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Abstract
The apparent contradiction in the title is a word-
play on the different meanings attributed to the
word reproducible across different scientific fields.
What we imply is that unreproducible findings
can be built upon reproducible methods. With-
out denying the importance of facilitating the re-
production of methods, we deem important to
reassert that reproduction of findings is a funda-
mental step of the scientific inquiry. We argue
that the commendable quest towards easy deter-
ministic reproducibility of methods and numerical
results should not have us forget the even more im-
portant necessity of ensuring the reproducibility
of empirical conclusions and findings by properly
accounting for essential sources of variations. We
provide experiments to exemplify the brittleness
of current common practice in the evaluation of
models in the field of deep learning, showing that
even if the results could be reproduced, a slightly
different experiment would not support the find-
ings. We hope to help clarify the distinction be-
tween exploratory and empirical research in the
field of deep learning and believe more energy
should be devoted to proper empirical research
in our community. This work is an attempt to
promote the use of more rigorous and diversified
methodologies. It is not an attempt to impose a
new methodology and it is not a critique on the
nature of exploratory research.

1. Introduction
Reproducibility has been the center of heated debates in
many scientific disciplines. Psychology in particular has
been the focus of several large reproduction efforts, attempt-
ing to reproduce close to a hundred studies (Open Science
Collaboration, 2015; Klein et al., 2018). These were moti-
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vated by past evidence of lack of scientific rigour, researcher
biases, and fraud (Eisner, 2018).

To help counter these problems, important changes were en-
acted in the psychology research community in the past few
years. Making data available is becoming more common,
journals are publishing replication reports and preregistra-
tion of research specifications is a growing practice.

We see a similar recent trend in machine-learning: the topic
of reproducibility rose to prominence at top conferences
(Henderson et al., 2018), and several workshops are now fo-
cusing on that matter. Top conferences have adopted recom-
mendations for code sharing. More tools are made available
to simplify the replication of experiments reported in papers,
building on new technologies such as shareable notebooks
(Kluyver et al., 2016; Forde et al., 2018), containerization
of operation systems, such as Docker (Merkel, 2014) and
Singularity (Kurtzer et al., 2017), and open-sourcing of
frameworks such as Theano (Theano Development Team,
2016), PyTorch (Paszke et al., 2017) and TensorFlow (Abadi
& al., 2015).

While the type of reproduciblity enabled by these tools is
a valuable first step, there has been comparatively much
fewer discussion about the reproducibility of the findings of
studies.

Three recent works (Melis et al., 2018; Henderson et al.,
2018; Lucic et al., 2018) have shown that proper experimen-
tal design is capital to assert the relative performances of
models. Beyond mere reproduction, these works shed light
on the fundamental problem of reproducibility that cannot
be addressed solely by sharing resources such as code, data
and containers. The experimental design is at the core of
the concept of reproducibility of findings.

Melis et al. (2018) conducted large scale experiments in Nat-
ural Language Processing with hyper-parameter optimiza-
tion procedures to compare models in an unbiased bench-
mark, leading to the surprising result that vanilla LSTM
may be as good as recent supposedly state-of-the-art models.
Lucic et al. (2018) analyzed GAN models with various ex-
perimental setups including average analysis over different
initialization of models, concluding that current evaluation
methods of GANs can hardly discriminate between model
performances. Henderson et al. (2018) exposed the prob-
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lem of high instability of results in reinforcement learning.
They executed several trials over different seeds and con-
cluded that results in reinforcement learning should include
enough trials over different initialization of the model and
environment to support a claim with statistical significance.

We extend on these prior works by analyzing a task which
played an essential role in the development of deep learning:
image classification. Its simple undisputed evaluation met-
ric, in contrast to NLP (Melis et al., 2018) and GAN metrics
(Lucic et al., 2018), guarantees that any inconsistency in
results cannot be blamed on the brittleness of the evaluation
metric, but only on the methodology itself. Additionally, the
environment is strongly controlled, in contrast to RL (Hen-
derson et al., 2018), making the inconsistency of results due
to small controlled sources of variations even more striking.

We propose to revisit the empirical methodology behind
most research papers in machine learning, model compar-
isons, from the perspective of reproducibility of methods
and findings. We will first give an example to outline the
problem of reproduciblity of methods and findings in section
2. We will then clarify the definition of reproducibility in
section 3. In section 4 we will describe the design of the ex-
periments, modeled on current practices in the field, in order
to verify how easy false-positive conclusions can be gener-
ated. In section 5 we will present and analyse the results
and discuss their implications, before highlighting some
limitations of the current study in section 6. We will con-
clude with an open discussion on the differences between
exploratory and empirical research in section 7, explaining
why all forms of reproducibility deserve the attention of the
community.

In agreement with the solutions proposed by the community
for methods reproducibility, our code is available publicly,
including the data generated in this work and containers to
simplify re-execution1.

2. A problem scenario in a typical deep
learning experimentation

Suppose we choose several model architectures that we
want to compare for the task of image classification. We
train all of them on a given dataset and then compare their
classification accuracy on the same held-out test set. We
then rank the models according to this measured evaluation
metric and conclude that the one with highest accuracy is
the best one on this dataset. Later on, we retrain the same
models on the same dataset but obtain different numerical
results, and observe that the new best model is different
than in the previous experiment. How come? It turns out
we forgot to seed the random number generator used to
initialize the models to have reproducible results.

1github.com/bouthilx/repro-icml-2019
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Figure 1: Variation in the ranking of 8 different neural net-
work architectures (models) across multiple trials (samples).
1a: on MNIST digit classification; 1b: on CIFAR100 image
classification. The eight different model architecture types
are shown in different colors. Each row is a trial with a
different random initialization of the models, and in each
row the models are ranked from best (leftmost) to worst
test accuracy. In 1a we see that ranking can vary greatly
from one trial to another, while for a different dataset (1b)
rankings of the same set of models can be more stable. We
cannot know this however unless we train multiple times
the same model. It is thus crucial to do so to ensure the
robustness of the conclusions we draw based on a ranking
of models.

The usually recommended fix to this reproducibility prob-
lem is to set the seed of the random number generator to
some arbitrary value, and forget about it. But why are the
performances of models sensitive to it? Measurements are
affected by sources of variations. The measured accuracy
of a model is, for instance, affected by its initialization, the
order of the data presented during training and which par-
ticular finite data sample is used for training and testing, to
name but a few. Trying to fix this problem by seeding a
random generator can inadvertently limit the conclusions
to this specific seed. Therefore, simply fixing one of these
sources of variations has the effect of limiting the generality
of a conclusion.

We show in Figure 1a an example of different runs using
different seeds, keeping everything else fixed, which lead
to different conclusions as to the ranking of eight different
types of models on the MNIST dataset. We can clearly
see that any conclusion based on a single trial would very
likely be invalidated by other runs. It may be different for
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other datasets, where we could observe a behavior as shown
in Figure 1b. However we cannot know this unless we re-
run the experiment under different values of the source of
variation.

What we would like to point out here, is that there are two
forms of reproducibility that can interfere if we are not
cautious. The reproduction of the results requires the con-
version of a stochastic system into a deterministic one, e.g.
the seeding process. While this helps reproduction of results,
avoiding this source of variation altogether in experiments
has the potential effect of dramatically weakening the gen-
erality of conclusions. This is at odds with the reproduction
of findings.

3. Reproducibility: a confused terminology
The distinction between different types of reproducibility is
not a new phenomenon (Barba, 2018), however there is no
standard terminology to this day.

In this work we will use the terms proposed by Goodman
et al. (2016), which avoid the ambiguity of the terms repro-
ducibility, replicability and repeatability. We report here the
definitions adapted to the context of computational sciences:

Methods Reproducibility: A method is reproducible if
reusing the original code leads to the same results.

Results Reproducibility: A result is reproducible if a re-
implementation of the method generates statistically similar
values.

Inferential Reproducibility: A finding or a conclusion is
reproducible if one can draw it from a different experimental
setup.

In machine learning, methods reproducibility can be
achieved by seeding stochastic processes, but this is insuffi-
cient to ensure results reproducibility, where one cannot e.g.
rely on having the exact same implementation, execution
order, and hardware. To assess results reproducibility some
characterization of the probability distribution over what
is measured (such as evaluation metrics) is needed. How-
ever confidence intervals are seldom provided in the deep
learning literature, thus results reproducibility can hardly
be achieved at the moment, unfortunately. Note that meth-
ods reproducibility can be obtained as well by producing
confidence intervals instead of documenting seeds. The dis-
tinction between methods and results reproducibility lies in
the presence of a step of reimplementation or reconstruction
of the experimental setup.

At the other end of the reproducibility spectrum is inferential
reproducibility, which is not about the (numerical) results,
but rather the conclusions drawn. Suppose a technique

performs better than the state-of-the-art for a given task on
several vision datasets and fulfills results reproducibility.
The authors may conclude that the technique improves the
performance on that task. However, if the method later
fails on another similar vision dataset, it would invalidate
inferential reproducibility. The conclusion, as stated, is not
reproducible. This would imply that the assumptions behind
the conclusion were wrong or too vaguely stated if at all,
and need to be refined: maybe the model performs better
on smaller datasets, or on some particular types of images.
Such refinements are critical for the advancement of science
and can lead to new discoveries.

An observation we want to convey to the reader is that a
major part of the current reproducibility litterature in compu-
tational science is strongly influenced by the seminal work
of Claerbout & Karrenbach (1992), a work that was solely
about methods reproducibility, proposing a methodology to
ensure automatic regeneration of a report with its accompa-
nying figures. Likewise, the machine learning community
seems to be currently mostly referring to methods repro-
ducibility when discussing about reproducibility, with the
common solution proposed being code sharing.

While code sharing is a valuable practice for the community
we argue that it only addresses methods reproducibility
and results reproducibility at best. We will present in the
next section our methodology to test how current common
practice for analyzing model performance in deep learning
fails to ensure inferential reproducibility.

4. Methodology to test the robustness of
conclusions

The goal of this work is to verify the effect of sources of
variations on the robustness of the conclusions drawn in the
context of image classification with deep learning models,
using common methodology.

To verify this, we will train several popular deep-learning
models (i.e. network architectures) multiple times without
fixing the initialization or the sampling order of the data and
we will measure how much the ranking of the models vary
due to these sources of variations.

4.1. Biased vs unbiased scenarios

In order to draw a faithful portrait of the current methodol-
ogy of practitioners in the field, we would need to use what
original authors deemed the best hyper-parameters of each
model on each dataset. Unfortunately, the dataset/model
matrix we might gather from the literature in this way would
be too sparse, leaving us with very few datasets where we
could hope to compare all (or even most) models. We will
instead consider two methodologies which are respectively
worse and arguably better than most common practice. By
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doing so, we bound the spectrum of experimental bias that
includes common practices.

The worse than common practice approach consists in se-
lecting the optimizer hyper-parameters that are the best for
one specific model on one specific dataset and apply them
unchanged to all other (model,dataset) pairs. This is the
most biased methodology, as it should favor the model that
was used to select these hyper-parameters. This is arguably
a worse practice than what we would (hopefully) observe in
the field, but a reasonable lower bound of it as long as all
models can be trained sufficiently well. We will refer to this
as the biased scenario.

The better practice is to optimize the hyper-parameters for
each model on each dataset independently using an appro-
priate validation set, while ensuring that all models had an
equal budget of hyper-parameter optimization. We will call
this the unbiased scenario.

Considered hyper-parameters include the learning rate and
momentum as well as weight-decay (L2 regularization
strength).

4.2. Experimental setup

For the benchmarking of models, we chose 10 different
models of different scales: LeNet (LeCun et al., 1998),
MobileNetV2 (Sandler et al., 2018), VGG11, VGG19
(Simonyan & Zisserman, 2014), ResNet18, ResNet101,
PreActResNet18, PreActResNet101 (He et al., 2016),
DenseNet121 and DenseNet201 (Huang et al., 2017). We
limit ourselves to common models in the field for image
classification tasks. The evaluation metric of interest is the
classification accuracy on the test set.

By model we refer to a given architecture (e.g. VGG11)
i.e. a specific parameterized function form, together with
its standard recommended random parameter initialization
strategy. A specific set of (trained) parameter values for a
given model corresponds to an instantiation of the model.
What we are after is a qualitative estimation of which model
(together with its standard training procedure) performs
better, not which instance. In practice one may care more
about which instance performs best, as it is the instance
that is used in the end. However, in science, models are the
center of interest. An instance is useful as a probe to better
understand a model. This is why sources of variations such
as the initialization should not be fixed. Conclusions on a
model that are limited to a single instance are very weak.

4.2.1. SEED REPLICATES

For each model, we sample 10 different seeds for the pseudo-
random generator used for both the initialization of the
model parameters and the ordering of the data presented
by the data iterator. All models are trained for 120 epochs

on the same dataset. Hyper-parameters will be selected
differently in the biased and unbiased scenarios, in a way
which we will explain shortly.

Following the terminology of Vaux et al. (2012), we call
these runs seed replicates.

4.2.2. DATASET REPLICATES

Observations are likely to differ depending on the difficulty
of the task, as the potential of different models will be eas-
ier to distinguish on more challenging tasks. To ensure
some robustness of our conclusions to this source of vari-
ation, we will run the seed replicates on different datasets,
namely MNIST (LeCun et al., 1998), SVHN (Netzer et al.,
2011), CIFAR10, CIFAR100 (Krizhevsky & Hinton, 2009),
EMNIST-balanced (Cohen et al., 2017) and TinyImageNet
(et al, 2019). We will call the set of seed replicates of a
model on a given dataset a dataset replicate. We will not
consider here other (less extreme) potential sources of varia-
tion in the dataset, but briefly discuss them in section 6.

4.2.3. BIASED AND UNBIASED SEED REPLICATES

As explained in subsection 4.2.1, the observations about the
variations of performances of the models will be different
in the biased and unbiased scenario.

For the biased scenario, we will pick the specific hyper-
parameters provided by He et al. (2016) in their work on
ResNets. This choice should favor ResNet models in our
benchmark.

For the unbiased scenario, we will optimize the hyper-
parameters for each dataset replicate. To distinguish each
scenario, we will call them biased and unbiased seed repli-
cates (4.2.1), biased and unbiased dataset replicates (4.2.2).

Example to summarize the terminology: the unbiased-
scenario dataset replicate for dataset MNIST and a given
model, will be constituted of 10 seed replicates, each of
which is a trained model instance (that was initialized with
on of the 10 seeds) whose hyper-parameters were selected
for best performance on the validation subset of that dataset.

The hyperparameter optimization will be executed using a
slightly modified version of ASHA (Li et al., 2018)2. The
exploration is executed until 10 different runs, each with
a budget of 120 epochs, have been trained for a given pair
of model and dataset. Once this threshold is reached, best
hyper-parameters found are used to follow the same proce-
dure as for the seed replicates, i.e. training the model with
10 with different initialization seeds. The hyper-parameter
optimization is done based on error rate of the models on the
validation set. For the analysis, we will use the test accuracy

2With budgets of 15, 30, 60 and 120 epochs and a reduction
factor of 4
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measures, as we do for the biased seed replicates. This set
of 10 runs for each model are the unbiased seed replicates.

5. Experimental results
Results are presented in two different forms. The first goal
is to visualize the distribution of performance across seed
replicates (5.1). The second goal is to visualize the stability
of the model rankings when selecting single seed replicates
to measure their performance (5.2). The variances of the
model rankings are a way of measuring the likelihood that
a conclusion drawn from a single seed replicate, which is
common practice in the deep learning community, would
hold across many replicates.

5.1. Performance distributions over seed replicates

We generated histograms for the seed replicates for different
models on each dataset to compare the distribution of their
test error rate. Figures 2a and 2b present these histograms
for the biased and unbiased scenarios, respectively. Datasets
are ordered based on their difficulty (measured by the aver-
age performance of all models). These plots help visualize
the overlaps between the distributions of the model perfor-
mances and give insight on the complexity of the different
tasks.

We observe that the overlaps in distribution do not signifi-
cantly increase between the unbiased and biased scenario.
Since they are bounding the spectrum of common practices,
we can safely assume that the current observations would
also hold in a faithful simulation of common practices.

One can see that concluding which model performs best
based on observations from a single initialization seed is
brittle: this conclusion will often be falsified if using a
different seed. This is especially true for simpler datasets
(mnist, svhn, emnist), but one also sees that model ranking
varies widely across datasets. Thus, results from single seed
experiments on too few datasets, even if they satisfy meth-
ods reproducibility, are not sufficient to ensure inferential
reproducibility. Hence our irreverent title.

5.2. Ranking stability over seed replicates

We then perform basic bootstrap sampling (Efron, 1992) us-
ing the seed replicates. For each dataset, we randomly select
a seed replicate for each model and rank them accordingly.
We do so 1000 times, and report the results as histograms
of rankings aggregated over all datasets. Figures 3a and
3b contain those histograms for the biased and unbiased
scenarios, respectively. Such ranking distributions makes
it possible to compare model performances across several
datasets.

We first note that PreActResNet models do not stand out

as the best performing models in the biased scenario, al-
though the hyper-parameters were supposed to favor them.
Looking back at Figure 2a, we can observe that they did not
outperform other models even on CIFAR10, the dataset on
which the best hyper-parameters were selected according to
the literature, although they did outperform ResNets, which
was the claim of He et al. (2016).

The aggregated results of Figure 3b tend to confirm the
superiority of PreActResNets over ResNets. The superi-
ority is however more subtle than what is shown in the
original paper, with ResNets sometimes performing better
(CIFAR10) or on par (CIFAR100, TinyImageNet). We must
note nevertheless that the models used in He et al. (2016)
were considerably deeper (110, 164 and 1001 layers) than
the one used in this study (18 and 101 layers), making it
impossible to compare directly our results to the original
ones.

This brings us to another important observation: In our
study larger ResNets and PreActResNets did not outper-
form their smaller counterparts, raising a doubt that larger
models would here fare differently. This could be due in
part to the fact that we did not perform data augmentation.
Nevertheless, the same cannot be said for VGG, for which
the larger model is systematically better than its smaller
counterpart.

Given the relative homogeneity of the aggregated results, a
more subtle measure, one for instance where we weigh per-
formance with respect to computational complexity, would
likely raise small models to prominence. We believe that
a more nuanced portrait of model performances as the one
presented in this study would promote such finer grained
analysis.

6. Limitations of this work
6.1. Problem diversity

All experiments are confined to the problem of image clas-
sification. It is reasonable however to expect that similar
observations can be made for different family of problems
provided that best performing models have overlapping dis-
tribution of performances. Note that similar observations
were made on the more complex tasks in NLP (Melis et al.,
2018) and for GANs (Lucic et al., 2018). Our empirical
contribution here is to assess the situation on what is ar-
guably the most studied standard task for deep learning,
which has a simple undisputed evaluation metric, i.e. image
classification.

6.2. Hyper-parameter optimization challenges

Hyper-parameter optimization is not a simple task and al-
though it can help to reduce the bias in the way hyper-
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Figure 2: Histograms of performances for each model when changing seeds in the biased (a) and unbiased (b) scenario.
Each model is identified by a color. For each dataset, models are ordered based on their average performance. Outliers are
omitted for clarity. One can see that concluding which model performs best based on observations from a single initialization
seed is brittle: this conclusion will often be falsified if using a different seed. This is especially true for simpler datasets (top
three), but one also sees that model ranking varies widely across datasets. Thus results from single seed experiments on too
few datasets, even if they satisfy methods reproducibility, are not sufficient to ensure inferential reproducibility. This is true
for both biased and unbiased scenarios.
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Figure 3: Histograms of model rankings estimated through
1000 bootstrap samples of seeds replicates across all datasets
in the biased (a) and unbiased (b) scenario. Models are or-
dered according to their average performance ranking over
all datasets. We note three important observations. 1) PreAc-
tResNet models do not stand out as the best performing mod-
els in the biased scenario (a) although the hyper-parameters
were supposed to favor them. 2) The aggregated results of
(b) tend to confirm the superiority of PreActResNets over
ResNets. 3) Larger ResNets and PreActResNets did not
outperform their smaller counterparts, while the larger VGG
is systematically better than its smaller counterpart. This
can be verified for all datasets in Figure 2.

parameters are chosen it might also introduce another bias
for models that are easier to hyper-optimize.

It is also difficult to determine which hyper-parameters
should be tuned as there are several factors that influence the
training of a model. When training all models with the same
optimizer for instance, even though we tune the correspond-
ing hyper-parameters for all models, some of the models
may be favored by this choice of optimizer over another.
A conclusion would only hold for the optimizer chosen,
and may not hold anymore if this source of variance is in-
troduced in the experimental design. Choosing a large set
of hyper-parameters to optimize would have the advantage
of increasing the robustness of the conclusions one draws.
Doing so would however significantly increase the search
space and likely hamper the hyper-parameter optimization
procedure, making it unpractical. It is worth noting that the
current study required the time-equivalent of training over

7000 models for 120 epochs3.

6.3. Other sources of variations

The current study is limited to the stochasticity of the data
ordering on which the model is trained and to the stochastic-
ity of the model initialization. There are two other important
sources of variations that we here kept fixed.

The first one is the sampling of the datasets. It is common
practice to use given datasets as a fixed set of data. There
is however a source of variations in the finite sampling of
a dataset from a distribution. Using a technique such as
cross-validation could help integrate such variation in our
experiments without requiring access to the true distribution
of the data. Those would be data sampling replicates.

The second source comes from the optimization procedure
of the hyper-parameters. The technique we use, ASHA,
is in its very own nature stochastic as it can be seen as
a sophisticated random search. To include this source of
variation we would need to execute several hyper-parameter
optimization procedures and average our analyses over all
of them. These would be hyper-parameter optimization
replicates.

7. Open Discussion: exploratory v.s.
empirical research

Reproducibility is undeniably bound to a definition of the
scientific method. Inferential reproducibility is based on
concepts such as falsification from Popper (2005), statisti-
cally significant demonstration as described by Fisher (1935)
or increasing confirmation as stated by Carnap (1936). From
this vantage point, methods reproducibility seems but sec-
ondary, playing only an accessory role in the scientific in-
quiry, i.e. in the proper forming of scientific conclusions.

There have been strong debates however in the second part
of the 20th century on the nature of the scientific method.
Kuhn (2012) and Feyerabend (1993) amongst others have ar-
gued that the scientific method described by Popper does not
exist. We can indeed observe a growing number of research
methods to this day, and methods such as exploratory re-
search are widely used and accepted despite their weak com-
pliance with a rigorous application of the scientific method.
As stated by Leek (2017), limiting all scientific work to
the scientific method would pose a risk of hampering the
progress of science.

Let us clarify what we mean by empirical and exploratory
research.

3 39k+ models if we do not normalize the length of training
procedures. ASHA required training 30k models for 15 epochs,
7k+ models for 30 epochs and 1k+ models for 60 epochs. The seed
variations required training 1k+ models for 120 epochs.
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Empirical research: Its goal is to test an hypothesis. It
aims to build a robust corpus of knowledge. It has the
advantage of favoring stable progress of a scientific field.
As previously outlined, inferential reproducibility is strongly
linked to empirical research.

Exploratory research: Its goal is to explore a new sub-
ject and gather new observations. It aims to expand the
research horizon with new corpus of knowledge and favors
fast progress of a scientific field. Methods and results re-
producibility have the advantage of facilitating the diffusion
of knowledge and exploration by providing tools to extend
existing research and are thus strongly linked to exploratory
research.

A too large proportion of the research devoted to exploratory
research increases the risk of seeing lines of research col-
lapsing because of building on non-robust basis, while a too
large proportion devoted to empirical research increases the
risk of hampering the progress by limiting exploration. We
do not know what the proper balance is. We can however
easily claim that the situation of research in deep learning
is currently insufficiently balanced. The risks of line of
research collapses are slowly emerging, as suggested by
recent works (Melis et al., 2018; Henderson et al., 2018; Lu-
cic et al., 2018). Sculley et al. (2018) drew attention to the
problem, controversially arguing that current methodology
in deep learning research is akin to ”alchemy”. In light of
this it is important to understand the tension between ex-
ploratory and empirical research, because although both are
valuable, they do not play the same role. While Batch-Norm
(Ioffe & Szegedy, 2015) was criticized by Sculley et al.
(2018), we can actually use it as an example to demonstrate
the importance of both research methods. Although Ioffe &
Szegedy (2015) include empirical experiments in their work,
it could hardly be considered as empirical research since
the data used to build the evidence would be considered
insufficient to substantially support the claims of a superior
training approach due to the reduction of internal covariate
shift4. This however does not invalidate their impactful con-
tribution, and there is now undeniable confirmations that
Batch-Norm provides improvements in large models, such
as ResNets (He et al., 2016), though likely not due to the
reduction of internal covariate shift (Santurkar et al., 2018).
The risk with exploratory research is that the findings and
conclusions are brittle and may rest on unstated or unveri-
fied assumptions. Consequently using them as a basis for
further exploratory research should be exercised with great
caution. The example of Batch-Norm is interesting here
because, it was revolutionary for the construction of deeper
models, and led to a significant number of works (Salimans

4 According to the position of Vaux et al. (2012) on research
in epidemiology, the small amount of data of most deep learning
paper would not be enough to classify them as empirical research.

& Kingma, 2016; Ba et al., 2016; Cooijmans et al., 2016;
Arpit et al., 2016) that focused on normalizations, ahead
of a good understanding of why Batch-Norm works. The
internal covariate shift assumption was debunked much later
(Santurkar et al., 2018).

Both exploratory and proper empirical research methods
have their role to play in science, and progress in one should
support the other. Recognizing their distinct valuable roles,
instead of confusing them or arguing one is superior to the
other, will certainly lead to a more rational, harmonious, and
efficient development of the field, with earlier detected dead
ends, and less time and effort wasted globally. Ideally, a
promising exploratory work such as Ioffe & Szegedy (2015)
should have led more directly to an empirical work such as
Santurkar et al. (2018). In short, methods and results repro-
ducibility will mostly help exploratory research, speeding
the exploration further with readily available code, while
better experimental design will help support robust conclu-
sions as required by inferential reproducibility. This in turn
will establish solid empirical ground, on which the com-
munity can build further exploration and empirical studies,
with increased confidence.

8. Conclusion
We have highlighted the problem of reproducibility of find-
ings due to improper experimental design and presented
experiments to showcase how current practice methodolo-
gies to benchmark deep convolutional models on image
classification tasks are sensitive to this. It is important to
take into consideration and investigate sources of variability
that should not affect the conclusion. As the community
embraces rigorous methodologies of empirical research, we
believe large scale analysis that include all important sources
of variations will provide new insights that could not be dis-
covered through current common methodologies.

Comparing models on different datasets makes it difficult
to claim absolute superiority, as the rankings rarely holds
across many of them, but it also provides useful information.
As outlined by Sculley et al. (2018), the No Free Lunch
Theorem (Wolpert et al., 1997) still applies and as such neg-
ative performances of a new model should also be reported.
These negative results are crucial for the understanding of
the underlying principles that make a model better than an-
other on a set of tasks. By identifying in what situations a
model fails to deliver on its promises, it becomes possible
to identify the shared properties on the corresponding tasks,
shedding light on the implicit biases that are shared by the
model and the tasks.
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