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Abstract. Downsampling is one of the most basic image processing op-
erations. Improper spatio-temporal downsampling applied on videos can
cause aliasing issues such as moiré patterns in space and the wagon-
wheel effect in time. Consequently, the inverse task of upscaling a low-
resolution, low frame-rate video in space and time becomes a challeng-
ing ill-posed problem due to information loss and aliasing artifacts. In
this paper, we aim to solve the space-time aliasing problem by learn-
ing a spatio-temporal downsampler. Towards this goal, we propose a
neural network framework that jointly learns spatio-temporal downsam-
pling and upsampling. It enables the downsampler to retain the key
patterns of the original video and maximizes the reconstruction perfor-
mance of the upsampler. To make the downsamping results compatible
with popular image and video storage formats, the downsampling results
are encoded to uint8 with a differentiable quantization layer. To fully uti-
lize the space-time correspondences, we propose two novel modules for
explicit temporal propagation and space-time feature rearrangement. Ex-
perimental results show that our proposed method significantly boosts
the space-time reconstruction quality by preserving spatial textures and
motion patterns in both downsampling and upscaling. Moreover, our
framework enables a variety of applications, including arbitrary video
resampling, blurry frame reconstruction, and efficient video storage.
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1 Introduction

Resizing is one of the most commonly used operations in digital image process-
ing. Due to the limit of available memory and transfer bandwidth in compact de-
vices, e.g . mobile phones and glasses, the high resolutions, high frame rate videos
captured by such devices trade off either spatial or temporal resolution [1, 82].
While nearest-neighbor downsampling is the standard operation to perform such
reduction in space and time, it is not the best option: it folds over high-frequency
information in the downsampled frequency domain, leading to aliasing as indi-
cated by the Nyquist theorem [60]. One way to avoid aliasing is to deliberately
smudge high-frequency information by allowing more space and time to capture
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Fig. 1: Effect of learned downsampling and upscaling for space-time reconstruc-
tion. Compared to previous methods, the outputs of our learned downsam-
pler maintain better spatial-temporal patterns, thus leading to more visually-
appealing reconstruction results with better space-time consistency.

a single sample, i.e. by optical blur [26, 52] and motion blur [11, 31, 64], respec-
tively. These spatial and temporal anti-aliasing filters band-limit frequencies,
making it possible to reconstruct fine details during post-capture. Pre-designed
anti-aliasing filters can be employed with the downsampler during capture time;
for instance, using an optical low-pass filter [67] for spatial blur, and computa-
tional cameras such as the flutter shutter [51] camera for temporal blur.

To design the optimal filter for a specific task, it is natural to incorporate the
downstream performance in the loop, where the weights of the downsampling
filter are updated by the objective function of the task [69]. Kim et al . [28]
inverts the super-resolution network as a downscaling encoder. Zhang et al . [91]
proposes to add blur layers before each downsampling operation, and Zou et
al . [94] adaptively predicts filter weights for each spatial location.

For the video restoration task, a major benefit of pre-designing the down-
sampler is to allow the co-design of an upsampler that recovers missing high-
frequency details. While traditional methods mainly focus on upsampling –
super-resolution (SR) in the case of space, and video frame interpolation (VFI)
in the case of time – they assume the downsampler to be a trivial module. The
low-resolution (LR) images for SR tasks are usually acquired by bicubic down-
sampling. For temporal reconstruction tasks like VFI, the low-fps (frames per
second) frames are acquired by nearest-neighbor sampling, which keeps one frame
per interval. Obviously, these operations are not optimal - the stride in time will
lead to temporal aliasing artifacts. This independent tackling of the upsampling
stage makes solving the inverse problem harder, and it is typical to employ heavy
priors on texture and motion, which results in hallucination of lost details. On
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the other hand, jointly handling upsampling together with downsampling would
enable better performance in retaining and recovering spatio-temporal details.
In this paper, we explore the design of a joint framework through simultane-
ous learning of a downsampler and an upsampler that effectively captures and
reconstructs high-frequency details in both space and time.

Based on the above observations, we propose a unified framework that jointly
learns spatio-temporal downsampling and upsampling, which works like an auto-
encoder for low-fps, low-resolution frames. To handle the ill-posed space-time
video super-resolution problem, we first make the downsampler to find the op-
timal representation in the low-resolution, low-fps domain that maximizes the
restoration performance. Moreover, considering the downsampled representation
should be stored and transmitted in the common image and video data for-
mats, we quantize them to be uint8 with a differentiable quantization layer that
enables end-to-end training. Finally, the downsampled frames are upscaled by
our upsampler. To improve the reconstruction capability, we devise space-time
pixel-shuffle and deformable temporal propagation modules to better exploit the
space-time correspondences.

The main contributions of our paper are summarized as follows: (1) We pro-
vide a new perspective for space-time video downsampling by learning it jointly
with upsampling, which preserves better space-time patterns and boosts restora-
tion performance. (2) We observe that naive 3D convolution cannot achieve high
reconstruction performance, and hence, we propose the deformable temporal
propagation and space-time pixel-shuffle modules to realize a highly effective
model design. (3) Our proposed framework exhibits great potential to inspire
the community. We discuss the following applications: video resampling with
arbitrary ratio, blurry frame reconstruction, and efficient video storage.

2 Related Works

2.1 Video Downsampling

Spatial. Spatial downsampling is a long-standing research problem in image
processing. Classical approaches, such as the box, nearest, bicubic, and Las-
nczos [13, 27, 53], usually design image filters to generate low resolution (LR)
images by removing high frequencies and mitigating aliasing. Since most visual
details exist in the high frequencies, they are also removed during downsam-
pling. To address the problem, a series of structure and detail-preserving image
downscaling methods [30, 48, 79] are proposed. Although these approaches can
produce visually appealing LR images, they cannot guarantee that upscaling
methods can restore the original high resolution (HR) images due to aliasing
and non-uniform structure deformation in the downscaled LR images. To boost
the restoration quality, [66, 80] proposed to learn a downsampler network. Pi-
oneering research [73, 74] demonstrates that it is possible to design filters that
allow for reconstructing the high-resolution input image with minimum error.
The key is to add a small amount of optical blurring before sampling. Inspired
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by this, we propose to automatically learn the best blurring filters during down-
sampling for more effective visual upscaling.
Temporal. A simple way to downsample along the temporal dimension is to
increase the exposure time of a frame and capture the scene motion via blur.
The loss of texture due to averaging is traded off for the ability to embed mo-
tion information in a single frame. Blur-to-video methods [2, 22, 23, 50, 62, 90]
leverage motion blur and recover the image sequence, constraining the optimiza-
tion with spatial sharpness and temporal smoothness. To regularize the loss of
texture during capture, Yuan et al . [88] use a long and short exposure pair for de-
blurring, while Rengarajan et al . [54] exploit the idea to reconstruct high-speed
videos. Coded exposure methods replace the box-filter averaging over time with
a broadband filter averaging by switching the shutter on and off multiple times
with varying on-off durations within a single exposure period. This results in
better reconstruction owing to the preservation of high-frequency details over
space. Raskar et al . [51] use such a coded exposure camera for deblurring, while
Holloway et al . [18] recover a high-speed video from a coded low frame rate video.
Our work contributes an extension of this previous work by learning the optimal
temporal filters during downsampling for restoring sharp high-fps videos.

2.2 Video Upscaling

Video Super-Resolution. The goal of video super-resolution (VSR) is to re-
store HR video frames from their LR counterparts. Due to the existence of
visual motion, the core problem to solve in VSR is how to temporally align
neighboring LR frames with the reference LR frame. Optical flow methods
seek to compute local pixel shifts and capture motions. Thus, a range of VSR
approaches [7, 17, 58, 70, 76, 87] use optical flow to estimate motion and then
perform motion compensation with warping. However, optical flow is gener-
ally limited in handling large motions, and flow warping can introduce arti-
facts into aligned frames. To avoid computing optical flow, implicit temporal
alignment approaches, such dynamic upsampling filters [24], recurrent propa-
gation [19, 20, 32, 34, 35], and deformable alignment [8, 9, 71, 77] are utilized to
handle complex motions.
Video Frame Interpolation. Video frame interpolation (VFI) aims to syn-
thesize intermediate video frames in between the original frames and upscale
the temporal resolution of videos. Meyer et al . [40] utilizes phase information to
assist frame interpolation. [25,39] proposed an encoder-decoder framework to di-
rectly predict intermediate video frames. Niklaus et al . [45,46] utilizes a spatially-
adaptive convolution kernel for each pixel for synthesizing missing frames. Sim-
ilar to VSR, optical flow is also adopted in VFI approaches [3,4,21,38,44,65] to
explicitly handle motions.
Space-Time Video Super-resolution The pioneering work to extend SR to
both space and time domains was proposed by Shechtman et al . [61]. Com-
pared with VSR and VFI tasks, STVSR is even more ill-posed since pixels are
missing along both spatial and temporal axes. To constrain the problem, early
approaches [42, 59, 61, 68] usually exploited space-time local smoothness priors.
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Fig. 2: Space-Time Pixel-Shuffle.
It rearranges elements with shape
(r · s2 · C,N,H,W ) into the shape
(C, rN, sH, sW ), which enables effi-
cient sub-pixel convolutions in space
and time (xyt) dimensions.
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Fig. 3: Deformable temporal modeling
with recurrent temporal propagation:
at each step, we model the correspon-
dence between the last output and the
current input with deformable align-
ment to refine the current frame.

Very recently, deep learning-based STVSR frameworks [14, 16, 29, 83–86] have
been developed. These methods directly interpolate the missing frame features
and then upsample all frames in space. Like the video frame-interpolation meth-
ods, the input frames are anchors of timestamps, which limits the upscale ratio
in the temporal dimension. Unlike these methods, we aim to freely resize the
space-time volume with arbitrary scale ratios in this work.

3 Space-Time Anti-Aliasing (STAA)

We first explain the intuition behind STAA: treating video as spatio-temporal
xyt volume and leveraging the characteristic spatio-temporal patterns for video
reconstruction. Towards this end, we propose efficiently utilizing the spatio-
temporal patterns in upscaling with space-time pixel-shuffle. However, naively
regarding time as an additional dimension beyond space has a limitation: the
pixel (x, y) at the i-th frame is usually not related to the same (x, y) at the
i+ k-th frame. To tackle this problem, we model the temporal correspondences
with deformable sampling.

3.1 Intuition

To tackle the aliasing problem, previous methods insert low-pass filters either
in space or time. However, we noticed that the space and time dimensions of
an xyt volume are not independent: as shown in Fig. 1, the temporal profiles
xt and yt display similar patterns as the spatial patches. In an ideal case where
the 2D objects move with a constant velocity, the temporal profile will appear
as a downsampled version of the object [49, 59], as illustrated in Fig. 5. This
space-time patch recurrence makes it possible to aid the reconstruction of the
under-sampled dimension with abundant information from other dimensions.
Based upon this observation, we adopt a 3D low-pass filter on both space and
time to better utilize the correspondences across dimensions. Accordingly, our
upsampler network also adopts the 3D convolutional layers as the basic building
block due to its capability of jointly handling the spatio-temporal features.
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3.2 Module Design

Space-Time Pixel-Shuffle. Pixel-shuffle [63] is a widely-used operation in sin-
gle image super-resolution (SISR) for efficient subpixel convolution. It has two
advantages: the learned upscaling filter can achieve the optimal performance;
computational complexity is reduced by rearranging the elements in LR feature
maps. Inspired by its success in SISR, we extend it to space-time. Fig. 2 illus-
trates the shuffling operation: for an input tensor with shape (r ·s2 ·C,N,H,W ),
the elements are shuffled periodically into the shape (C, rN, sH, sW ).

Naive Deconvolution Is Insufficient. If we simply regard the space-time
upscaling as the reverse process of the downsampling, then conceptually, a de-
convolution should be enough to handle this process. To investigate this idea,
we build a small network using 3D convolutions and the aforementioned space-
time pixel-shuffle layers with a style of ESPCN [63]. Although this network does
converge, it only improves the PSNR by ∼ 0.5 dB compared with trilinear up-
scaling the xyt cube – such improvement is too trivial to be considered effective,
particularly when compared to the success of ESPCN in SISR.

Enhance Temporal Modeling Capacity. As noted above, this suboptimal
result was expected due to the lost correspondences between the i-th and i+ k-
th frames. Thus, 3D convolution alone cannot guarantee a good reconstruction
performance due to its relatively small field of view. Understanding “what went
where” [81] is the fundamental problem for video tasks. Such correspondence is
even more critical in our framework: our STAA downsampler encodes the mo-
tion by dispersing the space feature along the temporal dimension. Correspond-
ingly, during the reconstruction stage, the supporting information can come from
neighboring frames. Motivated by this, we devise a deformable module to build
temporal correspondences and enhance the model’s capability to handle dynamic
scenes: for a frame at time i, it should look at adjoining i−k, . . . i+k frames and
refine the current feature by aggregating the relevance. For efficient implementa-
tion, we split the information propagation into forward and backward directions,
where the temporal correspondence is built and passed recurrently per direction,
as shown in Fig. 3. The refined features from both forward and backward passes
are aggregated to yield the output. Hence, the difficulty of perceiving long-range
information within the 3D convolutional receptive field is alleviated.

4 Joint Downscaling and Upscaling Framework

Our framework architecture is shown in Fig. 4: given a sequence of video frames
V = {Ii}rN1 where each Ii is an RGB image of dimensions sW × sH (r and s as
scale factors), our goal is to design (a) a downsampler which would produce V↓ =
{D(Ii)}N1 where each D(Ii) has the dimensions W ×H, and, (b) an upsampler

which would produce Ṽ = {U(D(Ii))}rN1 where, in the perfect case, V = Ṽ .
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Fig. 4: Our training framework functions as an auto-encoder in which we train
the downsampler D (encoder), and the upsampler U (decoder) jointly in an end-
to-end manner.

4.1 Downsampler

Our downsampler consists of a 3D low pass filter h(·) followed by a downsampling
operation by striding. Given a sequence of input frames V = {Ii}rN1 that needs
to be downsampled, we first convolve it with the filter h as follows: h(V )[t, x, y] =∑

i,j,k∈Ω h[i, j, k] · V [t− i, x− j, y − k].

To ensure that the learned filters are low-pass, we add a softmax layer to
regularize the weight values within the range [0, 1] and the sum to be 1. We then
use striding to produce our desired downsampled frames in both space and time.
An ideal anti-aliasing filter should restrict the bandwidth to satisfy the Nyquist
theorem without distorting the in-band frequencies.

Analysis of learned filters.We present a study based on the frequency domain
analysis of spatio-temporal images to compare different types of low-pass filters.
We analyze the canonical case of a single object moving with uniform velocity.
The basic setup is shown in the first column of Fig. 5, where the top row shows
the static object and the bottom row shows the xyt volume corresponding to
the motion. Figs. 5(a) to (f) show the temporal profiles xt corresponding to
the 1D scanline (marked in red) for various scenarios/filters in the top row
and their corresponding Fourier domain plots in the bottom row. Please check
the supplementary material for more details about how the Fourier plots are
calculated and what the spectra components represent.

In Fig. 5, (a) is a space-time diagram for a static scene (zero velocity), so there
is no change along the time (vertical) dimension. In (b), we can see that the mo-
tion causes a time-varying effect, which results in shear along the spatial x direc-
tion. This shows the coupling of spatial and temporal dimensions. Applying just
the nearest-neighbor downsampling in time leads to severe aliasing, as shown by
duplication of streaks in (c) bottom row. Thus, the plain downsampling method
leads to temporal pattern distortions. Characteristic spatio-temporal patterns
relate to events in the video [10, 47, 89]. Thus, good downsampling methods
should also retain the “textures” in time dimension.

Figs. 5(d), (e), and (f) show the images and frequency plots for the case
of applying Gaussian, box, and our STAA low pass filters, respectively, first,
followed by nearest-neighbor downsampling. The convolution with these filters
causes blurring across space and time dimensions, as shown in the images, and
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Fig. 5: Space-time and Fourier domain plots for a moving object.

since convolution corresponds to frequency domain multiplication, we can see
the benefits of these filters visually in the frequency domain plots. The Gaus-
sian filter reduces the subbands and high spatiotemporal frequencies in (d). The
Box filter along the temporal dimension, which is used to describe the motion
blur [6,15,56], destroys spatial details and attenuates certain temporal frequen-
cies, which causes post-aliasing [41] during reconstruction. Our proposed STAA
filter attenuates high frequencies and the subbands like the Gaussian filter does,
but at the same time, it preserves more energy in the main spectra component,
as shown in (f). This characteristic ensures the prefiltered image maintains a
good spatio-temporal texture, thus benefiting the reconstruction process.

Connection to coded exposure. Traditional motion blur caused by long ex-
posure can be regarded as filtering with a temporal box filter. While long expo-
sure acts as a natural form of filtering during the capture time itself, the box
filter is not the best filter for alias-free reconstruction [41]. Hence, coded expo-
sure methods “flutter” the shutter in a designed sequence to record the motion
without completely smearing the object across the spatial dimension to recover
sharp high-frame-rate images and videos [18,51]. Our learned downsampler can
be regarded as a learned form of the coded exposure: considering the temporal
kernel size as an exposure window, we aggregate the pixels at each time step to
preserve an optimal space-time pattern for better reconstruction.

Differentiable quantization layer. The direct output of our downsampler is a
floating-point tensor, while in practical applications, images are usually encoded
as 8-bit RGB (uint8) format. Quantization is needed to make our downsam-
pled frames compatible with popular image storage and transmission pipelines.
However, this operation is not differentiable. The gap between float and discrete
integer causes training unstable and a drop in performance. To bridge the gap,
we adopt a differentiable quantization layer that enables end-to-end training [5].
More details can be found in supplementary material.
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4.2 Upsampler

Given a sequence of downsampled frames, V↓ = {D(Ii)}Ni=1, the upsampler U
aims to increase the resolution in both space and time. The estimated upscaled
video Ṽ = {U(D(Ii)}rNi=1 should be as close to the original input as possible.

To achieve this purpose, we choose 3D convolution as our basic building block
for the upsampler. The input sequence is converted to the feature domain F by a
3D convolution. We adopt a deformable temporal modeling (DTM) subnetwork
to aggregate the long-range dependencies recurrently. It takes the last aggregated
frame feature DTM(fi−1) at time step i−1 and the current feature fi as inputs,
outputting the current aggregated feature:

DTM(fi) = T (fi, DTM(fi−1)), (1)

where fi is the frame feature at time step i, and T denotes a general function that
finds and aligns the corresponding information to the current feature. We adopt
the deformable sampling function [12,93] as T to capture such correspondences.
To fully exploit the temporal information, we implement a bidirectional DTM
that aggregates the refined features from both forward and backward passes.

The refined sequence is then passed to the reconstruction module that is
composed of 3D convolutions. To fully explore the hierarchical features from
these convolutional layers, we organize them into residual dense blocks [92].
It densely connects the 3D convolution layers into local groups and fuses the
features of different layers. Following the previous super-resolution networks [36],
no BatchNorm layer is used in our reconstruction module. Finally, a space-time
pixel-shuffle layer is adopted to rearrange the features with a periodic shuffling
across the xyt volume [57].

We denote the output just after the space-time pixel-shuffle as F (V↓), where
F (·) is all the previous operations for upscaling the input V↓. To help the main
network focus on generating high-frequency information, we bilinearly upscale
the input sequence and add it to the reconstructed features as the final output:

U(V↓) = V↓ ↑M +F (V↓). (2)

This long-range skip-connection allows the low-frequency information of the in-
put to bypass the major network and makes the major part of the network predict
the residue. It “lower-bounds” the reconstruction performance and increases the
convergence speed of the network.

5 Experiments

We use the Peak Signal-to-Noise-Ratio (PSNR) and Structural Similarity Index
(SSIM) [78] metrics to evaluate video restoration. We also compare the number
of parameters (million, M) to evaluate model efficiency. Please find our datasets
and implementation details in the supplementary materials.
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Table 1: Comparisons with SOTA cascaded video frame interpolation (VFI) and
super-resolution (VSR), and space-time super-resolution (STVSR) methods.
Upscale rate Downsampler Reconstruction Method

Params/M
Vimeo-90k Vid4

time/space time/space VFI VSR PSNR SSIM PSNR SSIM

2×/1×
Nearest/-

XVFI [65] - 5.7 34.76 0.9532 29.21 0.9496
FLAVR [25] - 42.1 36.73 0.9632 29.83 0.9585

STAA Ours 15.9 45.01 0.9912 39.78 0.9926

1×/4× -/Bicubic
- BasicVSR++ [9] 7.3 35.91 0.9383 26.24 0.8214
- VRT [33] 35.6 36.35 0.9420 26.39 0.8248
- RVRT [34] 10.8 36.30 0.9417 26.44 0.8285

STAA Ours 15.9 37.35 0.9629 30.10 0.9517

2×/4×
Nearest/Bicubic

XVFI [65] BasicVSR++ [9] 5.7+7.3 32.41 0.9123 24.90 0.7726
FLAVR [25] BasicVSR++ [9] 42.1+7.3 32.74 0.9119 24.79 0.7678

ZSM [83] 11.1 33.48 0.9178 24.82 0.7763
TMNet [86] 12.3 33.66 0.9200 24.90 0.7803
STDAN [75] 8.3 33.59 0.9192 24.91 0.7832

STAA Ours 16.0 34.53 0.9426 27.31 0.9173

5.1 Comparison with State-of-the-Art Methods

We compare the performance of reconstructing a video in space and time with
SOTA VFI, VSR and STVSR methods. For two input frames, previous VFI
methods generate one interpolated frame along with the two inputs, while our
STAA generates four upsampled ones. For an apples-to-apples comparison, we
only calculate the PSNR/SSIM of the synthesized frames. Quantitative results
on Vimeo-90k [87] and Vid4 [37] are shown in Tab. 1.

Our method outperforms the previous methods by a large margin on all
datasets and settings. For temporal upscaling, adopting the STAA downsampling
and upscaling exceeds the second-best method by 8.28 dB on Vimeo-90k and 9.95
dB on Vid4, which validates the importance of anti-aliasing in the temporal di-
mension. For s×4 spatial upscaling, the STAA pipeline exceeds the SOTA VSR
method under bicubic degradation by 1 dB on Vimeo-90k. For the challenging
case of 4× space/2× time, our method still demonstrates remarkable improve-
ment by 2.4 dB on the Vid4 and more than 1 dB on the Vimeo-90k datasets.
Such significant improvement brought by the co-design of downsampling filter
and upscaling network provides a new possibility for improving current video
restoration methods.

5.2 Ablation Studies

Downsampler. To verify the effectiveness of our learned downsampling filter,
we compare the reconstruction performance by switching downsamplers. Since
the reconstruction capability of the same upsampler architecture is unchanged,
a better reconstruction result means that the downsampler produces a better
space-time representation. We compare our method with other learned down-
sampling networks: CAR [66] and PASA [94] (see Tab. 2). Since the existing
methods only perform spatial down+upsampling learning, we set t = 1 and
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Table 2: Comparison of spatial down-
samplers (1×t, 4×s).
Downsampler Params/M GFLOPs/MP PSNR SSIM

CAR [66] 9.896 2305.77 35.96 0.9400
PASA [94] 0.003 6.144 35.37 0.9524

Ours 0.002 0.081 37.35 0.9629

Table 3: Quantitative comparison of
downsampling filters (2× t, 2× s). The
best two results are highlighted in red
and blue, respectively.

Time Space PSNR SSIM

Nearest Bicubic 28.88 0.9073
Gaussian 37.44 0.9679
STAAno 39.44 0.9775
STAAsoft 40.40 0.9812
STAAquant 40.42 0.9811
STAAada 38.13 0.9720

Input Reconstruction

GT

Nearest+Bicubic

Gaussian

𝑆𝑇𝐴𝐴!"
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Fig. 6: Visual comparison at 2×t/2×s
setting in the left table.

s = 4. Our STAA filter has significantly fewer number of parameters and compu-
tational cost compared with the other two methods while demonstrating better
performance in terms of reconstruction PSNR and SSIM.

We compare with other 3d downsampling filters in Tab. 3. The nearest-
bicubic downsampling, which is adopted by previous video reconstruction tasks,
provides the worst representation among all. For the 2 × t/2 × s setting, the
reconstruction network cannot converge to global optimal. Although it is still
the dominant setting, it cannot handle the temporal-aliasing issue and might
hinder the development of video reconstruction methods. Pre-filtering with a
3D Gaussian blur kernel can alleviate the aliasing problem, which exceeds the
nearest-neighbor downsampling in time and the bicubic downsampling in space.
Still, the Gaussian filter cannot produce the optimal spatio-temporal textures.
Compared with these classical methods, our STAA filters improve the recon-
struction performance by a large margin, as shown in the last four rows. We
believe that our proposed STAA downsampler has the potential to serve as a
new benchmark for video reconstruction method design and inspire the commu-
nity from multiple perspectives.

We visualize the downsampled frames and their corresponding reconstruction
results in Fig. 6. For nearest-bicubic downsampled results, the temporal profile
has severe aliasing. In comparison, the anti-aliasing filters make the downsampled
frames “blurry” to embed the motion information.

Constraints of the encoded frames. The classical downsampling filters, e.g .,
nearest and Gaussian, can generate downsampled frames that resemble the in-
put’s appearance. However, in our auto-encoder framework, there is actually no
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Table 4: Ablation of upsampler design.
Naive 3D Conv 3D RDB DTM Params/M GFlops/MP PSNR SSIM

✓ 0.3 3.2 28.67 0.8536
✓ 11.0 114.4 31.35 0.9016

✓ 5.3 51.7 31.55 0.9032
✓ ✓ 16.0 164.7 32.00 0.9109

Table 5: Upsampling methods.
Method 3D deconv Up+3Dconv ST-pixelshuffle

PSNR 34.53 31.69 34.56
SSIM 0.9409 0.9025 0.9413

guarantee that the encoded frames look like the original input. A straightforward
way is to use the classical downsampled results as supervision, but it might im-
pede the downsampler from learning the optimal spatio-temporal representation.
So we turn to regularize the downsampling filter with following experiments: (1)
no: no constraints; (2) soft : use the softmax to regularize the weights; (3) quant :
add the differentiable quantization layer; (4)ada: dynamically generate filters for
each spatial location according to the input content (also with softmax).

From the last four rows of Tab. 3, all STAA filters outperform the classical
ones for reconstruction. The filter without any constraint is not necessary to be
low-pass. Besides, it may cause color shifts in the encoded frames. Constraining
the filter weights with softmax can alleviate color shifts and improve the recon-
struction results due to anti-aliasing. Still, the moving regions are encoded as
the color difference. Adding the quantization layer does not cause performance
degradation, which validates the effectiveness of our differentiable implementa-
tion. Making the filter weights conditioned on the input content creates visually
pleasing LR frames. However, the reconstruction performance degrades, probably
because the changing weights of the downsampling filter confuse the upsampler.

Comparing different downsampling settings, we observe that our STAA is
more robust to temporal downsampling than previous methods. Specifically, the
reconstruction quality is correlated to the logarithm of the percentage of pixels
in the downsampling representation. More discussions are in our Appendix.
Effectiveness of proposed modules. In Tab. 4, we compare the video re-
construction results and the computational cost with different modules of the
upsampler. We check the FLOPs per million pixels (MP) using the open-source
tool fvcore [55]. From the first row, we can observe that naive 3D convolution
performs bad. Changing it to a more complex 3D residual-dense block (RDB)
improves the performance by 2.68 dB, with a rapid increase of the computational
cost. Although this network still cannot explicitly find the temporal correspon-
dence, the deeper structure enlarges the perceiving area, thus enabling capturing
dependencies with large displacement. In the third row, adopting deformable
temporal modeling (DTM) shows a great performance improvement with rela-
tively low computational cost, which validates the importance of aggregating the
displaced information across space and time. Such spatio-temporal aggregated
features can be effectively utilized by the 3D CNN, resulting in improved PSNR
and SSIM results (see the last row).

In Tab. 5, we compare our space-time pixel-shuffle (ST-pixelshuffle) with
two other upscaling methods: 3D deconvolution, and trilinear upscaling + 3D
convolution. Our proposed space-time pixel-shuffle achieves the best performance
in terms of PSNR and SSIM.
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In:0/4 1/4 2/4 3/4 4/4

Out:0/5 1/5 2/5 3/5 4/5 5/5

Fig. 7: Our methods enable smooth frame rate conversion with arbitrary rates,
e.g . 20 fps (top row) to 24 fps (bottom row). We plot a timeline in the middle and
mark the timestamp of each frame. The generated frames have natural motion
transition and vivid textures, e.g . water flow, reflection, and refraction.

5.3 Applications

The STAA downsampler can be used to reduce the resolution and frame rate of a
video for efficient video transmission. The learned upsampler can also be applied
to process natural videos with a simple modification. Besides, our upsampler
network can also reconstruct crisp clean frames from a blurry sequence.

Video Resampling. The space-time pixel-shuffle module makes it possible to
change the frame rate with arbitrary ratios while keeping the motion patterns.
Previous VFI methods can only synthesize new frames in-between two inputs.
Anchored by the input timestamps, their scale ratio can only be integers. ffm-
peg [72] change frame rate by dropping or duplication at a certain interval,
which changes the motion pattern of the original timestamps and cannot gener-
ate smooth results. Another option is to use frame blending to map the inter-
mediate motion between keyframes while creating fuzzy and ghosting artifacts.
Some softwares adopt optical flow warping, which can synthesize better results
than the above two methods. Still, it cannot handle large motions or morph.

Our upsampler can maintain the space-time patterns when upscaling the
temporal dimension at any given ratio: we show an example of converting 20 fps
to 24 fps (1.2×t) in Fig. 7, which does synthesize the correct motion at the non-
existent time steps, leading to smoother visual results. Our temporal modeling
module can map long-range dependencies among the input frames, and together
with the space-time convolutional layers, can reconstruct sharp and crisp frames.

Blurry Frame Reconstruction. As discussed in Sec 4.1, motion blur is a
temporal low-pass filter. It is a real-world case of our STAA filter: the temporal
kernel size is the exposure time window, and the weights at each time step are
equal. Hence, there is a good reason to believe that our designed upsampler
can be applied on blurry frame reconstruction, which turns the low-resolution
blurry sequence into a high frame-rate and high-resolution clean sequence. We
trained our upsampler with a 4×s, 2×t upscale setting using the REDS-blur [43]
data. We show the restoration images in Fig. 8. Even when the motion is rather
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Overlaid inputs Output: 0 Output: 1 Output: 2 Output: 3

Fig. 8: Our upsampler can also be used for reconstructing sharp and crisp details
from videos with motion-blur. The left column shows the overlaid two LR blurry
inputs, and the right four columns are our reconstruction results with 2× in time
and 4× in space, which recover shapes and textures from motion blur.

large and the object texture is badly smeared, our upsampler does a good job
in reconstructing the shape and structures at the correct timestep.
Efficient Video Storage. Since the downsampler output is still in the same
color space and data type (e.g . 8-bit RGB) as the input, it can be processed by
any existing encoding and compression algorithms for storage and transmission
without extra elaborations. Especially, the downsampled frames still preserve
the temporal connections implying their compatibility with video codecs.

6 Conclusions

In this paper, we propose to learn a space-time downsampler and upsampler
jointly to optimize the intermediate downsampled representations and ultimately
boost video reconstruction performance. The downsampler includes a learned 3D
low-pass filter for spatio-temporal anti-aliasing and a differentiable quantization
layer ensuring the downsampled frames are encoded in uint8. For the upsampler,
we propose the space-time pixel-shuffle to enable upscaling the xyt volume at
any given ratio. We further exploit the temporal correspondences between con-
secutive frames by explicit temporal modeling. Due to the advantages of these
designs, our framework outperforms state-of-the-art works in VSR and VFI by
a large margin. Moreover, we demonstrate that our proposed upsampler can be
used for highly accurate arbitrary frame-rate conversion, generating high-fidelity
motion and visual details at the new timestamps for the first time. Our network
can also be applied to blurry frame reconstruction and efficient video storage.
We believe that our approach provides a new perspective on space-time video
super-resolution tasks and has a broad potential to inspire novel methods for fu-
ture works such as quantization-aware image/video reconstruction, restoration-
oriented video compression, and hardware applications such as coded exposure
and optical anti-aliasing filter.
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