in addition to guarding against breaking changes 
purely at the schema level, the approach can also warn 
about breaking the consumers that depend on specific 
shape of telemetry. Specifically, when consumers use 
datatypes auto-generated from Thrift IDL, we can use 
static code analysis or lineage frameworks to identify 
affected consumers. 

• C7: since the application code populates the telemetry by 
invoking setter functions on the datatypes auto-
generated from the Thrift IDL, these functions provide a 
leverage point for enforcing data validation rules, either 
at runtime, or at compile time by using strong types (if at 
all possible, in a given language). 

• C8: the approach is theoretically compatible with 
automated code changes, but we have not yet invested 
the time to integrate it with the existing codemod 
frameworks. 

Querying 

• C9: all changes to the schema end up in the metadata 
store, from where they can be retrieved by the tools and 
consumers to allow automated introspection. 

• C10: rich types and semantic annotations in the schema 
provide the consumers with semantic understanding of 
the telemetry data and its dimensions, and support 
building rich functionality, from introspection and cross-
asset filtering to machine-learning based analysis. 

6. DISCUSSION 
Access to metadata about application telemetry has many 
benefits across the whole data pipeline, from producers to 
consumers, with use cases ranging from data validation and 
change management to cross-dataset correlations and privacy 
enforcements. There are many projects in the industry that are 
trying to associate metadata with telemetry, usually by means 

of semantic conventions and schemas. This paper introduces 
a schema-first approach to capturing telemetry metadata that 
has not found its place in the observability industry so far. 
We described its implementation details and demonstrated 
that it provides better trade-offs than many of the existing 
solutions. 

The schema-first approach to application telemetry described 
in this paper is aspirational and a work-in-progress at Meta. 
While it is based on the existing solutions in the company for 
business data, it has not been applied at scale to system 
telemetry. Our analysis indicated that it can be implemented 
at Meta, but we do recognize that it has certain trade-offs, 
namely in making the authoring developer experience more 
complicated, and these trade-offs may not be acceptable in 
different organizations and engineering cultures. 

We contrasted this approach with many other solutions that 
exist in the industry. Since some of the paper authors are 
closely involved in the open-source projects like 
OpenTelemetry, a reasonable question is whether the 
schema-first approach should be attempted there. We hesitate 
to make such a recommendation at this time, because we still 
want to prove the approach at scale at Meta, and because the 
approach requires a significant level of consolidation and 
enhancements in the tooling specific to a certain developer 
experience ecosystem. For example, the centerpiece of the 
approach is authoring of schemas in Thrift IDL, which is only 
one of the competing interface languages in the industry. 
Open-source projects like OpenTelemetry aim to be 
applicable across many different technologies, so it is 
difficult for them to take a hard dependency on any specific 
IDL. 

There are areas of the schema-first solution that require 
additional design decisions and future work. We do not have 
a fully developed framework for versioning and A/B testing. 
For example, if the schema changes introduced in a merge 
request are automatically pushed to the metadata store, how 
can a merge request be tested in a staging environment or 
canary deployments before rolling out to production? The 
schema change may be backwards compatible, but if it needs 
to be reverted, it could leave the emitted telemetry data in an 
inconsistent state. This problem is not unique to our solution, 
since any data store with schematized data must deal with 
this. 

Another area that will require attention is data governance 
mechanisms. The success of our approach is predicated on 
good reuse of semantic annotations in the schema, to allow 
the consumers to see similarities between data sets. We are 
too early in the process to decide how such reuse will be 
achieved. We are starting with developing a curated set of 
data types for common infrastructure dimensions that are 
shared by many telemetry data sets (the OpenTelemetry 
semantic conventions provide a good starting point for this). 
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