
Analysis of HDFS Under HBase: A Facebook Messages Case Study

Tyler Harter, Dhruba Borthakur†, Siying Dong†, Amitanand Aiyer†,
Liyin Tang†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison † Facebook Inc.

Abstract

We present a multilayer study of the Facebook Mes-

sages stack, which is based on HBase and HDFS. We

collect and analyze HDFS traces to identify potential im-

provements, which we then evaluate via simulation. Mes-

sages represents a new HDFS workload: whereas HDFS

was built to store very large files and receive mostly-

sequential I/O, 90% of files are smaller than 15MB and

I/O is highly random. We find hot data is too large to

easily fit in RAM and cold data is too large to easily fit

in flash; however, cost simulations show that adding a

small flash tier improves performance more than equiv-

alent spending on RAM or disks. HBase’s layered de-

sign offers simplicity, but in trade for performance; our

simulations show that network I/O can be halved if com-

paction bypasses the replication layer. Finally, although

Messages is read-dominated, several features of the stack

(i.e., logging, compaction, replication, and caching) am-

plify write I/O, causing writes to dominate disk I/O.

1 Introduction

Large-scale distributed storage systems are exceedingly

complex and time consuming to design, implement, and

operate. As a result, rather than cutting new systems

from whole cloth, engineers often opt for layered ar-

chitectures, building new systems upon already-existing

ones to ease the burden of development and deployment.

Layering, as is well known, has many advantages [24].

For example, construction of the Frangipani distributed

file system [29] was greatly simplified by implementing

it atop Petal [18], a distributed and replicated block-level

storage system. Because Petal provides scalable, fault-

tolerant virtual disks, Frangipani could focus solely on

file-system level issues (e.g., locking); the result of this

two-layer structure, according to the authors, was that

Frangipani was “relatively easy to build.” [29].

Unfortunately, layering can also lead to problems, usu-

ally in the form of decreased performance, lowered reli-

ability, or other related issues. For example, Denehy et

al. show how naı̈ve layering of journaling file systems

atop software RAIDs can lead to data loss or corrup-

tion [4]. Similarly, others have argued about the general

inefficiency of the file system atop block devices [9].

In this paper, we focus on one specific, and increas-

ingly common, layered storage architecture: a distributed

database (HBase, derived from BigTable [2]) atop a dis-

tributed file system (HDFS [26], derived from the Google

File System [10]). Our goal is to study the interaction of

these important systems, with a particular focus on the

lower layer; thus, our highest-level question: is HDFS

an effective storage backend for HBase?

To derive insight into this hierarchical system, and

thus answer this question, we trace and analyze it under a

popular workload: Facebook Messages (FM) [19]. FM is

a messaging system that enables Facebook users to send

chat and email-like messages to one another; it is quite

popular, handling millions of messages each day. FM

stores its information within HBase (and thus, HDFS),

and hence serves as an excellent case study.

To perform our analysis, we first collect detailed

HDFS-level traces over an eight-day period on a subset

of machines within a specially-configured shadow clus-

ter. All FM traffic is mirrored to this shadow cluster for

purposes of testing new system versions; here, we utilize

the shadow to collect detailed HDFS traces. We then

analyze said traces (which includes over 50TB of I/O

at the HDFS level), comparing results to previous stud-

ies of HDFS under more traditional MapReduce work-

loads [13, 15, 22, 23].

To complement to our analysis, we also perform nu-

merous simulations of various caching, logging, and

other architectural enhancements and modifications.

Through simulation, we can explore a range of “what if?”

scenarios, and thus gain deeper insight into the efficacy

of the layered storage system.

Overall, we derive numerous insights, some expected

and some surprising, from our combined analysis and

simulation study. From our analysis, we find that HDFS

receives an 79/21 read/write workload; however, once

accounting for caching and the fact that writes are triply

replicated, the final load placed on local disks is over half

writes. Whereas most read traffic services client requests

directly, write traffic is dominated by HBase logging and

compaction; specifically, “true” write I/O (data written

by clients) represents only 1.6 TB of the total I/O of the

workload, but logging accounts for roughly 16 TB, and

compaction roughly another 27 TB, thus increasing the

write load nearly 30× overall. Finally, we find that most

files within HDFS are small; 90% are less than 15 MB.

1

From our simulations, we further extract the follow-

ing conclusions. We find that caching at the DataNodes

is still (surprisingly) of great utility; even at the last layer

of the storage stack, a reasonable amount of memory per

node (e.g., 30 GB) can significantly reduce read load. We

also find that a “no-write allocate” policy generally per-

forms best, and that higher-level hints regarding writes

only provide modest gains. Further analysis shows the

utility of server-side flash caches (in addition to RAM).

Finally, we evaluate the effectiveness of more sub-

stantial HDFS architectural changes, aimed at improv-

ing write handling: local compaction and combined

logging. Local compaction performs compaction work

within each replicated server, instead of reading and writ-

ing data across the network; the result is a 2.7× reduc-

tion in network I/O. Combined logging consolidates logs

from multiple HBase RegionServers into a single stream,

thus reducing log-write latencies by a factor of 6x with-

out hurting other types of I/O.

The rest of this paper is organized as follows. First,

a background section describes HBase and the storage

architecture of Messages (§2). Then we describe our

methodology for tracing, analysis, and simulation (§3).

We then present our analysis results (§4), evaluate ways

to reduce the cost of layering (§5), and make a case for

adding a flash tier to the storage stack (§6). Finally, we

discuss related work (§7) and conclude (§8).

2 Background

We now describe the HBase sparse-table abstraction

(§2.1) and the overall FM storage architecture (§2.2).

2.1 Versioned Sparse Tables

HBase, like BigTable [2], provides a versioned sparse-

table interface, which is much like an associative array,

but with two major differences: (1) keys are ordered,

so lexicographically adjacent keys will be stored in the

same area of physical storage, and (2) keys have seman-

tic meaning which influences how HBase treats the data.

Keys are of the form row:column:version. A row may

be any byte string, while a column is of the form fam-

ily:name. While both column families and names may be

arbitrary strings, families are typically defined statically

by a schema while new column names are often created

during runtime. Together, a row and column specify a

cell, for which there may be many versions.

A sparse table is sharded along both the row and col-

umn dimensions. Rows are grouped into regions, which

are responsible for all the rows within a given row-key

range. Data is sharded across different machines with re-

gion granularity. Regions may be split and re-assigned

to machines with a utility or automatically upon reboots.

Columns are grouped into families so that the applica-

tion may specify different policies for each group (e.g.,

what compression to use). Families also provide a local-

ity hint: HBase clusters together data of the same family.

2.2 Messages Architecture

Users of FM interact with a web layer, which is backed

by an FM application cluster, which in turn stores data

in a separate HBase cluster. The application cluster ex-

ecutes FM-specific logic and caches HBase rows, but

HBase itself is responsible for persisting data. Large ob-

jects (e.g., message attachments) are an exception; these

are stored in Haystack [27] because HBase is inneficient

for large data (§4.1). This design applies Lampson’s ad-

vice to “handle normal and worst case separately” [17].

HBase stores its data in HDFS [26], a distributed file

system which resembles GFS [10]. HDFS triply repli-

cates data in order to provide availability and tolerate

failures. These properties free HBase to focus on higher-

level database logic. Because HBase stores all its data in

HDFS, the same machines are typically used to run both

HBase and HDFS servers, thus improving locality. These

clusters have three main types of machines: an HBase

master, an HDFS NameNode, and many worker ma-

chines. Each worker runs two servers: an HBase Region-

Server and an HDFS DataNode. HBase clients use the

HBase master to map row keys to the one RegionServer

responsible for that key. Similarly, an HDFS NameNode

helps HDFS clients map a pathname and block offset to

the three DataNodes with replicas of that block.

3 Methodology

We now discuss our tracing framework (§3.1), trace col-

lection and analysis (§3.2), modeling and simulation

(§3.3), validity (§3.4), and confidentiality (§3.5).

3.1 Tracing Framework: HTFS

Prior Hadoop trace studies [3, 15] typically analyze

MapReduce, NameNode, or DataNode logs, which

record course-grained file events (e.g., creates and

opens), but lack details about individual requests (e.g.,

sizes, offsets, and latencies). For our study, we build a

new tracing framework, HTFS (Hadoop Trace File Sys-

tem) which collects these details, thus enabling deeper

analysis and simulation. Some data, though (e.g., the

contents of a write), is not recorded; this makes traces

smaller and protects user privacy.

HTFS extends the HDFS client library. The library is

designed to allow the arbitrary composition of layers to

obtain the desired feature set (e.g., a checksumming layer

may be used). FM deployments typically have two lay-

ers: one for standard interactions with the NameNode

and DataNodes, and one for fast failover (i.e., Avatar

[5]). HDFS clients (e.g., RegionServers) can record I/O

by composing HTFS with other layers. HTFS can trace

2

what-ifs

HDFS
traces

HBase

HDFS

Local store

HBase+HDFS

Actual stack

local traces
(inferred)

what-ifs

Model

Model

Local storeMR Analysis Pipeline

analysis results simulation results

Figure 1: Tracing, Analysis, and Simulation.

over 40 HDFS calls and is publicly available along with

the Facebook Hadoop branch.1

3.2 Trace Collection and Analysis

We collect our traces on a specially configured shadow

cluster that receives the same requests as a production

FM cluster. Facebook often uses shadow clusters to test

new code before broad deployment. By tracing in an

HBase/HDFS shadow cluster, we were able to study the

real workload without imposing overheads on real users.

For our study, we randomly selected nine worker ma-

chines, configuring each to use HTFS.

We collected traces for 8.3 days starting, June 7, 2013.

We collected 116GB of gzip-compressed traces, repre-

senting 5.2 billion recorded events and 71.3TB of HDFS

I/O. The machines each had 32 Xeon(R) CPUs and 48GB

of RAM, 16.4GB of which was allocated for the HBase

cache (most memory is left to the file-system cache,

as attempts to use larger caches in HBase cause JVM

garbage-collection stalls). The HDFS workload is the

product of a 60/34/6 get/put/delete ratio for HBase.

As Figure 1 shows, the traces enable both analysis and

simulation. We analyzed our traces with a pipeline of 10

MapReduce jobs, each of which transforms the traces,

builds an index, shards events, or outputs statistics. Com-

plex dependencies between events require careful shard-

ing for correctness. For instance, a stream-open event

and a stream-write event must be in the same compute

shard in order to correlate I/O with file type. Further-

more, sharding must address that fact different paths may

refer to the same data (due to renames).

3.3 Modeling and Simulation

We evaluate changes to the storage stack via simulation.

Our simulations are based on two models, illustrated in

Figure 1: a model which determines how the HDFS I/O

translates to local I/O and a model of local storage.

How HDFS I/O translates to local I/O depends on sev-

eral factors, such as prior state, replication policy, and

1https://github.com/facebook/hadoop-20/

blob/master/src/hdfs/org/apache/hadoop/hdfs/

APITraceFileSystem.java

configurations. Making all these factors match the actual

deployment would be difficult, and modeling what hap-

pens to be the current configuration is not particularly

interesting. Thus, we opt for a model which is easy to

understand and plausible (i.e., it reflects a hypothetical

policy and state which could reasonably occur).

Our model assumes the HDFS files in our traces are

stored by nine DataNodes which co-reside with the nine

RegionServers we traced. The data for each Region-

Server is replicated to one co-resident and two remote

DataNodes. HDFS file blocks are 256MB in size; thus,

when a RegionServer writes a 1GB HDFS file, our model

translates that to the creation of twelve 256MB local files

(four per replica). Furthermore, 2GB of network reads

are counted for the remote replicas. This simplified repli-

cation could lead to errors for load balancing studies, but

we believe little generality is lost for caching simula-

tions and our other experiments. In production, all the

replicas of a RegionServer’s data may be remote (due to

region re-assignment), causing additional network I/O;

however, long-running FM-HBase clusters tend to con-

verge over time to the pattern we simulate.

The HDFS+HBase model’s output is the input for our

local-store simulator. Each local store is assumed to have

an HDFS DataNode, a set of disks (each with its own

file system and disk scheduler), a RAM cache, and pos-

sibly an SSD. When the simulator processes a request, a

balancer module representing the DataNode logic directs

the request to the appropriate disk. The file system for

that disk checks the RAM and flash caches; upon a miss,

the request is passed to a disk scheduler for re-ordering.

The scheduler switches between files using a round-

robin policy (1MB slice). The C-SCAN [25] policy is

then used to choose between multiple requests to the

same file. The scheduler dispatches requests to a disk

module which determines latency. Requests to differ-

ent files are assumed to be distant, and so require a

10ms seek. Requests to adjacent offsets of the same

file, however, are assumed to be adjacent on disk, so

blocks are transferred at 100MB/s. Finally, we as-

sume some locality between requests to non-adjacent

offsets in the same file; for these, the seek time is

min{10ms, distance/(100MB/s)}.

3.4 Simulation Validity

We now address three validity questions: does ignoring

network latency skew our results? Did we run the our

simulations long enough? Are simulation results from a

single representative machine meaningful?

First, we explore our assumption about constant net-

work latency by adding random jitter to the timing of

requests and observing how important statistics change.

Table 1 shows how much error results by changing re-

quest issue times by a uniform-random amount. Errors

3

https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java

statistic baseline 1 5 10 -2 -4 median
FS reads MB/min
FS writes MB/min
RAM reads MB/min
RAM writes MB/min
Disk reads MB/min
Disk writes MB/min
Net reads MB/min
Disk reqs/min
 (user-read)
 (log)
 (flush)
 (compact)
Disk queue ms
 (user-read)
 (log)
 (flush)
 (compact)
Disk exec ms
 (user-read)
 (log)
 (flush)
 (compact)

576
447
287
345
345
616
305

275.1K
65.8K

104.1K
4.5K

100.6K
6.17
12.3
2.47
5.33
6.0

0.39
0.84
0.26
0.15
0.24

0.0
0.0
-0.0
0.0
-0.0
-0.0
0.0
0.0
0.0
0.0
0.0
-0.0
-0.4
0.1
-1.3
0.3
-0.6
0.1
-0.1
0.4
-0.3
-0.0

0.0
0.0
0.0
-0.0
0.0
1.3
0.0
0.0
-0.0
0.0
0.0
-0.0
-0.5
-0.8
-1.1
0.0
0.0
1.0
-0.5
3.3
0.7
2.1

0.0
0.0
0.0
-0.0
0.0
1.9
0.0
0.0
-0.0
0.0
0.0
-0.0
-0.0
-1.8
0.6
-0.3
2.0
2.5
-0.7
6.6
3.2
5.2

-3.4
-7.7
-2.6
-3.9
-3.9
-5.3
-8.7
-4.6
-2.9
1.6
1.2

-12.2
-3.2
-0.2
-4.9
-2.8
-3.5
1.0
-0.0
-2.1
-1.1
4.0

-0.6
-11.5
-2.4
1.1
1.1
-8.3
-18.4
-4.7
-0.8
1.3
0.4

-13.6
0.6
2.7
-6.4
-2.6
2.5
2.0
-0.1
-1.7
-0.9
4.8

-4.2
-0.1
-6.2
-2.4
-2.4
-0.1
-2.8
-0.1
-4.3
-1.0
-1.3
-0.1
-1.8
1.7
-6.0
-1.0
-6.4
-1.4
-1.2
0.0
-0.8
-0.3

jitter ms finish day sample

Table 1: Statistic Sensitivity. The first column group

shows important statics and their values for a representative

machine. Other columns show how these values would change

(as percentages) if measurements were done differently. Low

percentages indicate a statistic is robust.

are very small for 1ms jitter (at most 1.3% error). Even

with a 10ms jitter, the worst error is 6.6%. Second, in

order to verify that we ran the experiments long enough,

we measure how the statistics would have been different

if we had finished simulation 2 or 4 days earlier. The

differences are worse than for jitter, but are still usually

small, and are at worst 18.4% for network I/O.

Finally, we evaluate whether it is reasonable to pick

a single representative instead of doing our experiments

across all machines (experiments for a representative

alone take about 3 days total on a 24-core machine with

72GB of RAM). While most of our results are based

on a representative, in this case we simulated all nine

machines for comparison. We report the difference be-

tween statistics for the representative and the median of

the statistics for all the machines. Differences are quite

small and are never greater than 6.4%.

3.5 Confidentiality

In order to protect user privacy, our traces only contain

the sizes of data (e.g., request and file sizes), but never

actual data contents. Our tracing code was carefully re-

viewed by Facebook employees to ensure compliance

with Facebook privacy commitments. We also avoid pre-

senting commercially-sensitive statistics, such as would

allow estimation of the number of users of the service.

While we do an in-depth analysis of the I/O patterns on

a sample of machines, we do not disclose how large the

sample is as a fraction of all the FM clusters. Much of

the architecture we describe is open source.

HDFS (-overheads)
47TB, R/W: 99/1

HDFS
71TB, R/W: 79/21compact

LO
G

Local FS
101TB, R/W: 55/45R1 (replica 1) R1 R2 R3

Disk
97TB, R/W: 36/64

cache
misses

Reads Writes

M
ea

su
re

d
S

im
ul

at
ed

Figure 2: I/O across layers. Black sections represent

reads and gray sections represent writes. The top two bars in-

dicate HDFS I/O as measured directly in the traces. The bottom

two bars indicate local I/O at the file-system and disk layers as

inferred via simulation.

4 Workload Behavior

We now characterize the FM workload with four ques-

tions: what are the major causes of I/O at each layer of

the stack (§4.1)? How much I/O and space are required

by different types of data (§4.2)? How large are files, and

does file size predict file lifetime (§4.3)? And do requests

exhibit patterns such as locality or sequentiality (§4.4)?

4.1 Multilayer Overview

We begin by considering the number of reads and writes

at each layer of the stack in Figure 2. At a high level, FM

issues put() and get() requests to HBase. put data

accumulates in buffers, which are occasionally flushed

to HFiles (HDFS files containing sorted key-value pairs

and indexing metadata). get requests consult the write

buffers as well as the appropriate HFiles in order to re-

trieve the most up-to-date value for a given key. This core

I/O (put-flushes and get-reads) is shown in the first bar

of Figure 2; the 47TB of I/O is 99% reads.

In addition to the core I/O, HBase also does log-

ging (for durability) and compaction (to maintain a read-

efficient layout) as shown in the second bar. Writes

account for most of these overheads, so the R/W

(read/write) ratio decreases to 79/21. Flush data is com-

pressed but log data is not, so logging causes 10x more

writes even though the same data is both logged and

flushed. Preliminary experiments with log compression

[28] have reduced this ratio to 4x. Flushes, which can

be compressed in large chunks, have an advantage over

logs, which must be written as puts arrive. Compaction

causes about 17x more writes than flushing does, indi-

cating that a typical piece of data is relocated 17 times.

FM stores very large objects (e.g., image attachments)

in Haystack [16] for this reason. FM is a very read-

heavy HBase workload within Facebook, so it is tuned to

compact aggressively. Compaction makes reads faster by

merge-sorting many small HFiles into fewer big HFiles,

4

Read only
Read+written
Written only
Untouched

HDFS (-overheads)
3.9TB footprint

Read only
Read+written
Written only
UntouchedHDFS

16.3TB footprintLO
G

C
O

M
P

Read only
Read+written
Written only
Untouched

Local FS/Disk
120TB footprintR1 R2 R3 cold data

M
ea

su
re

d
S

im
+

df

Figure 3: Data across layers. This is the same as Figure 2

but for data instead of I/O. COMP is compaction.

reducing the number of files gets must check.

FM tolerates system failures by replicating data

through HDFS. Thus, writing an HDFS block involves

writing three local files and two network transfers. The

third bar of Figure 2 shows how this write tripling fur-

ther reduces the R/W ratio to 55/45. OS caching prevents

some file-system reads from hitting disk. With a 30GB

LRU cache, the 56TB of reads at the file-system level

cause only 35TB of reads at the disk level, as shown in

the fourth bar of Figure 2. Also, very small file-system

writes cause 4KB-block disk writes, so writes are in-

creased at the disk level. Because of these factors, writes

represent 64% of disk I/O.

Figure 3 gives a similar layered overview, but for data

rather than I/O. The first bar shows 3.9TB of HDFS data

received some core I/O during tracing (data deleted dur-

ing tracing is not counted). Nearly all this data was read

and a small portion written. The second bar also includes

data which was accessed only by non-core I/O; non-core

data is several times bigger than core data. The third

bar shows how much data is touched at the local level

during tracing. This bar also shows untouched data; we

estimate2 this by subtracting the amount of data we infer

was touched due to HDFS I/O from the disk utilization

(measured with df). Most of the 120TB of data is very

cold; only a third is accessed over the 8-day period.

Conclusion: FM is very read-heavy, but logging,

compaction, replication, and caching amplify write I/O,

causing writes to dominate disk I/O. We also observe that

while the HDFS dataset accessed by core I/O is relatively

small, on disk the dataset is very large (120TB) and very

cold (2/3 of data is never touched). Thus, pure-flash ar-

chitectures are likely a poor match for FM.

4.2 Data Types

We now study the types of data FM stores. Each user’s

data is stored in a a single HBase row; this prevents

the data from being split across different RegionServers.

New data for a user is added in new columns within the

row. Related columns are grouped into families, which

are defined by the FM schema (summarized in Table 2).

2the RegionServers in our sample store some data on DataNodes

outside our sample (and vice versa), so this is a sample-based estimate

rather than a direct correlation of HDFS data to disk data

Family Description

Actions Log of user actions and message contents
MessageMeta Metadata per message (e.g., isRead and subject)

ThreadMeta Metadata per thread (e.g.list of participants)

PrefetchMeta Privacy settings, contacts, mailbox summary, etc.

Keywords Word-to-message map for search and typeahead

ThreaderThread Thread-to-message mapping

ThreadingIdIdx Map between different types of message IDs

ActionLogIdIdx Also a message-ID map (like ThreadingIdIdx)

Table 2: Schema. HBase column families are described.

The Actions family is a log built on top of HBase, with

different log records stored in different columns. ad-

dMsg records contain actual message data while other

records (e.g., markAsRead) record changes to metadata

state. Getting the latest state requires reading a number

of recent records in the log. To cap this number, a meta-

data snapshot (a few hundred bytes) is sometimes writ-

ten to the MessageMeta family. Because Facebook chat

is built over messages, metadata objects are large relative

to many messages (e.g., “hey, whasup?”). Thus, writing a

change to Actions is generally much cheaper than writing

a full metadata object to MessageMeta. Other metadata

is stored in ThreadMeta and PrefetchMeta while Key-

words is a keyword-search index and ThreaderThread,

ThreadingIdIdx, and ActionLogIdIdx are other indexes.

Figure 4a shows how much data of each type is

accessed at least once during tracing (including later-

deleted data); A total (sum of bars) of 26.5TB is ac-

cessed. While actual messages (i.e., Actions) take sig-

nificant space, helper data (e.g., metadata, indexes, and

logs) takes much more. We also see that little data is

both read and written, suggesting that writes should be

cached selectively (if at all). Figure 4b reports the I/O

done for each type. We observe that some families re-

ceive much more I/O per data; e.g., an average data byte

of PrefetchMeta receives 15 bytes of I/O whereas a byte

of Keywords receives only 1.1.

Conclusion: FM uses significant space to store mes-

sages and does a significant amount of I/O on these mes-

sages; however, both space and I/O are dominated by

helper data (i.e., metadata, indexes, and logs). Relatively

little data is both written and read during tracing; this

suggests caching writes is of little value.

4.3 File Size

GFS (the inspiration for HDFS) assumed that “multi-GB

files are the common case, and should be handed effi-

ciently” [10]. Other workload studies confirm this; e.g.,

MapReduce inputs were found to be about 23GB at the

90th percentile (Facebook in 2010) [3]. We now revisit

the assumption that HDFS files are large.

Figure 5 shows, for each file type, a distribution of

file sizes (about 862 thousand files appear in our traces).

Most files are small; for each family, 90% are smaller

than 15MB. However, a handful are so large as to skew

5

0 1 2 3 4 5 6

Actions
MessageMeta

ThreadMeta
PrefetchMeta

Keywords
ThreaderThread
ThreadingIdIdx
ActionLogIdIdx

logs
other

(a) File dataset footprint (TB)

read written

0 5 10 15 20

Actions
MessageMeta

ThreadMeta
PrefetchMeta

Keywords
ThreaderThread
ThreadingIdIdx
ActionLogIdIdx

logs
other

(b) File I/O (TB)

2.2x
3.6x

7.7x
15x

1.1x
4.9x
6.5x

1.2x
1x

1.8x

reads
writes

Figure 4: File types. Left: all accessed HDFS file data is broken down by type. Bars further show whether data was read,

written, or both. Right: I/O is broken down by file type and read/write. Bar labels indicate the I/O-to-data ratio.

0 3 6 9 12 15

MessageMeta 293
Actions 314

ThreaderThread 62
ThreadingIdIdx 70

PrefetchMeta 5
Keywords 219

ThreadMeta 10
ActionLogIdIdx 49

Type Avg

Size (MB)

Figure 5: File-size distribution. This shows a box-and-

whiskers plot of file sizes. The whiskers indicate the 10th and

90th percentiles. On the left, the type of file and average size is

indicated. Log files are not shown, but have an average size of

218MB with extremely little variance.

averages upwards significantly; e.g., the average Mes-

sageMeta file is 293MB.

Although most files are very small, compaction should

quickly replace these small files with a few large, long-

lived files. We divide files created during tracing into

small (0 to 16MB), medium (16 to 64MB), and large

(64MB+) categories. 94.2% of files are small, 2% are

medium, and 3.8% are large; however, large files con-

tain 89% of the data. Figure 6 shows the distribution of

file lifetimes for each category. 17% of small files are

deleted within less than a minute, and very few last more

than a few hours; about half of medium files, however,

last more than 8 hours. Only 14% of created large files

were also deleted during tracing.

Conclusion: traditional HDFS workloads operate on

very large files. While most FM data lives in large, long-

lived files, most files are small and short-lived. This has

metadata-management implications; HDFS manages all

file metadata with a single NameNode because the data-

to-metadata ratio is assumed to be high. For FM, this

assumption does not hold; perhaps distributing HDFS

metadata management should be reconsidered.

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

0

25

50

75

100

Minutes

P
er

ce
nt

0 to 16MB
16 to 64MB
64MB+

Figure 6: Size/life correlation. Each line is a CDF of

lifetime for created files of a particular size. Not all lines reach

100% as some files are not deleted during tracing.

4.4 I/O Patterns

We explore three relationships between different read re-

quests: temporal locality, spatial locality, and sequential-

ity. We use a new type of plot, a locality map, that de-

scribes all three relationships at once. Figure 7 shows

a locality map for FM reads. The data shows how of-

ten a read was recently preceded by a nearby read, for

various thresholds on “recent” and “nearby”. Each line

is a hit-ratio curve, with the x-axis indicating how long

items are cached. Different lines represent different lev-

els of prefetching; e.g., the 0-line represents no prefetch-

ing, whereas the 1MB line means data 1MB before and

1MB after a read is prefetched.

Line shape describes temporal locality; e.g., the 0-line

gives a distribution of time intervals between different

reads to the same data. Reads are almost never preceded

by a prior read to the same data in the past four min-

utes; however, 26% of reads are preceded in within the

last 32 minutes. Thus, there is significant temporal local-

ity (i.e., reads are near each other with respect to time),

and additional caching should be beneficial. The local-

ity map also shows there is little sequentiality. A highly

sequential pattern would show that many reads were re-

cently preceded by I/O to nearby offsets; here, however,

the 1KB-line shows only 25% of reads were preceded by

6

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K

0

20

40

60

80

100

Minutes

P
er

ce
nt

1MB 64KB 1KB 0

Figure 7: Reads: locality map. This plot shows how of-

ten a read was recently preceded by a nearby read, with time-

distance represented along the x-axis and offset-distance rep-

resented by the four lines.

a) Footprint heat b) I/O heat

0 1 2 4 8 16 32 64 12
8

25
6

51
2

1K

0
2
4
6
8

10
12

Read accesses

da
ta

 (
T

B
s)

0 1 2 4 8 16 32 64 12
8

25
6

51
2

1K

0
2
4
6
8

10
12

Read accesses

I/O
 (

T
B

s)

Figure 8: Read heat. In both plots, bars show a distri-

bution across different levels of read heat (i.e., the number of

times a byte is read). The left shows a distribution of the dataset

(so the bars sum to the dataset size, included deleted data), and

the right shows a distribution of I/O to different parts of the

dataset (so the bars sum to the total read I/O).

I/O to very nearby offsets within the last minute. Thus,

over 75% of reads are random. The distances between

the lines of the locality map describe spatial locality. The

1KB-line and 64KB-line are very near each other, indi-

cating that (except for sequential I/O) reads are rarely

preceded by other reads to nearby offsets. This indicates

very low spatial locality (i.e., reads are far from each

other with respect to offset), and additional prefetching

is unlikely to be helpful.

Thus, the main pattern FM reads exhibit is temporal

locality (there is little sequentiality or spatial locality).

High temporal locality implies a significant portion of

reads are “repeats” to the same data. We explore this

repeated-access pattern further in Figure 8a. The bytes

of an HDFS file data that are read during tracing are dis-

tributed along the x-axis by the number of reads. The

figure shows that most data (73.7%) is read only once,

but 1.1% of the data is read at least 64 times. Thus, re-

peated reads are not spread evenly, but focus on a small

subset of the data.

Figure 8b shows how many bytes are read for each of

the categories of Figure 8a. While 19% of the reads are

to bytes which are only read once, most I/O is to data

which is accessed many times. Such bias at this level is

replication

local

DB

local local

a) mid-replicated b) top-replicated

replication

local local local

DB DB DB

c) mid-bypass

replication

local

DB

local local

Figure 9: Layered architectures. The HBase archi-

tecture (mid-replicated) is shown, as well as two alternatives.

Top-replicatation reduces network I/O by co-locating database

computation with database data. Mid-bypass architecture is

similar to mid-replication, but provides a mechanism for by-

passing the replication layer for efficiency.

surprising considering that all HDFS I/O has missed two

higher-level caches (an application cache, and the HBase

cache). Caches are known to lessen I/O to particularly

hot data; e.g., a multilayer photo-caching study caching

found caches cause “distributions [to] flatten in a sig-

nificant way” [14]. The fact that bias remains despite

caching suggests the working set may be too large to fit

in a small cache; §6.1 shows this to be the case.

Conclusion: at the HDFS level, FM exhibits rel-

atively little sequentiality, suggesting high-bandwidth,

high-latency storage mediums (e.g., disk) are not ideal

for serving reads. The workload also shows very little

spatial locality, suggesting additional prefetching would

not help, possibly because FM already chooses for itself

what data to prefetch. However, despite application-level

and HBase-level caching, some of the HDFS data is par-

ticularly hot; thus, additional caching could help.

5 Layering: Pitfalls and Solutions

The FM stack, like most storage, is a composition of

other systems and subsystems. Some composition is hor-

izontal; for example, FM stores small data in HBase and

large data in Haystack (as discussed in §4.1). In this sec-

tion, we focus instead on the vertical composition of lay-

ers, a pattern commonly used to manage and reduce soft-

ware complexity. We discuss different ways to organize

storage layers (§5.1), how to reduce network I/O by by-

passing the replicaion layer (§5.2), and how to reduce the

randomness of disk I/O by adding special HDFS support

for HBase logging (§5.3).

5.1 Layering Background

Three main layers are the local layer (e.g., disks, local

file systems, and a DataNode), the replication layer (e.g.,

HDFS), and the database layer (e.g., HBase). FM com-

poses these in a mid-replicated pattern (Figure 9a), with

the database at the top of the stack and the local stores

at the bottom. The merit of this architecture is simplic-

7

n
o
d
e
3

compact

n
o
d
e
2

n
o
d
e
1

compact

compact

compact

Current compaction Local compaction

n
o
d
e
3

n
o
d
e
2

n
o
d
e
1

Figure 10: Local-compaction architecture. The

HBase architecture (left) shows how compaction currently cre-

ates a data flow with significant network I/O, represented by the

two lines crossing machine boundaries. An alternative (right)

shows how local reads could replace network I/O

ity. The database can be built with the assumption that

underlying storage, because it is replicated, will be avail-

able and never lose data. The replication layer is also rel-

atively simple, as it deals with data in its simplest form,

i.e., large blocks of opaque data. Unfortunately, mid-

replicated architectures separate computation from data.

The computation (i.e., database operations such as com-

paction) can only be co-resident with at most one replica,

so all writes will incur network costs.

Top-replication (Figure 9b) is an alternative approach

used by the Salus storage system [31]. Salus supports

the standard HBase API, but its top-replicated approach

provides additional robustness and performance advan-

tages. Salus protects against memory corruption and cer-

tain bugs in the database layer, whereas computation is

not replicated in mid-replication, and is therefore more

prone to faults. Doing replication above the database

level can also reduce network I/O. If the database wants

to reorganize data on disk (e.g., via compaction), each

database replica can do so on its local copy. Unfortu-

nately, top-replicated storage is complex. The database

layer must handle underlying failures as well as cooper-

ate with other databases; in Salus, this is accomplished

with a pipelined-commit protocol and Merkle trees for

maintaining consistency.

Mid-bypass (Figure 9c) is a third option proposed by

Zaharia et al. [32]. This approach (like mid-replication),

places the replication layer between the database and

the local store, but in order to improves performance,

an RDD (Resilient Distributed Dataset) API allows the

database to bypass the replication layer. By shipping

computation directly to the data, much network I/O is

avoided. HBase compaction could be built by combin-

ing two RDD transformations, join and sort, and network

I/O could thus be avoided.

5.2 Local Compaction

We simulate the mid-bypass approach, with compaction

operations shipped directly to all the replicas of com-

paction inputs. Figure 10 shows how local compaction

differs from traditional compaction; network I/O is

I/O
 (

T
B

)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

disk reads, nwa

disk reads, wa

net reads

disk reads, nwa (loc comp)

disk reads, wa (loc comp)

net reads (loc comp)

Figure 11: Local-compaction results. The gray lines

represent HBase with local compaction, and the black lines

represent HBase currently. The solid lines represent network

reads, and the dashed lines represent disk reads; long-dash

represents the write-allocate cache policy and short-dash rep-

resents no-write allocate.

logs

datanode

RS1RS1 RS1RS2 RS1RS3

logs logs

datanode

RS1RS1 RS1RS2 RS1RS3

consolidated logs

Current logging Combined logging

Figure 12: Combined-logging architecture. Currently

(left), the average DataNode will receive logs from three HBase

RegionServers, and these logs will be written to different loca-

tions. An alternative approach (right) would be for HDFS to

provide a special logging API which allows all the logs to be

combined so that disk seeks are reduced.

traded for local I/O, to be served by local caches or disks.

Figure 11 shows the results: a 62% reduction in net-

work reads from 3.5TB to 1.3TB. The figure also shows

the disk reads, with and without local compaction, and

with both the write-allocate (wa) and no-write allocate

(nwa) policies. Regardless of policy, using local com-

paction increases disk reads by nearly the same amount

that the network reads are decreased, indicating com-

paction reads to secondary replicas are unlikely to hit

cache. This is unsurprising: HBase uses secondary repli-

cas for failure tolerance rather than for reads, so, prior to

compaction, there is little activity which would populate

the cache with this data.

Conclusion: doing local compaction by bypassing the

replication layer turns over half the network I/O into disk

reads. This is a good tradeoff considering that network

I/O is generally more expensive than sequential disk I/O.

5.3 Combined Logging

We now consider the interaction between replication and

HBase logging. Figure 12 shows how (currently) a typi-

cal DataNode will receive log writes from three Region-

Servers (because each RegionServer replicates its logs

8

La
te

nc
y

(m
s)

10 15 20 25
0

3

6

9

12

15

18

Disks

user-read (regular)

user-read (combine)

compaction (regular)

compaction (combine)

logging (regular)

logging (combine)

Figure 13: Combined logging results. Disk latencies for

various activities are shown, with (gray) and without (black)

combined logging.

to three DataNodes). These logs are currently written

to three different local files, causing seeks. Such seek-

ing could be reduced if HDFS were to expose a special

logging feature that merges all logical logs into a single

physical log on a dedicated disk as illustrated.

We simulate combined logging and measure perfor-

mance for requests which go to disk; we consider laten-

cies for user reads, compaction, and logging. Figure 13

reports the results for varying numbers of disks. The

latency of log writes decreases dramatically with com-

bined logging; for example, with 15 disks, the latency

is decreased by a factor of six. Compaction requests

also experience modest gains due to less competition for

disk seeks. Currently, neither logging nor compaction

block the end user, so we also consider the performance

of requests resulting from user reads. For this metric,

the gains are small; e.g., latency only decreases by 3.4%

with 15 disks. With just 10 disks, dedicating one disk to

logging slightly hurts user reads.

Conclusion: merging multiple HBase logs on a ded-

icated disk reduces logging latencies by a factor of 6x.

However, put requests do not currently block until data

is flushed to disks, and the performance impact on user

reads is negligible. Thus, the additional complexity of

combined logging is likely not currrently worthwhile;

however, combined logging could enable FM to provide

stronger durability guarantees relatively cheaply.

6 Tiered Storage: Adding Flash

We now make a case for adding a flash tier to local ma-

chines. In §4.1, we saw FM has a very large, mostly cold

dataset. Keeping all this data in flash would be waste-

ful, costing upwards of $10K/machine3. We evaluate the

3at $0.80/GB, storing 13.3TB (120TB split over 9 machines) in

flash would cost $10,895/machine.

0

3

6

9

12

10 15 20 25

0

3

6

9

12

60 80
10

0
12

0
15

0
20

0
25

0 0

3

6

9

12

2 4 6 8
10 12 14

La
te

nc
y

(m
s)

Disks Transfer (MB/s) Seek (ms)

Figure 14: Disk performance. The figure shows the rela-

tionship between disk characteristics and the average latency

of disk requests. As a default, we use 15 disks with 100MB/s

bandwidth and 10ms seek time. Each of the plots varies one of

characteristics, keeping the other two fixed.

0 100 200 300 400
0

20

40

60

80

H
it

ra
te

Cache size (GB)

write hints
no-write allocate
write allocate

Figure 15: Cache hitrate. The relationship between cache

size and hitrate is shown for three policies.

two alternatives: use some flash or no flash. We con-

sider four questions: how much can we improve perfor-

mance without flash, by spending more on RAM or disks

(§6.1)? What policies utilize a tiered RAM/flash cache

best (§6.2)? Is flash better used as a cache to absorb

reads or as a buffer to absorb writes (§6.3)? And ulti-

mately, is the cost of a flash tier justifiable (§6.4)?

6.1 Performance without Flash

Can buying faster disks or more disks significantly im-

prove FM performance? Figure 14 presents average disk

latency as a function of various disk factors. The first

plot shows that for more than 15 disks, adding more disks

has quickly diminishing returns. The second shows that

higher-bandwidth disks also have relatively little advan-

tage (as anticipated by the highly-random workload ob-

served in §4.4). However, the third plot shows that la-

tency is a major performance factor.

The fact that lower latency helps more than having ad-

ditional disks suggests the workload has relatively little

parallelism; i.e., being able to do a few things quickly is

better than being able to do many things at once. Un-

fortunately, the 2-6ms disks we simulate are unrealisti-

cally fast, having no commercial equivalent. Thus, al-

though significant disk capacity is needed to store the

large, mostly cold data, reads are better served by a low-

latency medium (e.g., RAM or flash).

Thus, we ask can the hot data fit comfortably in a

9

pure-RAM cache? We measure hitrate for cache sizes in

the 10-400GB range. We also try three different LRU

policies: write allocate, no-write allocate, and write

hints. All three are write-through caches, but differ re-

garding whether written data is cached. Write allocate

adds all write data, no-write allocate adds no write data,

and the hint-based policy takes suggestions from HBase

and HDFS. In particular, a written file is only cached if

(A) the local file is a primary replica of the HDFS block,

and (B) the file is either flush output (as opposed to com-

paction output) or is likely to be compacted soon.

Figure 15 shows, for each policy, that the hitrate in-

creases significantly as the cache size increases up until

about 200GB, where it starts to level off (but not flat-

ten); this indicates the working set is very large. Earlier

(§4.2), we found little overlap between writes and reads

and concluded that written data should be cached selec-

tively if at all. Figure 15 confirms: caching all writes

is the worst policy. Up until about 100GB, “no-write

allocate” and “write hints” perform about equally well.

Beyond 100GB, hints help, but only slightly. We use

no-write allocate throughout the remainder of the paper

because it is simple and provides decent performance.

Conclusion: the FM workload exhibits relatively lit-

tle sequentiality and parallelism, so adding more disks

or higher-bandwidth disks is of limited utility. Fortu-

nately the same data is often repeatedly read (§4.4), so

a very large cache (i.e., a few hundred GBs) can service

nearly 80% of the reads. The usefulness of a very large

cache suggests that storing at least some of the hot data

in flash may be most cost effective. We evaluate the

cost/performance tradeoff between pure-RAM and hy-

brid caches in §6.4.

6.2 Flash as Cache

In this section, we use flash as a second caching tier be-

neath RAM. Both tiers independently are LRU. Initial

inserts are to RAM, and RAM evictions are inserted into

flash. We evaluate exclusive cache policies. Thus, upon

a flash hit, we have two options: the promote policy re-

promotes the item to the RAM cache, but the keep pol-

icy keeps the item at the flash level. Promote gives the

combined cache LRU behavior. The idea behind keep is

to limit SSD wear by avoiding repeated promotions and

evictions of items between the RAM and flash tiers.

Figure 16 shows the hitrates for twelve flash+RAM

mixes. For example, the middle plot shows what the hi-

trate is when there is 30GB of RAM: without any flash,

45% of reads hit the cache, but with 60GB of flash, about

63% of reads hit in either RAM or flash (regardless of

policy). The plots show that across all amounts of RAM

and flash, the number of reads that hit in “any” cache

differs very little between policies. However, the pro-

mote policy causes significantly more of these hits to go

H
it

ra
te

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

10GB of RAM

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

30GB of RAM

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

100GB of RAM

any (promote)
ram (promote)

any (keep)
ram (keep)

Figure 16: Tiered hitrates. Overall hitrate (any) is shown

by the solid lines for promote and keep policies. The results

are shown for varying amounts of RAM (different plots) and

varying amounts of flash (x-axis). RAM hitrates are indicated

by the dashed lines.

10 GB RAM

10 GB RAM

30 GB RAM

30 GB RAM

0 60 120 180 240
0

15

30

45

Li
fe

sp
an

 (
ye

ar
s)

Flash (GB)

keep
promote

Figure 17: Flash lifetime. The relationship between flash

size and flash lifetime is shown for both the keep policy (gray

lines) and promote policy (black lines). There are two lines for

each policy (10 or 30GB RAM).

to RAM; thus, promote will be faster because RAM hits

are faster than flash hits.

We now test our hypothesis that, in trade for decreas-

ing RAM hits, keep improves flash lifetime. We compute

lifetime by measuring flash writes, assuming the FTL

provides even wear leveling, and assuming the SSD sup-

ports 10K program/erase cycles. Figure 17 reports flash

lifetime as the amount of flash varies along the x-axis.

The figure shows that having more RAM slightly im-

proves flash lifetime. This is because flash writes occur

upon RAM evictions, and evictions will be less frequent

with ample RAM. Also, as expected, keep often doubles

or triples flash lifetime; e.g., with 10GB of RAM and

60GB of flash, using keep instead of promote over in-

creases lifetime from 2.5 to 5.2 years. The figure also

shows that flash lifetime increases with the amount of

flash. For promote, the relationship is perfectly linear.

The number of flash writes equals the number of RAM

evictions, which is independent of flash size; thus, if

there is twice as much flash, each block of flash will

receive exactly half as much wear. For keep, however,

the flash lifetime increases superlinearly with size; with

10GB of RAM and 20GB of flash, the years-to-GB ra-

10

9 12 15 18 21
0

20

40

60

80

H
it

ra
te

Hour
21 24 27 30 33

0

20

40

60

80

Hour

100% flash 75% flash 50% flash 25% flash 0% flash

Figure 18: Crash simulations. The plots show two exam-

ples of how crashing at different times affects different 100GB

tiered caches, some of which are pure flash, pure RAM, or a

mix. Hitrates are unaffected by crashing with 100% flash.

tio is 0.06, but with 240GB of flash, the ratio is 0.15.

The relationship is superlinear because additional flash

absorbs more reads, causing fewer RAM inserts, causing

fewer RAM evictions, and ultimately causing fewer flash

writes. Thus, doubling the flash size decreases total flash

writes in addition to spreading the writes over twice as

many blocks.

Flash caches have an additional advantage: crashes do

not cause cache contents to be dropped. We quantify this

benefit by simulating four crashes at different times and

measuring changes to hitrate. Figure 18 shows the re-

sults of two of these crashes for 100GB caches with dif-

ferent flash-to-RAM ratios (using the promote policy).

Even though the hottest data will be in RAM, keeping

some data in flash significantly improves the hitrate af-

ter a crash. The examples also show that it can take 4-6

hours to fully recover from a crash. We quantify the total

recovery cost in terms of the additional disk reads (not

shown). Whereas crashing with a pure-RAM cache on

average causes 26GB of additional disk I/O, with a 75%

flash crashing costs only 10.1GB.

Conclusion: adding flash to RAM can greatly im-

prove the caching hitrate; furthermore (due to persis-

tence) a hybrid flash/RAM cache can eliminate half of

the extra disk reads that usually occur after a crash. How-

ever, using flash raises concerns about wear. Shuffling

data between flash and RAM to keep the hottest data

in RAM improves performance but can easily decrease

SSD lifetime by a factor of 2x relative to a wear-aware

policy. Fortunately, larger SSDs tend to have long life-

times for FM, so wear may be a small concern (e.g.,

120GB+ SSDs last over 5 years regardless of policy).

6.3 Flash as Buffer

One advantage of flash over RAM is that (due to persis-

tence) it has the potential to reduce disk writes as well as

reads. We saw earlier (§4.3) that files tend to be either

small and short-lived or big and long-lived, so one strat-

egy would be to store small files in flash and big files

on disk. HDFS writes are considered durable once the

us
er

 r
ea

d
la

te
nc

y
(m

s)

1.4%

60

2.3%

120

3.6%

240

no
ne 8 16 32 64 12
8

25
6 al
l0

1

2

3

4

5

6

7
10 disks

Hint size (MB)

1.5%

60 flash

2.7%

120 flash

4.8%

240 flash

no
ne 8 16 32 64 12
8

25
6 al
l0

1

2

3

4

5

6

7
15 disks

Hint size (MB)

Figure 19: Flash Buffer. We measure how different file-

buffering policies impact foreground requests with two plots

(for 10 or 15 disks) and three lines (60, 120, or 240GB or flash).

Different points on the x-axis represent different policies. The

optimum point on each line is marked, showing improvement

relative to the latency when no buffering is done.

data is in memory on every DataNode (but not neces-

sarily on disk), so buffering in flash would not actually

improve HDFS write performance; however, decreasing

disk writes means foreground reads (i.e., those caused by

user requests rather than compaction) will indirectly be

made faster, due to less competition for disk time.

Of course, using flash as a write buffer has a cost,

namely less space for caching hot data. We evaluate this

tradeoff by measuring performance when using flash to

buffer only files which are beneath a certain size. Fig-

ure 19 shows how latency corresponds to the policy. At

the left of the x-axis, writes are never buffered in flash,

and at the right of the x-axis, all writes are buffered.

Other x-values represent thresholds; only files smaller

than the threshold are buffered. The plots show that

buffering all or most of the files results in very poor per-

formance. Below 128MB, though, the choice of how

much to buffer makes little difference. The best point

on each line is marked; the best gain is just a 4.8% re-

duction in average latency relative to performance when

no writes are buffered.

Conclusion: using flash to buffer all writes results

in much worse performance than using flash only as a

cache. If flash is used for both caching and buffering, and

if policies are tuned to only buffer files of the right size,

then performance can be slightly improved. We conclude

that these small gains are probably not worth the added

complexity, so flash should be for caching only.

6.4 Is Flash worth the Money?

Adding more flash to a system can, if used properly, only

improve performance, so the more interesting question

is, given we want to buy performance with money, should

we buy flash, or something else? We approach this ques-

tion by making assumptions about how fast and expen-

sive different storage mediums are, as summarized in Ta-

ble 3. We also state assumptions about component failure

11

HW Cost Failure rate Performance

HDD $100/disk 4% AFR [8] 10ms/seek, 100MB/s
RAM $5/GB 4% AFR (8GB) 0 latency

Flash $0.8/GB 10K P/E cycles 0.5ms latency

Table 3: Cost Model. Our assumptions about hardware

costs, failure rates, and performance are presented. For disk

and RAM, we state an AFR (annual failure rate), assuming

uniform-random failure each year. For flash, we base replace-

ment on wear and state program/erase cycles.

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20
A0

A1

A2
A3B3 C3A2

A3B3 C3 C3

Cost ($)

la
te

nc
y

(m
s)

ram GB
: 10A
: 30B
: 100C

flash GB
: 00
: 601
: 1202
: 2403

disks
: 10
: 15
: 20

Figure 20: Capex/latency tradeoff. We present the cost

and performance of 36 systems, representing every combina-

tion of thee RAM levels, four flash levels, and three disk levels.

Combinations which present unique tradeoffs are black and la-

beled; unjustifiable systems are gray and unlabeled.

rates, allowing us to estimate operating expenditure.

We evaluate 36 systems, with three levels of RAM

(10GB, 30GB, or 100GB), four levels of flash (none,

60GB, 120GB, or 240GB), and three levels of disk (10,

15, or 20 disks). Flash and RAM are used as a tiered

cache with the promote policy. For each system, we

compute the capex (capital expenditure) to initially pur-

chase the hardware and determine via simulation the per-

formance of requests which affect user experience. For

example, we count the latency of block requests caused

by get calls, but not the latency of requests caused by

compaction. Of course, background I/O competes with

foreground I/O and so will be counted indirectly.

Figure 20 shows the cost/performance of each system.

11 of the systems (31%) are highlighted; these are the

only systems that one could justify buying. Each of the

other 25 systems is both slower and more expensive than

one of these 11. Over half of the justifiable systems have

the maximum amount of flash. It is worth noting that the

systems without the maximum flash are justified by low

cost, not good performance. With one exception (15-disk

A2), all of the systems with less than the maximum flash

have the minimum number of disks and RAM. Thus, if

performance is to be bought, then (within the space we

explore) flash should almost always be purchased first.

We also consider expected opex (operating expendi-

ture) for replacing hardware as it fails, and find that re-

placing hardware is relatively inexpensive compared to

the capex (not shown). Of the 36 systems, opex is at most

$90/year/machine (for the 20-disk C3 system). Further-

more, opex is never more than 5% of capex. For each of

justifiable flash-based systems shown in Figure 20, we

also do simulations using the keep policy for flash hits.

The keep policy decreased opex by 4-23% for all ma-

chines while increasing latencies by 2-11%. However,

because opex is low in general, the savings are at most

$14/year/machine.

Conclusion: not only does adding a flash tier to the

FM stack greatly improve performance, but it is the most

cost-effective way of improving performance.

7 Related Work

In this work, we compare the I/O patterns of FM to

prior GFS and HDFS workloads. Chen et al.[3] provides

broad characterizations of a wide variety of MapRe-

duce workloads, making some of the comparisons pos-

sible. The MapReduce study is broad, analyzing traces

of course-grained events (e.g., file opens) from over 5000

machines across seven clusters. By contrast, our study is

deep, analyzing traces of fine-grained events (e.g., reads

to a byte) for just nine machines.

Detailed trace analysis has also been done in many

non-HDFS contexts, such as the work by Baker [1] in

a BSD environment and by Harter [12] for Apple desk-

top applications. Other studies include the work done by

Ousterhout [20] and Vogels [30].

A recent photo-caching study by Huang [14] focuses,

much like our work, on I/O patterns across multiple lay-

ers of the stack. The photo-caching study correlated I/O

across levels by tracing at each layer, whereas our ap-

proach was to trace at a single layer and infer I/O at other

layers via simulation. There is a tradeoff between these

two approaches: tracing multiple levels avoids inaccura-

cies due to simulator oversimplifications, but the simu-

lation approach enables greater experimentation with al-

ternative architectures beneath the traced layer.

Our methodology of trace-driven analysis and simula-

tion is inspired by Kaushik et al.[15], a study of Hadoop

traces from Yahoo! Both the Yahoo! study and our work

involved collecting traces, doing analysis to discover po-

tential improvements, and running simulations to evalu-

ate those improvements.

We are not the first to suggest the methods of §5; our

contribution is to quantify how useful these techniques

12

are for the FM workload. The observation that doing

compaction above the replication layer wastes network

bandwidth has been made by Wang et al. [31], and the

approach of local compaction is a specific application of

the more general techniques described by Zaharia et al.

[32]. Combined logging is also commonly used by ad-

ministrators of traditional databases [7, 21].

8 Conclusions

We have presented a detailed multilayer study of storage

I/O for Facebook Messages. Our combined approach of

analysis and simulation allowed us to identify potentially

useful changes and then evaluate those changes. We have

four major conclusions:

1. The special-handling received by writes make

them surprisingly expensive. At the HDFS level, the

read/write ratio is 99/1, excluding HBase compaction

and logging overheads. At the disk level, the ratio is

write-dominated at 36/64. Logging, compaction, repli-

cation, and caching all combine to produce this write

blow-up. Thus, optimizing writes is very important even

for especially read-heavy workloads such as FM.

2. The GFS-style architecture is based on workload

assumptions such as “high sustained bandwidth is more

important than low latency” [10]. For FM, many of these

assumptions no longer hold. For example, §6.1 demon-

strated just the opposite is true for FM: because I/O is

highly random, bandwidth matters little, but latency is

crucial. Similarly, files were assumed to be very large,

in the hundreds or thousands of megabytes. This tra-

ditional workload implies a high data-to-metadata ratio,

justifying the one-NameNode design of GFS and HDFS.

By contrast, FM is dominated by small files; perhaps the

single-NameNode design should be revisited.

3. FM storage is built upon layers of independent sub-

systems. This architecture has the benefit of simplicity;

for example, because HBase stores data in a replicated

store, it can focus on high-level database logic instead of

dealing with dying disks and other types of failure. Lay-

ering is also known to improve reliability; e.g., Dijkstra

found layering “proved to be vital for the verification and

logical soundness” of an OS [6]. Unfortunately, we find

that the benefits of simple layering are not free. In partic-

ular, §5 showed that building a database over a replica-

tion layer can cause additional network I/O and increase

workload randomness at the disk layer. Fortunately, sim-

ple mechanisms for sometimes bypassing replication can

help reduce layering costs.

4. The cost of flash has fallen greatly, prompting

Gray’s proclamation that “tape is dead, disk is tape, flash

is disk” [11]. To the contrary, we find that for FM, flash

is not a suitable replacement for disk. In particular, the

cold data is too large to fit well in flash (§4.1) and the

hot data is too large to fit well in RAM (§6.1). However,

our evaluations show that architectures with a small flash

tier have a positive cost/performance tradeoff compared

to systems built on disk and RAM alone.

In this work, we take a unique view of Facebook Mes-

sages, not as a single system, nor as a single slice of a

system, but as a complex composition of subsystems, re-

siding side-by-side and layered one upon another. We

believe this approach is key to deeply understanding stor-

age. Such understanding, we hope, will help us bet-

ter integrate layers, thereby maintaining simplicity while

achieving new levels of performance.

9 Acknowledgements

We thank the anonymous reviewers and Andrew Warfield

(our shepherd) for their tremendous feedback, as well as

members of our research group for their thoughts and

comments on this work at various stages. We also thank

Pritam Damania, Adela Maznikar, and Rishit Shroff for

their help in collecting HDFS traces. This material was

supported by funding from NSF grants CNS-1319405

and CNS-1218405. Tyler Harter is supported by the

NSF Fellowship and Facebook Fellowship. Any opin-

ions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and may

not reflect the views of NSF or other institutions.

References
[1] Mary Baker, John Hartman, Martin Kupfer, Ken

Shirriff, and John Ousterhout. Measurements of a
Distributed File System. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles
(SOSP ’91), pages 198–212, Pacific Grove, Califor-
nia, October 1991.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’06), pages 205–218, Seattle, Wash-
ington, November 2006.

[3] Chen, Yanpei and Alspaugh, Sara and Katz, Randy.
Interactive Analytical Processing in Big Data Sys-
tems: A Cross-industry Study of MapReduce
Workloads. Proc. VLDB Endow., August 2012.

[4] Timothy E. Denehy, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Journal-guided
Resynchronization for Software RAID. In Proceed-
ings of the 4th USENIX Symposium on File and
Storage Technologies (FAST ’05), pages 87–100,
San Francisco, California, December 2005.

[5] Dhruba Borthakur and Kannan Muthukkarup-
pan and Karthik Ranganathan and Samuel Rash
and Joydeep Sen Sarma and Nicolas Spiegelberg
and Dmytro Molkov and Rodrigo Schmidt and

13

Jonathan Gray and Hairong Kuang and Aravind
Menon and Amitanand Aiyer. Apache Hadoop
Goes Realtime at Facebook. In Proceedings of
the 2011 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’11), Athens,
Greece, June 2011.

[6] E. W. Dijkstra. The Structure of the THE Multipro-
gramming System. Communications of the ACM,
11(5):341–346, May 1968.

[7] IBM Product Documentation. Notes/domino
best practices: Transaction logging. http://
www-01.ibm.com/support/docview.wss?
uid=swg27009309, 2013.

[8] Ford, Daniel and Labelle, François and Popovici,
Florentina I. and Stokely, Murray and Truong, Van-
Anh and Barroso, Luiz and Grimes, Carrie and
Quinlan, Sean. Availability in Globally Distributed
Storage Systems. In Proceedings of the 9th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’10), Vancouver, Canada, December
2010.

[9] Gregory R. Ganger. Blurring the Line Between
Oses and Storage Devices. Technical Report CMU-
CS-01-166, Carnegie Mellon University, December
2001.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 29–43, Bolton Land-
ing, New York, October 2003.

[11] Jim Gray. Tape is Dead. Disk is Tape. Flash is Disk,
RAM Locality is King, 2006.

[12] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A File is Not a File: Understanding the
I/O Behavior of Apple Desktop Applications. In
Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles (SOSP ’11), Cascais, Por-
tugal, October 2011.

[13] Joseph L. Hellerstein. Google cluster data. Google
research blog, January 2010. Posted at http://
googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

[14] Qi Huang, Ken Birman, Robbert van Renesse, Wy-
att Lloyd, Sanjeev Kumar, and Harry C. Li. An
analysis of facebook photo caching. In Proceedings
of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pages 167–181, Farming-
ton, Pennsylvania, November 2013.

[15] Rini T. Kaushik and Milind A Bhandarkar. Green-
HDFS: Towards an Energy-Conserving, Storage-
Efficient, Hybrid Hadoop Compute Cluster. In The
2010 Workshop on Power Aware Computing and
Systems (HotPower ’10), Vancouver, Canada, Oc-
tober 2010.

[16] Niall Kennedy. facebook’s photo storage rewrite.
http://www.niallkennedy.com/blog/2009/04/facebook-
haystack.html, April 2009.

[17] Butler W. Lampson. Hints for Computer System
Design. In Proceedings of the 9th ACM Symposium
on Operating System Principles (SOSP ’83), pages

33–48, Bretton Woods, New Hampshire, October
1983.

[18] Edward K. Lee and Chandramohan A. Thekkath.
Petal: Distributed Virtual Disks. In Proceedings
of the 7th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (ASPLOS VII), Cambridge, Mas-
sachusetts, October 1996.

[19] Kannan Muthukkaruppan. Storage Infrastructure
Behind Facebook Messages. In Proceedings of In-
ternational Workshop on High Performance Trans-
action Systems (HPTS ’11), Pacific Grove, Califor-
nia, October 2011.

[20] John K. Ousterhout, Herve Da Costa, David Har-
rison, John A. Kunze, Mike Kupfer, and James G.
Thompson. A Trace-Driven Analysis of the UNIX
4.2 BSD File System. In Proceedings of the 10th
ACM Symposium on Operating System Principles
(SOSP ’85), pages 15–24, Orcas Island, Washing-
ton, December 1985.

[21] Matt Perdeck. Speeding up database access.
http://www.codeproject.com/Articles/
296523/Speeding-up-database-access-
part-8-Fixing-memory-d, 2011.

[22] Charles Reiss, John Wilkes, and Joseph L. Heller-
stein. Google cluster-usage traces: format +
schema. Technical report, Google Inc., Moun-
tain View, CA, USA, November 2011. Revised
2012.03.20. Posted at URL.

[23] Charles Reiss, John Wilkes, and Joseph L. Heller-
stein. Obfuscatory obscanturism: making work-
load traces of commercially-sensitive systems safe
to release. In 3rd International Workshop on
Cloud Management (CLOUDMAN), pages 1279–
1286, Maui, HI, USA, April 2012. IEEE.

[24] Jerome H. Saltzer, David P. Reed, and David D.
Clark. End-to-end arguments in system de-
sign. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[25] Margo Seltzer, Peter Chen, and John Ousterhout.
Disk Scheduling Revisited. In Proceedings of the
USENIX Winter Technical Conference (USENIX
Winter ’90), pages 313–324, Washington, D.C, Jan-
uary 1990.

[26] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The Hadoop Distributed
File System. In Proceedings of the 26th IEEE Sym-
posium on Mass Storage Systems and Technologies
(MSST ’10), Incline Village, Nevada, May 2010.

[27] Jason Sobel. Needle in a haystack: Ef-
ficient storage of billions of photos.
http://www.flowgram.com/p/2qi3k8eicrfgkv,
June 2008.

[28] Nicolas Spiegelberg. Allow record compression
for hlogs. https://issues.apache.org/jira/
browse/HBASE-8155, 2013.

[29] Chandramohan A. Thekkath, Timothy Mann, and
Edward K. Lee. Frangipani: A Scalable Distributed
File System. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP
’97), pages 224–237, Saint-Malo, France, October
1997.

14

http://www-01.ibm.com/support/docview.wss?uid=swg27009309
http://www-01.ibm.com/support/docview.wss?uid=swg27009309
http://www-01.ibm.com/support/docview.wss?uid=swg27009309
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://www.codeproject.com/Articles/296523/Speeding-up-database-access-part-8-Fixing-memory-d
http://www.codeproject.com/Articles/296523/Speeding-up-database-access-part-8-Fixing-memory-d
http://www.codeproject.com/Articles/296523/Speeding-up-database-access-part-8-Fixing-memory-d
https://issues.apache.org/jira/browse/HBASE-8155
https://issues.apache.org/jira/browse/HBASE-8155

[30] Werner Vogels. File system usage in Windows NT
4.0. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSP ’99), pages
93–109, Kiawah Island Resort, South Carolina, De-
cember 1999.

[31] Yang Wang and Manos Kapritsos and Zuocheng
Ren and Prince Mahajan and Jeevitha Kirubanan-
dam and Lorenzo Alvisi and Mike Dahlin. Robust-
ness in the Salus Scalable Block Store. In Presented
as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation, Lom-
bard, Illinois, April 2013.

[32] Zaharia, Matei and Chowdhury, Mosharaf and Das,
Tathagata and Dave, Ankur and Ma, Justin and
McCauley, Murphy and Franklin, Michael J. and
Shenker, Scott and Stoica, Ion. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems
Design and Implementation, San Jose, California,
April 2010.

15

