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ABSTRACT
Incentive compatibility (IC) is a desirable property for any auction

mechanism, including those used in online advertising. However, in

real world applications practical constraints and complex environ-

ments often result in mechanisms that lack incentive compatibility.

Recently, several papers investigated the problem of deploying

black-box statistical tests to determine if an auction mechanism is

incentive compatible by using the notion of IC-Regret that measures

the regret of a truthful bidder. Unfortunately, most of those methods

are costly, since they require the execution of many counterfactual

experiments.

In this work, we show that similar results can be obtained using

the notion of IC-Envy. The advantage of IC-Envy is its efficiency:

it can be computed using only the auction’s outcome. In particular,

we focus on position auctions. For position auctions, we show that

for a large class of pricing schemes (which includes e.g. VCG and

GSP), IC-Envy ≥ IC-Regret (and IC-Envy = IC-Regret under mild

supplementary conditions). Our theoretical results are completed

showing that, in the position auction environment, IC-Envy can

be used to bound the loss in social welfare due to the advertiser

untruthful behavior.

Finally, we show experimentally that IC-Envy can be used as a

feature to predict IC-Regret in settings not covered by the theoreti-

cal results. In particular, using IC-Envy yields better results than

training models using only price and value features.

KEYWORDS
Position Auctions, Envy-freeness, Incentive-Compatibility Mea-
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1 INTRODUCTION
Over the past decades, online advertising has grown into a huge

industry, with many different online publishers offering impression

opportunities. Auction theory has played a major role in shaping

this ecosystem, and many ad auctions strive to be Incentive Compat-
ible (IC), which means that an advertiser achieves the best outcome

by truthfully reporting their willingness-to-pay. Despite the role

that auction theory has played, the resulting systems may not be

IC. For example, intermediaries (called Demand Side Platforms or

DSPs) first run an auction to determine the best ad among their

clients, and then pass this along to a publisher who runs their own

auction including bids from other sources. Even when both auctions

in isolation are IC, their composition is not. Furthermore, some pub-

lishers use past bids to set a reserve price (or minimum bid), and

others are moving to a pay-your-bid model entirely (which has

strong incentives to misreport willingness-to-pay) [37, 38].

Recently, there have been several works addressing the problem

of determining whether an auction is IC based on statistical tests

using only inputs and outputs of an (unobserved) auction mecha-

nism [17, 26]. This gives advertisers the power to test whether an

auction is IC without having access to the code. Feng et al. [17] use

regret [21], similar to Lubin and Parkes [28], as a way to measure

“how far” an auction is from being IC:

IC-Regreti (vi ) = max

bi
Eb−i [ui (bi ,b−i ) − ui (vi ,b−i )] , (1)

wherevi is the true value of advertiser i , bi the bid of i , b−i the bids
of other advertisers, and ui (·) the (expected) utility of i . IC-Regret
captures the difference in utility between bidding truthfully, and

the maximum utility achievable. By definition, IC mechanisms have

IC-Regret 0, while higher IC-Regret indicates a stronger incentive

to misreport.

While measuring IC is most naturally a concern for advertisers

(who cannot observe the auction mechanism directly), it is also

both important and non-trivial for the auctioneer. The auctioneer

cares about IC auctions because they admit simple optimal bidding

https://doi.org/10.1145/3366423.3380057
https://doi.org/10.1145/3366423.3380057
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strategies (namely truthful reporting), and simple bidding strate-

gies may in turn lead to lower churn of advertisers.
1
Additionally,

when auctions are not IC, bidders don’t truthfully report their value,

which may harm social welfare
2
and thus the quality of the ser-

vice provided to the advertisers. While important, it may not be

straightforward for publishers to guarantee that their auction is IC

for many different reasons: complex interaction between different

layers in the advertising ecosystem, running-time constraints, bugs

in the auction code, and so forth.

Feng et al. [17] proposed a method to determine IC-Regret for

publishers (by taking a worst-case perspective over the advertiser

value vi ). A downside of their method is that it requires many

counterfactual evaluations of the auction’s outcomes for alternative

bids. This means that the auction code needs to be run many times

over. While this may be the best thing one can do with only black-

box access to the auction mechanism, could we do better if we’re

using intermediate data from the auction mechanism?

To overcome the practical difficulties to measure IC-Regret, we

propose to use Envy [20] as a proxy for IC-Regret, by identifying

relevant classes of auction mechanisms where Envy and IC-Regret

coincide or where Envy is a good proxy for IC-Regret. So what is

Envy? Instead of comparing the advertiser’s utility against her util-

ity for alternative bids, Envy takes a single outcome, and measures

to what extend advertisers are happy with the outcome. Ad auc-

tions typically simultaneously sell multiple ad slots with varying

click-through rates [14, 42]. Let X be an expected allocation vector

(where allocation corresponds to the ad being clicked) and p be an

expected pricing vector. Envy of bidder i given the outcome (X ,p)
is:

Envyi (vi ,X ,p) = max

j

(
X j · vi − pj

)
− (Xi · vi − pi ) (2)

Envy is defined with respect to some outcome. However, in

an auction, changing ones bid may change the outcome in the

auction. Therefore, we define IC-Envy as the Envy experienced

in the outcome when a bidder bids truthfully. In the following, let

X (vi ,b−i ) is the expected allocation of all bidders and p(vi ,b−i )
be the expected payment vector of all bidders, when bidder i bids
truthfully and for bids b−i of the remaining bidders. IC-Envy is

then:

IC-Envyi (vi ) = max

j

(
X j (vi ,b−i ) · vi − pj (vi ,b−i )

)
(3)

− (Xi (vi ,b−i ) · vi − pi (vi ,b−i )) (4)

In arbitrary auction environments, IC-Envy and IC-Regret don’t

necessarily coincide. There are natural auction environments with

envy-free outcomes, that still have positive IC-Regret and vice

versa.

Example 1.1 (IC-Envy = 0, IC-Regret is positive). Consider a
single-item, first-price auction, with two bidders with values v1 =
$10 and v2 = $8 and assume bidder 1 bids truthfully. The IC-Regret

for bidder 1 is $2−ϵ for arbitrary small ϵ , as the best alternative for

1
Moreover, additional advertisers are better for revenue than being clever about devis-

ing a revenue-optimal auction mechanism, see [3] (and follow-ups).

2
While in some cases there are symmetric equilibria in which social welfare is not

harmed [42], these need not always exist and bidders may not reach equilibrium

[1, 12, 36].

bidder 1 is $8 + ϵ . However, IC-Envy is $0 as the only alternative

allocation for bidder 1 is to not receive the item.

Example 1.2 (IC-Regret = 0, IC-Envy is positive). Consider the IC
auction for a single item with 2 bidders who face different reserve

prices
3 r1 = $1 and r2 = $5. With bids b1 = b2 = $3, bidder 1

received the good at their reserve price of $1. Bidder 2 has IC-Envy

of $2, but there is no counterfactual bid that will give her positive

utility (hence IC-Regret = 0).

While in general IC-Regret and IC-Envy can be quite different,

in this paper we show IC-Regret ≤ IC-Envy for a large class of

position auction environments which includes VCG and GSP [14,

42], and under mild conditions we prove that IC-Regret = IC-Envy.

Since computing IC-Envy requires no counterfactual evaluation of

the algorithm, it can serve as an efficient certificate that IC-Regret

is low.
4
In Section 4, we also use IC-Envy to bound the loss in

social welfare due to misreports. Finally, we show empirically that

IC-Envy can be used as a feature in an estimator for IC-Regret in

auction environments beyond those for which we have theoretical

results (Section 5).

1.1 Related Work
We propose to connect IC-Envy and IC-Regret directly by defining

a large class of auction mechanisms for which IC-Envy = IC-Regret

(and a larger class where IC-Envy ≥ IC-Regret). The line of work

that’s closest in spirit aims to identify classes of auctionmechanisms

that are simultaneously envy-free and IC (in our notation: classes

for which IC-Regret = IC-Envy = 0). Feldman et al. [16] and Gold-

berg et al. [22] studied the conditions that are required in order to

have mechanisms that are efficient, truthful and envy-free and that

VCG satisfy these properties for capacitated valuation functions.

For homogeneous capacities there’s a class of mechanisms that

achieve this, while for heterogeneous capacities there is no mecha-

nisms that simultaneously achieved all 3 conditions. Cohen et al.

[7] provided a characterization based on cycle-monotonicity of the

allocation functions that are incentive-compatible and envy-free

without considering the efficiency of the algorithms.

The notion of envy-freeness was initially introduced by Varian

[41] and Foley [20]. The key property of an envy-free allocation

is that buyers prefer the bundle of goods they receive over any

other allocated bundles (given bundle prices). The notion is partic-

ularly appealing due to its connection to markets: in an envy-free

allocation, given the prices for goods, all buyers prefer to buy the

bundle that’s assigned to them. More recently, the notion of envy-

freeness has been deeply studied with a different perspective that

involves item-pricing [10, 23] and bundle-pricing [8, 15, 18]. In our

setting there is no difference between those two models. A similar

line of work focused in studying envy-free algorithms, both in the

item-pricing and the bundle pricing models, when the bidders have

budget constraints [2, 8, 10, 15, 39].

In much of the other related work, envy-freeness is taken as

an alternative solution concept to IC (e.g. [13, 15, 18, 24]) and in

3
While non-anonymous reserve prices may seem contrived, they naturally occur e.g.

for the revenue-optimal auction on non-i.i.d. bidders [31].

4
For an auctioneer who cares about incentive compatibility, false positives (i.e. high

IC-Envy but low IC-Regret) are acceptable while false negatives are not. Therefore the

inequality goes in the right direction.
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contexts outside of the auction domain (e.g. [5, 6, 19, 30]). Of par-

ticular note: Daskalakis and Syrgkanis [13] address the relation

between envy-freeness and incentive-compatibility in the context

of algorithmic learning. In particular, the authors discussed the

computational complexity of no-regret learning algorithms and

no-envy algorithms in simultaneous second price auctions. Hart-

line and Yan [24] studied the relation between envy-freeness and

incentive compatibility in revenue-maximizing prior-free mech-

anisms. Lipton et al. [27] investigated envy-free mechanisms in

the context of indivisible items with focus on the computational

complexity of finding allocations with minimum envy. Moreover,

they proved that is possible to obtain truthful mechanisms with

bounded envy. Those results have been simplified and extended by

Caragiannis et al. [4]. While this line of work is interesting, it does

not quantitatively address the relationship of envy and IC regret.

1.2 Our Contributions
This paper has four main contributions:

(1) First, in Section 3, we define a class of auction mechanisms—

which includes VCG, GSP, and GFP for position auctions—

where IC-Envy is tightly related to IC-Regret. We show that

almost all payment rules in this class have IC-Envy ≥ IC-Regret

and we give supplementary conditions under which they are

exactly equal.

(2) Secondly, in Section 4, we upperbound the social welfare

loss in terms of IC-Envy for the same sets of mechanisms

introduced in Sections 3. We show that in equilibrium, the

social welfare loss is at most 4 · IC-Envy (under a technical

condition we introduce in the section).

(3) Finally, in Section 5, we use bidding data from a major online

publisher to show that IC-Envy can be used as a feature

to learn an estimator for IC-Regret. The estimator has low

mean-squared error, and performs better than comparable

estimators that are trained using other features from the

auction like values and prices for different slots.

All missing proofs are given in the full version of the paper [9].

The extended version [9] also considers the more general Ad Types

auction environment [11] in which different ads have different

discount curves. It is shown that for a suitable generalization of

GSP it still holds that IC-Envy ≥ IC-Regret.

2 PRELIMINARIES
There are n bidders andm slots. Let I be the set of bidders and J be
an (ordered) set of slots. Each bidder i ∈ I has a valuation vector

vi = ⟨vi,1,vi,2, . . . ,vi,m⟩ that is the willingness to pay of bidder

i for each slot j, with vi,1 ≥ vi,2 ≥ . . . ≥ vi,m . Bidders are unit

demand. In the standard position auction environment, slots have

common quality factor α1 ≥ α2 ≥ . . . ≥ αm such that for each

bidder i and slot j we have vi, j = vi · α j for private value vi ∈ R of

the bidder.

The slots are allocated to the bidders by a (direct-revelation)

mechanism M. The mechanism M is defined by an allocation

function A : Rn → Nn and a payment function P : Rn → Rn .
Since bidders’ values vi are private, the mechanism solicits bids bi
to represent the values, though reports may not be truthful. Letv

be the vector representing the valuations of all the bidders and b

the vector representing the bids. After receiving b, the mechanism

M = ⟨A,P⟩ computes an outcome ⟨X ,p⟩, i.e., A(b) = X and

P(b) = p.
X describes the allocation of the slots to the bidders and p de-

scribes how much each bidder is charged for the obtained slot.

In particular, X = ⟨X1,X2, . . . ,Xn⟩ where Xi = j, if the bidder

i obtains the slot j and 0 if she does not receive any slot. And

p = ⟨p1,p2, . . . ,pn⟩ where pi ∈ R≥0 is the price that the bidder i
pays for slot Xi .

For an allocation X and a valuation vector v , the social wel-

fare of the allocation X is defined as SW (v,X ) =
∑
i ∈I viαXi .

In turn, the optimal social welfare is defined as SWOPT (v) =

maxX
∑
i ∈I viαXi . Finally, the Social Welfare Loss (SWL) is defined

as SWL(v,X ) = SWOPT (v) − SW (v,X ). When the valuation vec-

tor v is clear from the context, we will use SW (X ), SWOPT
, and

SWL(X ).

Given an outcome ⟨X ,p⟩, the utility of a bidder i isui (vi ,X ,p) =
viαXi −pi . Since the outcome of a mechanismM is a function of the

bids, and the auctions we consider are not necessarily IC, bidders

may be incentivized to report a type b different fromv in order to

produce an outcome with higher utility.

IC-Regret. IC-Regret describes the outcome for bidding truth-

fully, compared to the optimal alternative bid (given constant com-

petitionb−i ). Formally, the regret of a bidder i for bidding truthfully
compared to a specific alternative bid bi is:

ri (bi ,b−i ,vi ) = ui (vi ,A(bi ,b−i ),P(bi ,b−i ))

− ui (vi ,A(vi ,b−i ),P(vi ,b−i )),

which is used in the formal definition for IC-Regret.

Definition 2.1 (IC-Regret). The IC-Regret that bidder i experi-
ences is

5

IC-Regreti (vi ,b−i ) = max

bi ∈R+
{ri (bi ,b−i ,vi )}.

IC-Regret can be directly connected to incentive-compatibility
(IC). Indeed, a mechanismM is IC iff for all vi , b−i , and i ∈ I , we
have ri (bi ,b−i ,vi ) = 0 for all bi ∈ R

+
.

IC-Envy. Given an allocation X and payments p, Envy describes

how much a bidder prefers the allocation and price of another

buyer, compared to what she received. Since different bids may

lead to a different auction outcome, we define IC-Envyi as Envy

with respect to the allocation X and payments p when bidder i
bids truthfully. IC-Envy is some notion of fairness of the produced

outcome whereas IC-Regret measures how much the underlying

mechanism incentives misreported types.

Formally, for given an allocation X and payments p, the envy
that bidder i experiences compared to bidder j is

e
j
i (vi ,X ,p) =

(
X j (vi ,b−i ) · vi − pj (vi ,b−i )

)
(5)

− (Xi (vi ,b−i ) · vi − pi (vi ,b−i )) , (6)

and the envy of bidder i in the outcome ⟨X ,p⟩ is which is used in

the formal definition for IC-Envy in the outcome ⟨X ,p⟩:

5
Equation (1) in the introduction takes an expectation over competition b−i since the
work of Feng et al. [17] considers the auction mechanism as a black box. In our setting

(from the perspective of the auctioneer) the alternative bids are known, and we define

IC-Regret on an auction-by-auction basis.
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Definition 2.2 (IC-Envy). The IC-Envy of bidder i in the outcome

⟨A(vi ,b−i ),P(vi ,b−i )⟩:

IC-Envyi (vi ,b−i ) = max

j ∈I
{e

j
i (vi ,A(vi ,b−i ),P(vi ,b−i ))}.

Note that computing IC-Envy requires one single execution of

the auction whereas the computation of IC-Regret requires the

execution of the auction for multiple bid values of each bidder.

Along the paper we often use IC-Regret ≤ IC-Envy with the

meaning that IC-Regreti (vi ,b−i ) ≤ IC-Envyi (vi ,b−i ) holds for all
bidder i ∈ I .

3 POSITION AUCTION ENVIRONMENTS
As stated before, IC-Envy and IC-Regret measure different things:

IC-Envy provides somemeasure of fairness of the outcome, whereas

IC-Regret measures the incentive-compatibility of the mechanism.

In this section, we study the relationship between IC-Envy and

IC-Regret for position auctions that are widely used in search and

feed advertising.
6
In order to characterize the class of position auc-

tions that have IC-Envy ≥ IC-Regret, we introduce the definition

of regular mechanism.

Definition 3.1 (RegularMechanisms for Position Auctions). Amech-

anismM is called a regular mechanism for position auctions if there
exist a matrix An×m ∈ Rn×m

≥0
depending on the quality vector

⟨α1, . . . ,αm⟩ such that for every bid vector b the following condi-

tions hold:

(1) Slots are assigned in order of non-increasing α j to bidders
ordered by non-increasing bid value bi . Ties are broken lexi-

cographically.

(2) The payment of bidder i is defined as pi =
∑n
j=1 ai, j ·bj with

ai, j ∈ A.
(3) The mechanism is individually rational (IR), i.e., pi ≤ αibi .

This definition includes several widely used auction mechanisms,

as for example:

• VCG: ai, j = 0 for j = 1, . . . , i , and ai, j = α j−1 − α j for
k = i + 1, . . . ,n.

• GSP: ai, j = 0 for j = 1, . . . , i , ai,i+1 = αi+1, and ai, j = 0 for

j = i + 2, . . . ,n.
• GFP: ai, j = 0 for j = 1, . . . , i − 1, ai,i = αi , and ai, j = 0 for

j = i + 1, . . . ,n.

First of all, note the individual rationality of a regular mecha-

nisms for position auctions implies that

Lemma 3.2. Regular mechanisms for position auctions must have
ai, j = 0 for all j < i .

Proof. We prove by contraposition: If ai, j > 0 for some j < i ,
then consider bids b1 = ... = bj = 1 and bj+1 = .... = bn = 0 and

α1 = ... = α j = 1 and α j+1 = .... = αn = 0.We havepi = ai, jbj > 0,

while αibi = 0, hence pi > αibi which violates IR. □

We next provide conditions for a regular mechanism in order to

have IC-Envy ≤ IC-Regret.

6
In display advertising it is more common to sell ad slots one-by-one, which is a

special case of position auctions, though one which is arguably mathematically less

interesting.

Theorem 3.3. For a regular mechanism for position auctions, for
each bidder i with true value vi and all possible bid profiles b−i , if

B1 ai,i = 0, for each bidder i ,

then it must hold that

A1 IC-Envyi (vi ,b−i ) ≥ IC-Regreti (vi ,b−i ).

Proof. We first prove thatB1 and regularity imply IC-Envyi (vi ,b−i ) ≥
IC-Regreti (vi ,b−i ) if bi > vi . If bidder i is still assigned to slot i
with bid bi > vi , condition B1 (ai,i = 0) implies that price pi is not
increased. Assume otherwise bidder i wins a higher slot j < i with
bid bi . Price pj =

∑n
k=j+1 aj,k · bk charged to bidder i is computed

on the basis of a monotonically higher set of bids, since coefficients

aj,k are non-negative and aj, j = 0. This implies that the counter-

factual price must be higher or equal than the price computed for

slot j with truthful bid bi = vi . Indeed, the corresponding price pj
is computed on a bid vector

(
bj , . . . ,bi−1,bi+1, . . . ,bn

)
that weakly

dominates term by term the bid vector

(
bj+1, . . . ,vi ,bi+1 . . . ,bn

)
.

Let us now consider the case bi < vi . From condition B1 we

immediately derive that pi is not changed if bidder i is still allo-
cated to the same slot i , and therefore there is no positive regret.

Assume bid bi is such that bidder i is allocated slot j > i . We ob-

serve that e
j
i (vi ,X ,p) = ri (bi ,b−i ,vi ) since the computation of the

price for slot j on both (vi ,b−i ) and (bi ,b−i ) is based on bid vector

(bj+1, . . . ,bn ). □

Ideally, we would like to state condition A1 of Theorem 3.3

with equality in order to provide with IC-Envy the same exact

information of IC-Regret. The two following obstacles may pre-

vent the possibility of proving this stronger claim: i) Bidder i bid-
ding a value bi > vi could obtain a slot j < i with a payment

pj (bi ,b−i ) > pj (vi ,b−i ). ii) Bidder i may not be able to obtain a

slots j > i by bidding some value bi < vi if there are at two

agents with identical bids since ties are broken lexicographically.

In both cases we may have IC-Envy > IC-Regret. However, in the

next theorem we state additional realistic conditions that imply

IC-Envyi (vi ,b−i ) = IC-Regreti (vi ,b−i ).

Theorem 3.4. For a regular mechanism for position auctions, for
each bidder i with true value vi and all possible bid profiles b−i , if

B1 ai,i = 0, for each bidder i , and
B2 pj − pj+1 ≥ (α j − α j+1)bj+1, for j = 1, . . . ,n − 1, and
B3 all bids b1, . . . ,bn are distinct

then it must hold that

A2 IC-Envyi (vi ,b−i ) = IC-Regreti (vi ,b−i ).

The two additional conditions B2 and B3 allow to remove the

two obstacles mentioned above. The reason of condition B2 is to
enforce a difference in payment between any two slots i and j < i
in order to avoid any envy from bidder i towards bidder j. The
reason of condition B3 is to allow bidder i to obtain all slots j > i
by posting a suitable bid bi < vi .

Proof. We first prove that B2 implies A2 if bidder i increases
her bid and obtain a higher slot j < i . Indeed, for all slots j < i
that are obtained with some value bi < vi , since the increase in
payment is at least as large as the increase in utility, we have that
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the following expression for the envy of bidder i on slot j:

e
j
i (vi ,X ,p) =

(
α j · vi − pj

)
− (αi · vi − pi )

=
(
α j − αi

)
vi − (pj − pi ) ≤ 0,

with the last inequality implied by

pj − pi =
i−1∑
k=j

(pk − pk+1) ≥
i−1∑
k=j

(αk − αk+1)bk+1

≥

i−1∑
k=j

(αk − αk+1)vi =
(
α j − αi

)
vi

We conclude the first part of the proof by showing that regret

is upper bounded by envy for any bid bi ≥ vi that makes bidder

i to win a higher slot j < i . Indeed, the price pj =
∑n
k=j+1 aj,k ·

bk charged to bidder i is based on a monotonically higher set of

bids, since bid vector

(
bj , . . . ,bi−1,bi+1, . . . ,bn

)
dominates term

by term the bid vector

(
bj+1, . . . ,bn

)
. We have therefore proved

ri (bi ,b−i ,vi ) ≤ e
j
i (vi ,X ,p) ≤ 0 for any bi > vi that gives bidder i

a slot j ≤ i .
We have established so far that envy for bidder i can only be

positive for a slot j > i and regret can only be positive if bid bi
is decreased. Assume bid bi is decreased in a way that bidder i
is allocated to a slot j > i . We have already shown in the proof

of Theorem 3.3 that e
j
i (vi ,X ,p) = ri (bi ,b−i ,vi ). Moreover, given

condition B3, all slots j > i can be obtained from bidder i by de-

creasing her bid and therefore IC-Envy(vi ,b−i ) = ri (bi ,b−i ,vi ) for
all values bi < vi .

□

The conditions of Theorem 3.3 and Theorem 3.4 hold for mech-

anisms like VCG, GSP, and any combination of the two. For The-

orem 3.4 we additionally require that all bids are different and

this can be obtained through a small perturbation of the bids.

Condition B1 is clearly true for the two mechanisms. Condition

B2 is true with pi − pi+1 = (αi − αi+1)bi+1 for VCG and with

pi − pi+1 = αibi − αi+1bi+1 ≥ (αi − αi+1)bi+1 for GSP. On the

contrary, even the first condition of the theorems is violated for

GFP.

4 MEASURING SOCIAL WELFARE LOSS
WITH IC-ENVY

We proved in Section 3 that IC-Envy is a good proxy for IC-Regret

for a wide class of mechanisms for position auctions including GSP

and VCG. Mechanisms like GSP are non truthful and therefore suf-

fer a loss in efficiency that has been quantified in previous works

[29, 40] by studying the price of anarchy of the equilibria induced

by the GSP mechanism. A natural question we address is whether

efficiency loss can also be quantified by measuring IC-Envy instead

of analyzing the equilibria of the mechanism. In this section we pos-

itively answer this question by providing an estimation of the Social

Welfare Loss based on the analysis of IC-Envy for the mechanisms

characterized in Section 3.

In the following we show a direct connection for GSP between

Social Welfare Loss and the total IC-Envy of the bidders. This con-

nection will be established under the assumption that bidding bi is

not worse for bidder i than bidding truthfully. We remark that this

is a very mild and realistic assumption since bidding truthfully is

always the simplest alternative for the advertiser. This implies that

we do not require the bidders to play a min-regret strategy, neither

we assume the bid vector b to be a Nash Equilibrium. Finding a

min-regret strategy is indeed computationally expensive and may

require a large number of counterfactual experiments.

We prove the connection between total envy and social welfare

loss by resorting to the notion of semi-smoothness, that has been
introduced [29] with the goal of studying the efficiency of a position

auctions off equilibrium.

Let Regreti (bi ,b−i ) be the maximum regret that the bidder i can
experience with respect to the bid bi , i.e.,

Regreti (bi ,b−i ) = max

b′i ∈R≥0
{ri (b

′
i ,b−i ,bi )}.

We prove the following claim:

Claim 4.1. Given a valuation profilev and a bid profile b, then it
holds:

∑
i ∈I Regreti (bi ,b−i ) ≥

1

2
SWOPT − 2SW (b).

The next claim show that for bidder i that the regret at vi is not
smaller than the regret at bi .

Claim 4.2. Regreti (bi ,b−i ) ≤ IC-Regreti (vi ,b−i )

We therefore conclude:

Theorem 4.1. If SWOPT (v) ≥ 8SW (b) then∑
i
IC-Envyi ∈I (vi ,b−i ) ≥

1

4

SWL(b)

.

Proof. The proof follows from Claim 4.1 and Claim 4.2:∑
i ∈I

IC-Envyi (vi ,b−i ) ≥
∑
i ∈I

Ri (bi ,b−i )

≥
1

2

SWOPT (v) − 2SW (b) ≥
1

4

SWOPT (v)

≥
1

4

SWL(b),

with the second to last inequality following from SWOPT (v) ≥

8SW (b). □

The conclusion that we draw from the previous theorem is that

either the social welfare loss is relatively small or the social welfare

loss is away from the total envy for at most a constant multiplicative

factor. We remark that the total envy is measured with one single

execution of the mechanism.

5 USING ENVY AS A FEATURE
In Sections 3 we showed that for reasonably large classes of mech-

anisms, IC-Regret can be expressed in terms of IC-Envy and the

two quantities are equal when all bids are different. In this section

we move beyond linear relationships between envy and regret, and

show that using envy as a feature can lead to better ML algorithms.

In particular, we’ll show that we can predict regret with reasonable

accuracy in auction environments that are far more general than

the ones discussed on Section 3.
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5.1 Using Envy to Predict Regret
5.1.1 Experimental Setup. Auction Environment. We look at auc-

tions with 5 slots, where different bidders have different monoton-

ically decreasing discount curves over the slots (cf. the Ad Types

model in [9, 11]). In this setting, not all ads can target all slots (as a

consequence of the different discount curves, not by assumption),

and the greedy allocation algorithm is no longer optimal. The auc-

tion mechanism that we consider use the greedy allocation (for

each slot from highest to lowest, assign the slot to the unassigned

ad with the highest discounted value). The goal is to show that

IC-Envy is useful even outside the setting covered by the theory.

We consider 2 pricing rules:

• Generalized Second Price (GSP). The discounted value of

the next highest bidder, i.e. during the greedy algorithm, the

next-highest value ad.

• Externality pricing.
7
The social welfare loss of other buyers

due to the presence of buyer i .

Datasets.We generate the datasets by drawing bids from a log-

normal distribution
8
and using 3 classes of bidders with geometric

discount curves with parameters α1 = 0.9,α2 = 0.7,α3 = 0.5. For

each bidder in an auction, a datapoint corresponds to the envy

profile (meaning for each of the 5 slots, the unclamped, possibly

negative, envy) and the label is the regret.

Baseline.We compare the performance of the ML models trained

on envy, with models that were trained using the (value, price)

profile (meaning for each slot, what is the discounted value, and

what is the current slot price).

Implementation. We use scikit-learn [33] to train the different

models. In particular we use support vector regression (SVR) with

the RBF kernel; gradient-boosted regression trees (GBRT) with

least-squares loss function, learning rate of 0.1, and 100 trees; and

neural nets (NN) with 2 hidden layers (of 100, and 20 nodes each)

and Adam solver [25].

5.1.2 Results. Figure 1 shows the training and cross-validation

mean-squared error (MSE) as a function of the number of training

samples for the GBDT. The MSE quickly decreases to about 0.02

after 30K iterations and remains relatively stable after that.

So using envy, we can construct a model that accurately pre-

dicts regret. To show that envy uniquely does this compared to

reasonable benchmarks, we compare it against models that were

trained using price and discounted value for each slot as features;

the results are in Table 1. The models here are trained using 100K

datapoints, the point being not to train as accurate as possible of a

model, but rather to compare the performance of models trained

on different features given an equal amount of data. Across all 3

models, the regressor trained on the envy feature alone does better

than one that is trained on both the values and prices for slots. This

remains qualitatively true for smaller training data sets as well.

None of the regressors in the table are necessarily great, but the

goal here is not to tweak a regressor to perform well; rather it is to

7
If the allocation algorithm optimized social welfare, then externality pricing would be

VCG pricing, and the resulting auction would have 0 envy and 0 regret. Since greedy

isn’t optimal, generally both envy and regret are positive.

8
Real-world bids in online auctions typically follow a log-normal distribution, see e.g.

[32].

Figure 1: The training and validation MSE of the GBDT
model on GSP data as a function of the number data points
used to train the model.

R2
Price and Value R2

Envy

SVR 55.9% 78.4%

GBRT 46.8% 84.4%

NN 77.1% 86.2%

Table 1: Comparing using price and value as features vs. us-
ing envy as features across a range of models trained on
100K datapoints.

show that using envy as a feature gives better results across a wide

variety of models without tuning the model for this particular case.

6 CONCLUSIONS
In this paper we proposed to use IC-Envy to give insight in an ad

auction in fourways. First, we defined a class of auctionmechanisms

for position auctions—which includes VCG, GSP, and GFP—where

IC-Envy and IC-Regret are tightly related. For this class we gave

necessary and sufficient conditions for IC-Envy to upperbound

IC-Regret and mild supplementary conditions under which they

are exactly equal. Secondly, we upperbounded the social welfare

loss in terms of IC-Envy for the same set of mechanisms. We show

that the social welfare loss is at most 4 · IC-Envy (under a technical

condition we introduce in the section). Finally, we used bidding

data from a major online publisher to show that IC-Envy can be

used as a feature to learn an estimator for IC-Regret. The estimator

has low MSE, and performs better than comparable estimators that

are trained using other features from the auction like values and

prices for different slots. In the extended version of the paper [9] we

also consider the Ad Types setting, with multiple discount curves,

and show that a suitable generalization of GSP (as well as VCG)

continue to have IC-Envy ≥ IC-Regret. For future work, we plan

to extend our study in case of bidders with different ad types to

monotonic anonymous prices such that IC-Envy ≥ IC-Regret.
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