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Abstract

We analyze the convergence of (stochastic) gradient descent algorithm for learning a convolutional
filter with Rectified Linear Unit (ReLU) activation function. Our analysis does not rely on any specific
form of the input distribution and our proofs only use the definition of ReLU, in contrast with previous
works that are restricted to standard Gaussian input. We show that (stochastic) gradient descent with
random initialization can learn the convolutional filter in polynomial time and the convergence rate
depends on the smoothness of the input distribution and the closeness of patches. To the best of our
knowledge, this is the first recovery guarantee of gradient-based algorithms for convolutional filter on
non-Gaussian input distributions. Our theory also justifies the two-stage learning rate strategy in deep
neural networks. While our focus is theoretical, we also present experiments that illustrate our theoretical
findings.

1 Introduction

Deep convolutional neural networks (CNN) have achieved the state-of-the-art performance in many applica-
tions such as computer vision [Krizhevsky et al., 2012], natural language processing [Dauphin et al., 2016]
and reinforcement learning applied in classic games like Go [Silver et al., 2016]. Despite the highly non-
convex nature of the objective function, simple first-order algorithms like stochastic gradient descent and
its variants often train such networks successfully. On the other hand, the success of convolutional neural
network remains elusive from an optimization perspective.

When the input distribution is not constrained, existing results are mostly negative, such as hardness of
learning a 3-node neural network [Blum and Rivest, 1989] or a non-overlap convolutional filter [Brutzkus
and Globerson, 2017]. Recently, Shamir [2016] showed learning a simple one-layer fully connected neural
network is hard for some specific input distributions.

These negative results suggest that, in order to explain the empirical success of SGD for learning neural
networks, stronger assumptions on the input distribution are needed.. Recently, a line of research [Tian,
2017, Brutzkus and Globerson, 2017, Li and Yuan, 2017, Soltanolkotabi, 2017, Zhong et al., 2017] assumed
the input distribution be standard Gaussian N(0, I) and showed (stochastic) gradient descent is able to
recover neural networks with ReLU activation in polynomial time.

∗This work is done while the author is at Facebook AI Research.
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Figure 1: (a) Architecture of the network we are considering. Given input X , we extract its patches {Zi}
and send them to a shared weight vector w. The outputs are then sent to ReLU and then summed to yield
the final label (and its estimation). (b)-(c) Two conditions we proposed for convergence. We want the data
to be (b) highly correlated and (c) concentrated more on the direction aligned with the ground truth vector
w∗.

One major issue of these analysis is that they rely on specialized analytic properties of Gaussian dis-
tribution (c.f. Section 1.1) and thus cannot be generalized to non-Gaussian cases, in which real-world
distributions fall into. For general input distributions, new techniques are needed.

In this paper we consider a simple architecture: a convolution layer, followed by a ReLU activation
function, and then average pooling. Formally, we let x ∈ Rd be an input sample, e.g., an image, we generate
k patches from x, each with size p: Z ∈ Rp×k where the i-th column is the i-th patch generated by some
known function Zi = Zi(x). For a filter with size 2 and stride 1 then Zi(x) is the i-th and (i+ 1)-th pixels.
Since for convolutional filters, we only need to focus on the patches instead of the input, in the following
definitions and theorems, we will refer Z as input and let Z as the distribution of Z: (σ(x) = max(x, 0) is
the ReLU activation function)

f(w,Z) =
1

k

k∑
i=1

σ
(
w>Zi

)
. (1)

See Figure 1 (a) for a graphical illustration. Such architectures have been used as the first layer of many
works in computer vision [Lin et al., 2013, Milletari et al., 2016]. We address the realizable case, where
training data are generated from (1) with some unknown teacher parameter w∗ under input distribution Z .
Consider the `2 loss ` (w,Z) = 1

2 (f(w,Z)− f(w∗,Z))2. We learn by (stochastic) gradient descent, i.e.,

wt+1 = wt − ηtg(wt) (2)

where ηt is the step size which may change over time and g(wt) is a random function where its expectation
equals to the population gradient E [g(w)] = EZ∼Z [∇` (w,Z)] . The goal of our analysis is to understand
the condition when w→ w∗, if w is optimized under (stochastic) gradient descent.

In this setup, our main contributions are as follows:

• Learnability of Filters: We show if the input patches are highly correlated (Section 3), i.e., θ (Zi,Zj) ≤
ρ for some small ρ > 0, then gradient descent and stochastic gradient descent with random initializa-
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tion recover the filter in polynomial time.1 Furthermore, strong correlations imply faster convergence.
To the best of our knowledge, this is the first recovery guarantee of randomly initialized gradient-based
algorithms for learning filters (even for the simplest one-layer one-neuron network) on non-Gaussian
input distribution, answering an open problem in [Tian, 2017].

• Distribution-Aware Convergence Rate. We formally establish the connection between the smooth-
ness of the input distribution and the convergence rate for filter weights recovery where the smoothness
in our paper is defined as the ratio between the largest and the least eigenvalues of the second moment
on the activation region (Section 2). We show that a smoother input distribution leads to faster con-
vergence, and Gaussian distribution is a special case that leads to the tightest bound. This theoretical
finding also justifies the two-stage learning rate strategy proposed by [He et al., 2016, Szegedy et al.,
2017] if the step size is allowed to change over time.

1.1 Related Works

In recent years, theorists have tried to explain the success of deep learning from different perspectives. From
optimization point of view, optimizing neural network is a non-convex optimization problem. Pioneered
by Ge et al. [2015], a class of non-convex optimization problems that satisfy strict saddle property can be
optimized by perturbed (stochastic) gradient descent in polynomial time [Jin et al., 2017].2 This motivates
the research of studying the landscape of neural networks [Kawaguchi, 2016, Choromanska et al., 2015,
Hardt and Ma, 2016, Haeffele and Vidal, 2015, Mei et al., 2016, Freeman and Bruna, 2016, Safran and
Shamir, 2016, Zhou and Feng, 2017] However, these results cannot be directly applied to analyzing the
convergence of gradient-based methods for ReLU activated neural networks.

From learning theory point of view, it is well known that training a neural network is hard in the
worst cases [Blum and Rivest, 1989, Livni et al., 2014, Šı́ma, 2002, Shalev-Shwartz et al., 2017a,b] and
recently, Shamir [2016] showed either “niceness” of the target function or of the input distribution alone
is not sufficient for optimization algorithms used in practice to succeed. With some additional assump-
tions, many works tried to design algorithms that provably learn a neural network with polynomial time and
sample complexity [Goel et al., 2016, Zhang et al., 2015, Sedghi and Anandkumar, 2014, Janzamin et al.,
2015]. However, these algorithms are specially designed for certain architectures and cannot explain why
(stochastic) gradient based optimization algorithm work well in practice.

Focusing on gradient-based algorithms, a line of research analyzed the behavior of (stochastic) gradient
descent for Gaussian input distribution. Tian [2017] showed population gradient descent is able to find
the true weight vector with random initialization for one-layer one-neuron model. Brutzkus and Glober-
son [2017] showed population gradient descent recovers the true weights of a convolution filter with non-
overlapping input in polynomial time. Li and Yuan [2017] showed SGD can recover the true weights of
a one-layer ResNet model with ReLU activation under the assumption that the spectral norm of the true
weights is bounded by a small constant. All the methods use explicit formulas for Gaussian input, which en-
able them to apply trigonometry inequalities to derive the convergence. With the same Gaussian assumption,
Soltanolkotabi [2017] used Gaussian width (c.f. Definition 2.2 of [Soltanolkotabi, 2017]) for concentrations
to show the true weights can be exactly recovered by empirical projected gradient descent with enough
samples in linear time and his approach cannot be extended to learning a convolutional filter.

1Note since in this paper we focus on continuous distribution over Z, our results do not have conflict with previous negative
results[Blum and Rivest, 1989, Brutzkus and Globerson, 2017] whose constructions on counter examples rely on discrete distribu-
tion.

2The vanilla gradient descent fails in this case [Du et al., 2017].
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Other approaches combine tensor approaches with assumptions of input distribution. Zhong et al. [2017]
proved that with sufficiently good initialization, which can be implemented by tensor method, gradient
descent can find the true weights of a 3-layer fully connected neural network. However, their approach
works with known input distributions.

In this paper, we adopt a different approach that only relies on the definition of ReLU. We show as long
as the input distribution satisfies weak smoothness assumptions, we are able to find the true weights by SGD
in polynomial time. Using the conclusion, we could justify the effectiveness of large amount of data (which
help eliminate saddle points), two-staged and adaptive learning rates used by He et al. [2016], Szegedy et al.
[2017], etc.

1.2 Organization

This paper is organized as follows. In Section 2, we analyze the simplest one-layer one-neuron model where
we state our key observation and establish the connection between smoothness and convergence rate. In
Section 3, we discuss the performance of (stochastic) gradient descent for learning a convolutional filter.
We provide empirical illustrations in Section 4 and conclude in Section 5. We place most of our detailed
proofs in the Appendix.

1.3 Notations

Let ‖·‖2 denote the Euclidean norm of a finite-dimensional vector. For a matrix A, we use λmax (A) to
denote its largest singular value and λmin (A) its smallest singular value. Note if A is a positive semidefinite
matrix, λmax (A) and λmin (A) represent the largest and smallest eigenvalues of A, respectively. Let O(·)
denote standard Big-O and Big-Theta notations, only hiding absolute constants. We assume the gradient
function is uniformly bounded, i.e., There exists B > 0 such that ‖g(w)‖2 ≤ B. This condition is satisfied
as long as patches, w and noise are all bounded.

2 Warm Up: Analyzing One-Layer One-Neuron Model

Before diving into the convolutional filter, we first analyze the special case for k = 1, which is equivalent
to the one-layer one-neuron architecture. The analysis in this simple case will give us insights for the
fully general case. For the ease of presentation, we define following two events and corresponding second
moments

A(w,w∗) =
{
Z : w>Z ≥ 0,w>∗ Z ≥ 0

}
, A(w,−w∗) =

{
Z : w>Z ≥ 0,w>∗ Z ≤ 0

}
, (3)

Aw,w∗ = E
[
ZZ>I {A(w,w∗)}

]
, Aw,−w∗ = E

[
ZZ>I {A(w,−w∗)}

]
.

where I {·} is the indicator function. Intuitively, A(w,w∗) is the joint activation region of w and w∗ and
A(w,−w∗) is the joint activation region of w and−w∗. See Figure 2 (a) for the graphical illustration. With
some simple algebra we can derive the population gradient.

E [∇` (w,Z)] = Aw,w∗ (w −w∗) + Aw,−w∗w.

One key observation is we can write the inner product 〈∇w` (w) ,w − w∗〉 as the sum of two non-
negative terms (c.f. Lemma A.1). This observation directly leads to the following Theorem 2.1.
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Figure 2: (a) The four regions considered in our analysis. (b) Illustration of L (φ) , γ(φ) and LA(w,w∗).

Theorem 2.1. Suppose for any w1,w2 with θ (w1,w2) < π, E
[
ZZ>I {A(w,w∗)}

]
� 0 and the initial-

ization w0 satisfies ` (w0) < ` (0) then gradient descent algorithm recovers w∗.

The first assumption is about the non-degeneracy of input distribution. For θ (w1,w2) < π if the
assumption is not true, then the input distribution is supported on a low-dimensional space meaning the
input distribution is degenerate. The second assumption on the initialization is for ensuring gradient descent
not converge to w = 0, at which the gradient is undefined. This is a general convergence theorem that
holds for a wide class of input distribution and initialization points. In particular, it includes Theorem 6
of [Tian, 2017] as a special case. If the input distribution is degenerate, i.e., there are holes in the input
space, the gradient descent may stuck around saddle points and we believe more data are needed to facilitate
the optimization procedure This is also consistent with empirical evidence in which more data are helpful
for optimization.

2.1 Convergence Rate of One-Layer One-Neuron Model

In the previous section we showed if the distribution is regular and the weights are initialized appropriately,
gradient descent recovers the true weights when it converges. In practice we also want to know how many
iterations are needed. To characterize the convergence rate, we need some quantitative assumptions. We
note that different set of assumptions will lead to a different rate and ours is only one possible choice. In
this paper we use the following quantities.

Definition 2.1 (The Largest/Smallest eigenvalue Values of the Second Moment on Intersection of two Half
Spaces). For φ ∈ [0, π], define

γ(φ) = min
w:∠w,w∗=φ

λmin (Aw,w∗) , L(φ) = max
w:∠w,w∗=φ

λmax (Aw,w∗) ,

These two conditions quantitatively characterize the angular smoothness of the input distribution. For
a given angle φ, if the difference between γ(φ) and L(φ) is large then there is one direction has large
probability mass and one direction has small probability mass, meaning the input distribution is not smooth.
On the other hand, if γ(φ) andL(φ) are close, then all directions have similar probability mass, which means
the input distribution is smooth. The smoothest input distributions are rotationally invariant distributions
(e.g. standard Gaussian) which have γ(φ) = L(φ). For analogy, we can think of L(φ) as Lipschitz constant
of the gradient and γ(φ) as the strong convexity parameter in the optimization literature but here we also
allow they change with the angle. Also observe that when φ = π, γ(φ) = L(φ) = 0 because the intersection
has measure 0 and both γ(φ) and L(φ) are monotonically decreasing.
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Our next assumption is on the growth of Aw,−w∗ . Note that when θ (w,w∗) = 0, then Aw,−w∗ = 0
because the intersection between w and −w∗ has 0 measure. Also, Aw,−w∗ grows as the angle between w
and w∗ becomes larger.

In the following, we assume the operator norm of Aw,−w∗ increases smoothly with respect to the angle.
The intuition is that as long as input distribution bounded probability density with respect to the angle,
the operator norm of Aw,−w∗ is bounded. We show in Theorem A.1 that β = 1 for rotational invariant
distribution and in Theorem A.2 that β = p for standard Gaussian distribution.

Assumption 2.1. Let LA(w,−w∗) (φ) = maxw,θ(w,w∗)≤φ λmax (Aw,−w∗). We assume there exists β > 0
that for 0 ≤ φ ≤ π/2, LA(w,−w∗) ≤ βφ.

Now we are ready to state the convergence rate.

Theorem 2.2. Suppose the initialization w0 satisfies ‖w0 −w∗‖2 < ‖w∗‖2. Denote φt = arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
then if step size is set as 0 ≤ ηt ≤ min0≤φ≤φt

γ(φ)

2(L(φ)+2β)2
, we have for t = 1, 2, . . .

‖wt+1 −w∗‖22 ≤
(

1− ηtγ (φt)

2

)
‖wt −w∗‖22 .

Note both γ(φ) andL(φ) increases as φ decreases so we can choose a constant step size ηt = Θ
(

γ(φ0)

(L(0)+β)2

)
.

This theorem implies that we can find the ε-close solution of w∗ in O
(
(L(0)+β)2

γ2(φ0)
log
(
1
ε

))
iterations. It also

suggests a direct relation between the smoothness of the distribution and the convergence rate. For smooth
distribution where γ(φ) and L(φ) are close and β is small then (L(0)+β)2

γ2(φ0)
is relatively small and we need

fewer iterations. On the other hand, if L(φ) or β is much larger than γ(φ), we will need more iterations. We
verify this intuition in Section 4.

If we are able to choose the step sizes adaptively ηt = Θ
(

γ(φt)

(L(φt)+β)
2

)
, like using methods proposed

by Lin and Xiao [2014], we may improve the computational complexity toO
(

maxφ≤φ0
(L(φ)+β)2

γ2(φ)
log
(
1
ε

))
.

This justifies the use of two-stage learning rate strategy proposed by He et al. [2016], Szegedy et al. [2017]
where at the beginning we need to choose learning to be small because γ(φ0)

2(L(φ0)+2β)2
is small and later we

can choose a large learning rate because as the angle between wt and w∗ becomes smaller, γ(φt)

2(L(φt)+2β)2

becomes bigger.
The theorem requires the initialization satisfying ‖w0 −w∗‖2 < ‖w∗‖2, which can be achieved by

random initialization with constant success probability. See Section 3.2 for a detailed discussion.

3 Main Results for Learning a Convolutional Filter

In this section we generalize ideas from the previous section to analyze the convolutional filter. First, for
given w and w∗ we define four events that divide the input space of each patch Zi. Each event corresponds
to a different activation region induced by w and w∗, similar to (3).

A(w,w∗)i =
{
Zi : w>Zi ≥ 0,w>∗ Zi ≥ 0

}
, A(w,−w∗)i =

{
Zi : w>Zi ≥ 0,w>∗ Zi ≤ 0

}
,

A(−w,−w∗)i =
{
Zi : w>Zi ≤ 0,w>∗ Zi ≤ 0

}
, A(−w,w∗)i =

{
Zi : w>Zi ≤ 0,w>∗ Zi ≥ 0

}
.

6



Please check Figure 2 (a) again for illustration. For the ease of presentation we also define the average over
all patches in each region

ZA(w,w∗) =
1

k

k∑
i=1

ZiI {A(w,w∗)i} ,ZA(w,−w∗) =
1

k

k∑
i=1

ZiI {A(w,−w∗)i} ,

ZA(−w,w∗) =
1

k

k∑
i=1

ZiI {A(−w,w∗)i} .

Next, we generalize the smoothness conditions analogue to Definition 2.1 and Assumption 2.1. Here the
smoothness is defined over the average of patches.

Assumption 3.1. For φ ∈ [0, π], define

γA(w,w∗)(φ) = min
w:θ(w,w∗)=φ

λmin

(
E
[
ZA(w,w∗)Z

>
A(w,w∗)

])
,

LA(w,w∗)(φ) = max
w:θ(w,w∗)=φ

λmax

(
E
[
ZA(w,w∗)Z

>
A(w,w∗)

])
, (4)

LA(w,−w∗)(φ) = max
w:θ(w,w∗)=φ

λmax

(
E
[
ZA(w,−w∗)Z

>
A(w,−w∗)

])
.

We assume LA(w,−w∗)(·) satisfies LA(w,−w∗)(φ) ≤ βφ for some β > 0

The main difference between the simple one-layer one-neuron network and the convolution filter is two
patches may appear in different regions. For a given sample, there may exists patch Zi and Zj such that
Zi ∈ A(w,w∗)i and Zj ∈ A(w,−w∗)j and their interaction plays an important role in the convergence of
(stochastic) gradient descent. Here we assume the second moment of this interaction, i.e., cross-covariance,
also grows smoothly with respect to the angle.

Assumption 3.2. We assume there exists Lcross > 0 such that

max
w:θ(w,w∗)≤φ

λmax

(
E
[
ZA(w,w∗)Z

>
A(w,−w∗)

])
+λmax

(
E
[
ZA(w,w∗)Z

>
A(−w,w∗)

])
+λmax

(
E
[
ZA(w,−w∗)Z

>
A(−w,w∗)

])
≤ Lcrossφ.

First note if φ = 0, then ZA(w,−w∗) and ZA(−w,w∗) has measure 0 and this assumption models the
growth of cross-covariance. Next note this Lcross represents the closeness of patches. If Zi and Zj are
very similar, then the joint probability density of Zi ∈ A(w,w∗)i and Zj ∈ A(w,−w∗)j is small which
implies Lcross is small. In the extreme setting, Z1 = . . . = Zk, we have Lcross = 0 because in this case
the events {Zi ∈ A(w,w∗)i} ∩ {Zj ∈ A(w,−w∗)j}, {Zi ∈ A(w,w∗)i} ∩ {Zj ∈ A(−w,w∗)j} and
{Zi ∈ A(w,−w∗)i} ∩ {Zj ∈ A(−w,w∗)j} all have measure 0.

Now we are ready to present our result on learning a convolutional filter by gradient descent.

Theorem 3.1. If the initialization satisfies ‖w0 −w∗‖2 < ‖w∗‖2 and denote φt = arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
which satisfies γ(φ0) > 6Lcross. Then if we choose ηt ≤ min0≤φ≤φt

γ(φ)−6Lcross

2(L(φ)+10Lcross+4β)2
, we have for

t = 1, 2, . . . and φt , arcsin
(
‖wt−w∗‖2
‖w∗‖2

)
‖wt+1 −w∗‖22 ≤

(
1− η(γ(φt)− 6Lcross)

2

)
‖wt −w∗‖22

7



Our theorem suggests if the initialization satisfies γ(φ0) > 6Lcross, we obtain linear convergence rate.
In Section 3.1, we give a concrete example showing closeness of patches implies large γ(φ) and small

Lcross. Similar to Theorem 2.2, if the step size is chosen so that ηt = Θ

(
γ(φ0)−6Lcross

(LA(w,w∗)(0)+10Lcross+4β)
2

)
, in

O

((
γ(φ0)−6Lcross

LA(w,w∗)(0)+10Lcross+4β

)2
log
(
1
ε

))
iterations, we can find the ε-close solution of w∗ and the proof is

also similar to that of Theorem 3.1.
In practice,we never get a true population gradient but only stochastic gradient g(w) (c.f. Equation (2)).

The following theorem shows SGD also recovers the underlying filter.

Theorem 3.2. Let φ∗ = argmaxφγ(φ) ≥ 6Lcross. Denote r0 = ‖w0 −w∗‖2, φ0 = arcsin
(

r0
‖w∗‖2

)
and φ1 = φ∗+φ0

2 . For ε sufficiently small, if ηt = Θ
(
ε2(γ(φ1)−6Lcross)

2‖w∗‖22
B2

)
, then we have in T =

O
(

B2

ε2(γ(φ1)−6Lcross)
2‖w∗‖22

log
(
‖w0−w∗‖
εδ‖w∗‖2

))
iterations, with probability at least 1−δ we have ‖wT −w∗‖ ≤

ε ‖w∗‖2 .

Unlike the vanilla gradient descent case, here the convergence rate depends on φ1 instead of φ0. This is
because of the randomness in SGD and we need a more robust initialization. We choose φ1 to be the average
of φ0 and φ∗ for the ease of presentation. As will be apparent in the proof we only require φ0 not very close
to φ∗. The proof relies on constructing a martingale and use Azuma-Hoeffding inequality and this idea has
been previously used by Ge et al. [2015].

3.1 What distribution is easy for SGD to learn a convolutional filter?

Different from One-Layer One-Neuron model, here we also requires the Lipschitz constant for closeness
Lcross to be relatively small and γ(φ0) to be relatively large. A natural question is: What input distributions
satisfy this condition?

Here we give an example. We show if (1) patches are close to each other (2) the input distribution has
small probability mass around the decision boundary then the assumption in Theorem 3.1 is satisfied. See
Figure 1 (b)-(c) for the graphical illustrations.

Theorem 3.3. Denote Zavg = 1
k

∑k
i=1 Zi. Suppose all patches have unit norm 3 and for all for all i,

θ (Zi,Zavg) ≤ ρ. Further assume there exists L ≥ 0 such that for any φ ≤ ρ and for all Zi

P
[
θ (Zi,w∗) ∈

[π
2
− φ, π

2
+ φ

]]
≤ µφ, P

[
θ (Zi,w∗) ∈ −

[π
2
− φ,−π

2
+ φ

]]
≤ µφ,

then we have

γ (φ0) ≥ γavg (φ0)− 4 (1− cos ρ) and Lcross ≤ 3µ.

where γavg(φ0) = σmin

(
E
[
ZZ>I

{
w>0 Z ≥ 0,w>∗ Z ≥ 0

}])
, analogue to Definition 2.1.

Several comments are in sequel. We view ρ as a quantitative measure of the closeness between different
patches, i.e., ρ small means they are similar. This lower bound is monotonically decreasing as a function of
γ and note when γ = 0, σmin

(
E
[
ZA(w,w∗)Z

>
A(w,w∗)

])
= γavg(φ0) which recovers Definition 2.1.

3This is condition can be relaxed to the norm and the angle of each patch are independent and the norm of each pair is indepen-
dent of others.
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For the upper bond on Lcross, µ represents the upper bound of the probability density around the decision
boundary. For example if P

[
θ (Zi,w∗) ∈

[
π
2 − φ,

π
2 + φ

]]
∝ φ2, then for φ in a small neighborhood around

π/2, say radius ε, we have P
[
θ (Zi,w∗) ∈

[
π
2 − φ,

π
2 + φ

]]
. εφ. This assumption is usually satisfied in

real world examples like images because the image patches are not usually close to the decision boundary.
For example, in computer vision, the local image patches often form clusters and is not evenly distributed
over the appearance space. Therefore, if we use linear classifier to separate their cluster centers from the
rest of the clusters, near the decision boundary the probability mass should be very low.

3.2 The Power of Random Initialization

For one-layer one-neuron model, we need initialization ‖w0 −w∗‖2 < ‖w∗‖2 and for the convolution
filter, we need a stronger initialization ‖w0 −w∗‖2 < ‖w∗‖2 cos (φ∗). The following theorem shows with
uniformly random initialization we have constant probability to obtain a good initialization. Note with this
theorem at hand, we can boost the success probability to arbitrary close to 1 by random restarts. The proof
is similar to [Tian, 2017].

Theorem 3.4. If we uniformly sample w0 from a p-dimensional ball with radius α‖w∗‖ so that α ≤
√

1
2πp ,

then with probability at least 1
2 −

√
πp
2 α, we have ‖w0 −w∗‖2 ≤

√
1− α2‖w∗‖.

To apply this general initialization theorem to our convolution filter case, we can choose α = cosφ∗.
Therefore, with some simple algebra we have the following corollary.

Corollary 3.1. Suppose cos (φ∗) <
1√
8πp

, then if w0 is uniformly sampled from a ball with center 0 and

radius ‖w∗‖ cos (φ∗), we have with probability at least 1
2 − cos (φ∗)

√
πp
2 > 1

4 .

The assumption of this corollary is satisfied if the patches are close to each other as discussed in the
previous section.

4 Experiments

In this section we use simulations to verify our theoretical findings. We first test how the smoothness
affect the convergence rate in one-layer one-neuron model described in Section 2 To construct input dis-
tribution with different L(φ), γ(φ) and β (c.f. Definition 2.1 and Assumption 2.1), we fix the patch to
have unit norm and use a mixture of truncated Gaussian distribution to model on the angle around w∗ and
around the −w∗ Specifically, the probability density of ∠Z,w∗ is sampled from 1

2N(0, σ)I[−π/2,π/2] +
1
2N(−π, σ)I[−π/2,π/2]. Note by definitions of L(φ) and γ(φ) if σ → 0 the probability mass is centered
around w∗, so the distribution is very spiky and L(φ)/γ(φ) and β will be large. On the other hand, if
σ → ∞, then input distribution is close to the rotation invariant distribution and L(φ)/γ(φ) and β will be
small. Figure 3a verifies our prediction where we fix the initialization and step size.

Next we test how the closeness of patches affect the convergence rate in the convolution setting. We first
generate a single patch Z̃ using the above model with σ = 1, then generate each unit norm Zi whose angle
with Z̃, ∠Zi, Z̃ is sampled from ∠Zi, Z̃ ∼ N(0, σ2)I[−π,π). Figure 3b shows as variance between patches
becomes smaller, we obtain faster convergence rate, which coincides with Theorem 3.1.
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Figure 3: Experiments on synthesized and real data.

5 Conclusions and Future Works

In this paper we provide the first recovery guarantee of (stochastic) gradient descent algorithm with random
initialization for learning a convolution filter when the input distribution is not Gaussian. Our analyses only
used the definition of ReLU and some mild structural assumptions on the input distribution. Here we list
some future directions.

One possibility is to extend our result to deeper and wider architectures. Even for two-layer fully-
connected network, the convergence of (stochastic) gradient descent with random initialization is not known.
Existing results either requires sufficiently good initialization [Zhong et al., 2017] or relies on special archi-
tecture [Li and Yuan, 2017]. However, we believe the insights from this paper is helpful to understand the
behaviors of gradient-based algorithms in these settings.

Another direction is to consider the agnostic setting, where the label is not equal to the output of a neural
network. This will lead to different dynamics of (stochastic) gradient descent and we may need to analyze
the robustness of the optimization procedures. This problem is also related to the expressiveness of the
neural network [Raghu et al., 2016] where if the underlying function is not equal bot is close to a neural
network. We believe our analysis can be extend to this setting.
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A Proofs and Additional Theorems

A.1 Proofs of the Theorem in Section 2

Lemma A.1.

〈∇w` (w) ,w −w∗〉 = (w −w∗)
>Aw,w∗ (w −w∗) + (w −w∗)

>Aw,−w∗w. (5)

and both terms are non-negative.

Proof. The first term is non-negative because Aw,w∗ is positive-semidefinite. The second term is non-
negative because Aw,w∗ is positive-semidefinite, which implies w>Aw,−w∗w ≥ 0 and

−w>∗ Aw,−w∗w = −E
[(

w>∗ Z
)(

w>Z
)
I
{
w>Z ≥ 0,w>∗ Z ≤ 0

}]
≥ 0.

Proof of Theorem 2.1. The assumption on the input distribution ensures when θ (w,w∗) 6= π, Aw,w∗ � 0
and when θ (w,w∗) 6= 0, Aw,−w∗ � 0. Now when gradient descent converges we have ∇w` (w) = 0.
We have the following theorem. By assumption, since ` (w) < ` (0) and gradient descent only decreases
function value, we will not converge to w = 0. Note that 〈∇w` (w) ,w −w∗〉 = 0, so we have

(w −w∗)
>A (w,w∗) (w −w∗) = 0

(w −w∗)
>B (w,w∗)w = 0.

Suppose w 6= w∗. If θ (w,w∗) 6= π, then we have(w −w∗)
>Aw,w∗ (w −w∗) > 0. If θ (w,w∗) = π,

without loss of generality, let w = −αw∗ for some α > 0. By the assumption we know Aw,−w∗ � 0.
Now the second equation becomes (w −w∗)

>Aw,−w∗w = (1 + γ)w∗Aw,−w∗w∗ > 0. Contradiction.
Therefore we have w = w∗.

Proof of Theorem 2.2. Our proof relies on the following simple but crucial observation: if ‖w −w∗‖2 <
‖w∗‖2, then

θ (w,w∗) ≤ arcsin

(
‖w −w∗‖2
‖w∗‖2

)
.

We denote θ (wt,w∗) = θt and by the observation we have θt ≤ φt. Recall the gradient descent dynamics,

wt+1 = wt − η∇wt`(wt)

= wt − η
(
E
[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

)
.

Consider the squared distance the optimal weight

‖wt+1 −w∗‖22
= ‖wt −w∗‖22
− η (wt −w∗)

>
(
E
[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)− E

[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

)
+ η2

∥∥∥E [ZZ>I{w>t Z ≥ 0,w>∗ Z ≥ 0
}]

(wt −w∗)− E
[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥∥2
2
.
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By our analysis in the previous section, the second term is smaller than

−η (wt −w∗)
> E

[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗) ≤ −ηγ(θt) ‖wt −w∗‖22

where we have used our assumption on the angle. For the third term, we expand it as∥∥∥E [ZZ>I{w>t Z ≥ 0,w>∗ Z ≥ 0
}]

(wt −w∗)− E
[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥∥2
2

=
∥∥∥E [ZZ>I{w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)

∥∥∥2
2

− 2
(
E
[
ZZ>I

{
w>t Z ≥ 0,w>∗ Z ≥ 0

}]
(wt −w∗)

)>
E
[
w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

+
∥∥∥E [w>Z ≥ 0,w>∗ Z ≤ 0

]
wt

∥∥∥2
2

≤L2(θt) ‖wt −w∗‖22 + 2L(θt) ‖w2 −w∗‖2 LA(w,−w∗) (θt) ‖wt‖+ L2
A(w,−w∗)

(θt) ‖wt‖22

≤L2(θt) ‖wt −w∗‖22 + 2L(θt) ‖wt −w∗‖ · β
‖wt −w∗‖
‖w∗‖2

· 2 ‖w∗‖2 +

(
β
‖wt −w∗‖2
‖w∗‖2

)2

· 4 ‖w∗‖22

≤
(
L2(θt) + 4L(θt)β + 4β2

)
‖w −w∗‖22 .

Therefore, in summary,

‖wt+1 −w∗‖22 ≤
(

1− ηγ(θt) + η2 (L(θt) + 2β)2
)
‖wt −w∗‖22

≤
(

1− ηγ(θt)

2

)
‖wt −w∗‖22

≤
(

1− ηγ(φt)

2

)
‖wt −w∗‖22

where the first inequality is by our assumption of the step size and second is because θt ≤ φt and γ(·) is
monotonically decreasing.

Theorem A.1 (Rotational Invariant Distribution). Any unit norm rotational invariant input distribution, we
have β = 1.

Proof of Theorem A.1. Without loss of generality, we only need to focus on the plane spanned by w and w∗
and suppose w∗ = (1, 0)>. Then

E
[
ZZ>I {A(w,−w∗)}

]
=

∫ −π/2+φ
−π/2

(
cos θ
sin θ

)
(cos θ, sin θ)dθ =

1

2

(
φ− sinφ cosφ − sin2 φ
− sin2 φ φ+ sinφ cosφ

)
.

It has two eigenvalues

λ1(φ) =
φ+ sinφ

2
and λ2(φ) =

φ− sinφ

2
.

Therefore, LA(w,−w∗)(φ) = φ+sinφ
2 ≤ φ for 0 ≤ φ ≤ π/2.

Theorem A.2. If Z ∼ N(0, I), then β ≤ p

Proof. Note in previous theorem we can integrate angle and radius separately then multiply them together.
For Gaussian distribution, we have E

[
‖Z‖22

]
≤ p. The result follows.
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A.2 Proofs of Theorems in Section 3

Proof of Theorem 3.1. The proof is very similar to Theorem 2.2. Denote θt = θ (w,w∗) . First note with
some routine algebra, we can write the gradient as

∇wt` (wt)

=E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
A(w,w∗)iA(w,w∗)j

} (w −w∗)

+ E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
A(w,w∗)iA(w,−w∗)j +A(w,−w∗)iA(w,w∗)j

}w

+ E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
A(w,−w∗)iA(w,−w∗)j

}w

− E

 (d,d)∑
(i,j)=(1,1)

ZiZ
>
j I
{
A(w,w∗)iA(−w,w∗)j +A(w,−w∗)iA(w,w∗)j +A(w,−w∗)iA(−w,w∗)j

}w∗

We first examine the inner product between the gradient and w −w∗.

〈∇wt`(w),w −w∗〉

= (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,w∗)j

} (w −w∗)

+ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,−w∗)j +A(w,−w∗)iA(w,w∗)j +A(w,−w∗)iA(w,−w∗)j

}w

− (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(−w,w∗)j +A(w,−w∗)iA(w,w∗)j +A(w,−w∗)iA(−w,w∗)j

}w∗

≥ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,w∗)j

} (w −w∗)

+ (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,−w∗)j

}w

− (w −w∗)
> E

 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(−w,w∗)j +A(w,−w∗)iA(w,w∗)j +A(w,−w∗)iA(−w,w∗)j

}w∗

≥ γ(θt) ‖w −w∗‖22

− ‖w −w∗‖2 ‖w‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,−w∗)j

}∥∥∥∥∥∥
op
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− ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(−w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,−w∗)iA(w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,−w∗)iA(−w,w∗)j

}∥∥∥∥∥∥
op


≥ γ(θt) ‖w −w∗‖22

− 2 ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(w,−w∗)j

}∥∥∥∥∥∥
op

− ‖w −w∗‖2 ‖w∗‖2

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,w∗)iA(−w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,−w∗)iA(w,w∗)j

}∥∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 (d,d)∑
(i,j)=(1,1)

ZiZjI
{
A(w,−w∗)iA(−w,w∗)j

}∥∥∥∥∥∥
op


≥ γ (θt) ‖wt −w∗‖22 − 3Lcrossφt ‖w∗‖2 ‖wt −w∗‖2

≥ γ (θt) ‖wt −w∗‖22 − 6Lcross
‖wt −w∗‖2
‖w∗‖2

· ‖w∗‖2 ‖wt −w∗‖2

≥ (γ (θt)− 6Lcross) ‖wt −w∗‖22

where the first inequality we used the definitions of the regions; the second inequality we used the definition
of operator norm; the third inequality we used the fact ‖wt −w∗‖2 ≤ ‖w∗‖2; the fourth inequality we used
the definition of Lcross and the fifth inequality we used φ ≤ 2 sinφ for any 0 ≤ φ ≤ π/2. Next we can
upper bound the norm of the gradient using similar argument

‖∇wt`(wt)‖2 ≤L (θt) ‖wt −w∗‖2 + 10Lcross ‖wt −w∗‖+ 2β ‖wt −w∗‖2
=(L(θt) + 10Lcross + 4β) ‖wt −w∗‖2 .

Therefore, using the dynamics of gradient descent, putting the above two bounds together, we have

‖wt+1 −w∗‖22 ≤
(
1− η (γ(θt)− 6Lcross) + η2(L(θt) + 10Lcross + 4β)2

)
‖wt −w∗‖22

≤
(

1− η(γ(θt)− 6Lcross)

2

)
‖wt −w∗‖22

≤
(

1− η(γ(φt)− 6Lcross)

2

)
‖wt −w∗‖22

where the last step we have used our choice of ηt and θt ≤ φt.

The proof of Theorem 3.2 consists of two parts. First we show if η is chosen properly and T is not to big,
then for all 1 ≤ t ≤ T , with high probability the iterates stat in a neighborhood of w∗. Next, conditioning
on this, we derive the rate.
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Lemma A.2. Denote r0 = ‖w0 −w∗‖2 < ‖w∗‖2 sinφ∗. Given 0 < r1 < ‖w∗‖2 sinφ∗, number of

iterations T ∈ Z++ and failure probability δ, denote φ1 = arcsin
(

r1
‖w∗‖2

)
then if the step size satisfies

0 < 1− ηγ(φ1) + η2(L(0) + 10Lcross + 4β)2 < 1(
r21 − r20

)2
T (1 + 2ηαT ) (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2)2

≥ log

(
T

δ

)
with α = γ (φ1)− η (L(0) + 10Lcross + 4β). Then with probability at least 1− δ, for all t = 1, . . . , T , we
have

‖wt −w∗‖ ≤ r1.

Proof of Lemma A.2. Let g(wt) = E [∇wt` (wt)] + ξt. We denote Ft = σ {ξ1, . . . , ξt}, the sigma-algebra
generated by ξ1, . . . , ξt and define the event

Ct = {∀τ ≤ t, ‖wτ −w∗‖ ≤ r1} .

Consider

E
[
‖wt+1 −w∗‖22 ICt |Ft

]
=E

[
‖wt − η∇wt`(wt)−w∗ − ηξt‖22 ICt |Ft

]
≤
((

1− ηγ(φ1) + η2 (L(0) + 10Lcross + 4β)2
)
‖wt −w∗‖22 + η2B2

)
ICt

where the inequality follows by our analysis of gradient descent together with definition of Ct and E [ξt|Ft] =
0. Define

Gt = (1− ηα)−t
(
‖wt −w∗‖22 −

ηB2

α

)
.

By our analysis above, we have

E [Gt+1ICt |Ft] ≤ GtICt ≤ GtICt−1

where the last inequality is because Ct is a subset of Ct−1. Therefore, GtICt−1 is a super-martingale and we
may apply Azuma-Hoeffding inequality. Before that, we need to bound the difference between GtICt and
its expectation. Note∣∣GtICt−1 − E

[
GtICt−1

]
|Ft−1

∣∣ = (1− ηα)−t
∣∣∣‖wt −w∗‖22 − E

[
‖wt −w∗‖22

]
|Ft−1

∣∣∣ ICt−1

= (1− ηα)−t
∣∣∣2η〈ξt,wt − η∇wt`(wt)−w∗ − η2E

[
‖ξt‖22 |Ft−1

]∣∣∣ ICt−1

≤ (1− ηα)−t
(
2ηB (L(0) + 10Lcross + 4β) ‖wt −w∗‖2 + η2B2

)
ICt−1

≤ (1− ηα)−t
(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)
,dt.
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Therefore for all t ≤ T

c2t ,
t∑

τ=1

d2τ

=
t∑

τ=1

(1− ηα)−2t
(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)2
≤t (1− ηα)−2t

(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)2
≤T (1 + 2ηαT )

(
2ηB (L(0) + 10Lcross + 4β) r1 + η2B2

)2
where the first inequality we used 1 − ηα < 1, the second we used t ≤ T and the third we used our
assumption on η. Let us bound at (t+ 1)-th step, the iterate goes out of the region,

P [Ct ∩ {‖wt+1 −w∗‖2 > r1}] =P
[
Ct ∩

{
‖wt+1 −w∗‖22 > r21

}]
=P
[
Ct ∩

{
‖wt+1 −w∗‖22 > r20 + (r21 − r20)

}]
=P
[
Ct ∩

{
Gt+1 (1− ηα)t +

ηB2

α
≥ G0 +

ηB2

α
+ r21 − r20

}]
≤P
[
Ct ∩

{
Gt+1 −G0 ≥ r21 − r20

}]
≤ exp

{
−
(
r21 − r20

)2
2c2t

}

≤ δ
T

where the second inequality we used Azuma-Hoeffding inequality, the last one we used our assumption of
η. Therefore for all 0 ≤ t ≤ T , we have with probability at least 1− δ, Ct happens.

Now we can derive the rate.

Lemma A.3. Denote r0 = ‖w0 −w∗‖2 < ‖w∗‖2 sinφ∗. Given 0 < r1 < ‖w∗‖2 sinφ∗, number of

iterations T ∈ Z++ and failure probability δ, denote φ1 = arcsin
(

r1
‖w∗‖2

)
then if the step size satisfies

0 < 1− ηγ(φ1) + η2(L(0) + 10Lcross + 4β)2 < 1(
r21 − r20

)2
T (1 + 2ηαT ) (2ηB (L(0) + 10Lcross + 4β) r1 + η2B2)2

≥ log

(
T

δ

)
ηT
(
γ(φ1)− η (L(0) + 10Lcross + 4β)2

)
≥ log

(
r20

ε2 ‖w∗‖22 δ

)
ε2
(
γ(φ1)− η (L(0) + 10Lcross + 4β)2

)
‖w∗‖22 ≥ ηB

2

with α = γ (φ1)− η (L(0) + 10Lcross + 4β), then we have with probability 1− 2δ,

‖wt −w∗‖2 ≤ 2ε ‖w∗‖2 .
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Proof of Lemma A.3. We use the same notations in the proof of Lemma A.2. By the analysis of Lemma A.2,
we know

E
[
‖wt+1 −w∗‖22 ICt |Ft

]
≤
(

(1− ηα) ‖wt −w∗‖22 + η2B2
)
ICt .

Therefore we have

E
[
‖wt −w∗‖22 ICt −

ηB2

α

]
≤ (1− ηα)t

(
‖w0 −w∗‖22 −

ηB

α

)
.

Now we can bound the failure probability

P [‖wT −w∗‖2 ≥ 2ε ‖w∗‖2] ≤P
[
‖wT −w∗‖22 −

ηB2

α
≥ ε2 ‖w∗‖22

]
≤P
[{
‖wT −w∗‖22 ICt −

ηB2

α
≥ ε2 ‖w‖22

}
∪ Cct

]
≤P
[{
‖wT −w∗‖22 ICt −

ηB2

α
≥ ε2 ‖w‖22

}]
+ δ

≤
E
[
‖wT −w∗‖22 ICt −

ηB2

α

]
ε2 ‖w∗‖22

+ δ

≤
(1− ηα)t

(
‖w0 −w∗‖22 −

ηB
α

)
ε2 ‖w∗‖22

+ δ

≤2δ.

The first inequality we used the last assumption. The second inequality we used the probability of an event
is upper bound by any superset of this event. The third one we used Lemma A.2 and the union bound. The
fourth one we used Markov’s inequality.

Now we can specify the T and η and derive the convergence rate of SGD for learning a convolution
filter.

Proof of Theorem 3.2. With the choice of η and T , it is straightforward to check they satisfies conditions in
Lemma A.3.

Proof of Theorem 3.3. We first prove the lower bound of γ (φ0).

E

( k∑
i=1

ZiI {A(w,w∗)i}

)(
k∑
i=1

ZiI {A(w,w∗)i}

)>
=E

kZ +
k∑
i=1

(ZiI {A(w,w∗)i} − Z)

(
kZ +

k∑
i=1

(ZiI {A(w,w∗)i} − Z)

)>
=k2E

[
ZZ>

]
+ kE

Z( k∑
i=1

(ZiI {A(w,w∗)i} − Z)

)>
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+ kE

[(
k∑
i=1

(ZiI {A(w,w∗)i} − Z)

)
Z>

]

+ E

( k∑
i=1

(ZiI {A(w,w∗)i} − Z1I {A(w,w∗)1})

)(
k∑
i=1

(ZiI {A(w,w∗)i} − Z1I {A(w,w∗)1})

)>
<k2E

[
ZZ>

]
+ kE

Z( k∑
i=1

(ZiI {A(w,w∗)i} − Z)

)>
+ kE

[(
k∑
i=1

(ZiI {A(w,w∗)i} − Z)

)
Z>

]

Note because Zis have unit norm and by law of cosines ‖Z (ZiI {A(w,w∗)i} − Z)‖op ≤ 2(1 − cos ρ).
Therefore,

σmin

E

( d∑
i=1

ZiI {A(w,w∗)i}

)(
d∑
i=1

ZiI {A(w,w∗)i}

)> ≥ k2(γ1(φ0)− 4(1− cos ρ)).

Now we prove the upper bound of Lcross. Notice that∥∥∥E [ZiZ>j I{A(w,w∗)iA(w,−w∗)j
}]∥∥∥

2
≤E

[
‖Zi‖2 ‖Zj‖2 I

{
A(w,w∗)iA(w,−w∗)j

}]
=

∫
A(w,−w∗)j

(∫
A(w,w∗)i

dP (Zi|Zj)

)
dP (θj) .

If φ ≤ ψ, then by our assumption, we have∫
A(w,−w∗)j

(∫
A(w,w∗)i

dP (Zi|Zj)

)
dP (θj) ≤

∫
A(w,−w∗)j

dP (Zj) ≤ Lφ.

On the other hand, if φ ≥ γ, let θj be the angle between w∗ and Zj , we have∫
A(w,−w∗)j

(∫
A(w,w∗)i

dP (Zi|Zj)

)
dP (θj) ≤

∫ π
2
+γ

π
2

(∫
A(w,w∗)i

dP (Zi|Zj)

)
dP (θj)

≤Lγ
≤Lφ.

Therefore, σmax

(
E
[
ZA(w,w∗)Z

>
A(w,−w∗)

])
≤ Lφ. Using similar arguments we can show

σmax

(
E
[
ZA(w,w∗)ZA(−w,w∗)

])
≤ Lφ and σmax

(
E
[
ZA(w,−w∗)ZA(−w,w∗)

])
≤ Lφ.

Proof of Theorem 3.4. We use the same argument by Tian [2017]. Let rinit be the initialization radius. The
failure probability is lower bounded

1

2
(rinit)−

(
r2init

2‖w∗‖2
+
‖w∗‖2 cos(φ∗)

2

)
δVk−1 (rinit)

Vk (rinit)
.
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Therefore, rinit = cos (φ∗) ‖w∗‖2 maximizes this lower bound. Plugging this optimizer in and using
formula for the volume of the Euclidean ball, the failure probability is lower bounded by

1

2
− cos (φ∗)

πΓ (p/2 + 1)

Γ (p/2 + 1/2)
≥ 1

2
− cos (φ∗)

√
πp

2

where we used Gautschi’s inequality for the last step.
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