
�
�
�
��
��

��
� �
��	
����

�
�
�
��

�
��
	
�����������

�
��

�
��
� �

�
��������

�

�
�
�
�
�
�
�

��
������

�
�
�
�

The HipHop Virtual Machine

Keith Adams Jason Evans Bertrand Maher Guilherme Ottoni Andrew Paroski
Brett Simmers Edwin Smith Owen Yamauchi

Facebook

{kma,je,bertrand,ottoni,andrewparoski,bsimmers,smith,oyamauchi}@fb.com

Abstract

The HipHop Virtual Machine (HHVM) is a JIT compiler

and runtime for PHP. While PHP values are dynamically

typed, real programs often have latent types that are use-

ful for optimization once discovered. Some types can be

proven through static analysis, but limitations in the ahead-

of-time approach leave some types to be discovered at run

time. And even though many values have latent types, PHP

programs can also contain polymorphic variables and ex-

pressions, which must be handled without catastrophic slow-

down.

HHVM discovers latent types by structuring its JIT

around the concept of a tracelet. A tracelet is approximately

a basic block specialized for a particular set of run-time

types for its input values. Tracelets allow HHVM to exactly

and efficiently learn the types observed by the program,

while using a simple compiler. This paper shows that this

approach enables HHVM to achieve high levels of perfor-

mance, without sacrificing compatibility or interactivity.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors – compilers, incremental compilers,

run-time environments, code generation, optimization

General Terms Design, Languages, Performance

Keywords PHP; dynamic languages; JIT compiler; tracelet

1. Introduction

PHP is a popular language for server-side web application

development [33]. As a late-bound, dynamically typed lan-

guage, PHP is difficult to run efficiently.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

The most popular PHP implementation is a straightfor-

ward interpreter [25]. While interpreters have the benefits of

simplicity and portability, they incur high CPU overheads.

As shown in Section 5, these overheads limit the perfor-

mance of some of the most important and common PHP ap-

plications.

In this paper, we present the HipHop Virtual Machine

(HHVM),1 a JIT and runtime for PHP designed with the

following goals:

1. Compatibility. Run large and complex PHP programs,

whose development history was unrelated to that of

HHVM, without modification.

2. High performance. Efficiently map PHP programs to

the hardware, weakening PHP’s flexible primitives to

cheaper ones where compile-time and run-time analyses

allow.

3. Predictable performance. Provide programmers with a

navigable performance landscape. Local changes should

have local effects, which are unsurprising in direction and

magnitude.

4. Developer productivity. Support the interactive devel-

opment workflow that PHP developers expect, without

human-visible compile or link phases for integrating

changes.

The major contributions of this paper are:

• A novel solution to the type discovery problem faced by

all dynamic language JITs, in the form of tracelets.

• Quantitative evidence of HHVM’s effectiveness at im-

proving performance of industrial, popular open source,

and synthetic workloads.

• Quantitative evaluation of the monomorphicity of a

multi-million line, real-world PHP application.

• Enumeration of the challenges PHP presents to efficient

implementation, and a possible set of solutions.

• Overall presentation of the design and implementation

of an industrial-strength, server-side dynamic-language

virtual machine.

1 HHVM is available as open source from [11].

2. Motivation for JIT Compilation

The HipHop compiler (HPHPc) [38] had greatly improved

the performance of PHP applications before work began

on HHVM. HPHPc uses ahead-of-time techniques to trans-

late PHP into C++ and then produce a native binary. While

HPHPc’s performance gains over interpreted implementa-

tions are impressive, the ahead-of-time model introduces

both performance limitations and operational complexity

which motivated the development of HHVM.

2.1 Performance Limitations

Much of HPHPc’s power to accelerate PHP comes from

type inference, which allows static binding of many dynamic

invocation sites. The undecidability of type inference lim-

its the power of this technique in an ahead-of-time setting.

Since the directions of many program branches are unde-

cidable, unknown types frequently taint the data-flow graph,

preventing optimization. As a just-in-time compiler, HHVM

has access to the runtime values flowing through the pro-

gram. In particular, the tracelet abstraction, described in de-

tail in Section 4.2, enables HHVM to exploit type regulari-

ties that cannot be proven statically.

2.2 Operational Issues

Ahead-of-time compilation forces developers to compile and

link after every program change. Since HPHPc relies on so-

phisticated global analysis, its compile-link cycle consumes

tens of minutes for multi-million line applications, even after

considerable work on compile performance. This is a poor fit

for the rapid prototyping style to which PHP is suited.

To avoid these long compile cycles, HPHPc users develop

in a simple interpreter called HPHPi. HPHPi is built along-

side HPHPc, and shares as much of its runtime as possible.

However, HPHPi and HPHPc are very different execution

engines, and they often execute PHP differently. This gives

rise to a difficult class of application-level bugs, which hide

under the interpreter, and appear only when compiled. Since

compilation is not part of the every-day workflow of devel-

opers, these bugs are often discovered only at deployment

time, sometimes after code has already been released.

A JIT compiler like HHVM can serve both developers’

desires for rapid iteration and the production environment’s

needs for high performance, while avoiding the correctness

risks of developing and deploying in different environments.

3. PHP Challenges

PHP presents some difficulties for HHVM’s goals by its very

nature, as discussed below.

3.1 Features

PHP is a large language. In addition to its original procedural

features, it has acquired classes, interfaces, traits, exceptions,

generators, and closures. Any language implementation cov-

ering all these features is a large engineering effort.

3.2 High Performance

PHP has evolved under pressures that favor developer pro-

ductivity over machine efficiency. Thus, the language resists

efficient implementation. Two of the more prominent obsta-

cles to performance are dynamic types and late binding.

Dynamic types. All user-visible PHP values share the

same union type, which spans integers, booleans, floating-

point numbers, strings, PHP’s idiosyncratic “array” aggre-

gate type, and user-defined classes.

Late binding. Every web request in PHP begins with

an empty heap and global namespace aside from a small

number of system-defined variables, functions, and classes.

The mapping of names to functions and classes is populated

dynamically, by unrestricted, Turing-complete PHP code.

3.3 Predictable Performance

When optimizing towards benchmarks, it is tempting to in-

troduce a patchwork of targeted optimizations to the com-

piler. If these optimizations are too narrow, the application

programmer is left with a peaky performance landscape,

with few high peaks and many broad, low valleys. Realizing

the best performance on such a VM can require unnatural

coding, and intimate understanding of JIT internals. HHVM

accepts, wherever possible, a lower performance ceiling in

return for a higher performance floor. This goal particularly

drives the trade-offs relating to tracelets in Section 4.2.2.

HHVM also strives to keep the development environ-

ment’s performance as close to production’s as possible.

This property makes gross, naked-eye performance feedback

a part of developers’ regular edit/run/debug cycle.

3.4 Rapid Development

During development, it is common for developers to edit

code between server requests and expect to exercise the new

code immediately. When code is changed between requests,

some old code is invalidated, and new code must be gen-

erated. To maintain interactive performance, HHVM avoids

human-observable compilation overheads where possible.

4. The HipHop Virtual Machine

HHVM implements a virtual instruction set called HipHop

bytecode (HHBC). HHVM’s front-end parses and analyzes

PHP source code, compiling into HHBC. HHVM’s JIT com-

piler, interpreter, and runtime then execute HHBC code. In

general, the JIT compiler is used rather than the interpreter

for most execution. Figure 1 depicts the high-level design.

PHP is most commonly used in server-side web appli-

cations. We distinguish two important PHP use cases. In the

production use case, the same (unmodified) PHP source files

are executed repeatedly to serve web requests originating

from real end users. To perform well in production envi-

ronments, HHVM employs some of the same ahead-of-time

techniques that the HPHPc compiler pioneered [38].

Figure 1. HHVM’s production compilation pipeline.

In the development use case, a developer runs his/her pri-

vate copy of the PHP source files (commonly referred to as a

sandbox). During development, PHP source files can change

in between requests as the developer iterates, tests, and tunes

their code. To preserve PHP’s developer workflow in this

scenario, HHVM was built to accommodate incremental re-

compilation as source files change. This disallows some of

the global optimizations performed in the production sce-

nario, while still providing good responsiveness between re-

quests by avoiding recompilation of the entire application.

4.1 HipHop Bytecode

HipHop bytecode (HHBC) defines an instruction set and a

metadata schema for serializing PHP programs into a form

that is easy for interpreters and just-in-time compilers to con-

sume. Each HHBC instruction is encoded using one or more

bytes, where the first byte is the opcode and any subsequent

bytes encode immediate arguments. HHBC’s metadata en-

code function and class definitions from a source file using

the Func and PreClass structures, respectively. The meta-

data also include tables encoding identifiers and string lit-

erals, mappings to source files and line numbers, and other

data needed by HHVM during execution.

HHVM is a stack-based virtual machine. HHBC instruc-

tions push and pop temporary values on the evaluation stack.

It is a HHBC invariant that, at each instruction boundary in

the bytecode, the depth of the evaluation stack is the same

for all possible control-flow paths. Local variables are re-

ferred to using integer IDs and are assumed to be live for the

duration of the function.

HHBC serves as a decoupling boundary between the

frontend and backend of HHVM. The frontend can trans-

form PHP into HHBC without executing it, and the back-

end can execute HHBC without access to the original PHP

source files. This separation keeps HHVM’s backend iso-

lated from various frontend details, including PHP’s evalua-

tion order, control-flow semantics, and exception handling.

4.1.1 Late Binding

Reflecting PHP’s untyped, late-bound nature, HHBC is gen-

erally untyped and uses names to refer to functions, classes,

constants, and properties. HHBC supports converting a sin-

gle PHP source file into bytecode and metadata in isolation

without the need to access the definitions or contents from

other source files. As a consequence, HHBC’s PreClass

structure only captures the contents of the class that are di-

rectly declared in the class statement from the source file.

PreClasses record the names of referenced classes, traits,

and interfaces, but not the contents of their definitions.

4.1.2 Program Values

PHP’s unique reference feature (“&”) has far-reaching ef-

fects on PHP values and parameter passing, described in

detail in [34]. HHBC’s instruction set encodes where ref-

erences may and may not appear on the evaluation stack,

which allows the JIT to generate more efficient code in the

common case where references are impossible. HHBC en-

forces this by annotating each instruction’s stack outputs and

inputs with flavors. HHBC invariants ensure that, at each

point in the bytecode, the evaluation-stack depth and the fla-

vor of each live evaluation-stack slot are statically known

and consistent with the expected flavors of the instructions

consuming them.

4.1.3 Calling Convention

As an emergent consequence of references and late binding

of function calls, HHVM’s calling convention is complex.

As shown in Figure 2, it is not statically knowable which

positional arguments are passed by reference and which are

passed by value. Because the by-reference or by-value nature

of each positional parameter is denoted in the callee and

not at the call site, and because the callee is not generally

statically known at a call site, PHP call sites must identify

the function to be called before evaluating parameters.

To capture these semantics, HHBC splits the calling pro-

cess into three phases:

1. Identify the callee. HHVM resolves the callee function

by whatever means are needed. HHVM records the iden-

tity of the function for which arguments are being evalu-

ated in an activation record on the evaluation stack.

2. Evaluate positional arguments. With the identity of

the function established, HHVM can determine which

if (date(’l’) == ’Friday’) {

function weirdArg(&$x) { $x = ’surprise!’; }

} else {

function weirdArg($x) { return $x + 1; }

}

$init = 13;

weirdArg($init); // Ref on Fridays; value otherwise

Figure 2. Value/reference semantics for positional argu-

ments are undecidable.

$a = goldbachs_conjecture() ? 3.14159 : "a string";

Figure 3. PHP type inference is undecidable.

arguments are to be passed by reference and which are

to be passed by value.

3. Transfer control. Finally, control can be transferred to

the destination function.

4.2 JIT Compiler

HHVM’s JIT compiler is responsible for discovering the

source program’s latent types, and using these types to gen-

erate efficient machine code.

4.2.1 Type Discovery

Zhao et al. [38] identified type inference as a key enabler

of PHP optimization. If static analysis of the program can

bound the set of types for a program value, the value can

be represented untagged, or in a register, and operations on

the value can be statically bound. In dynamic languages

like PHP, offline type inference is generally undecidable.

Consider the PHP program fragment in Figure 3. In order

to resolve $a’s type, the program must actually be run. But

Goldbach’s Conjecture is either true or false, so for all real

executions $a is either always a floating-point number or

always a string.

While Figure 3 may seem contrived, similar situations

arise from data pulled from databases (where the type is sta-

ble because the database schema does not change often),

or from builtin runtime primitives. For example, the PHP

builtin strlen returns an integer when passed a string, but

it returns the special value null when passed an array. Cor-

rectly functioning applications, however, only pass strings

to strlen, so they only see integers returned from it. In all

these situations, the program has extremely predictable types

that cannot be resolved via static analysis. As demonstrated

in Section 5.4, programs normally have latent types, even

when those types cannot be statically inferred.

4.2.2 Tracelets

HHVM unifies its handling of control-flow and type dis-

covery by compiling at an unusual granularity: rather than

compiling whole files, methods, or traces as most dynamic-

Algorithm 1 Tracelet construction. vstate contains a partial

symbolic model of program state, mapping storage locations

to types.

repeat

preState← vstate

for all i ∈ inputs(pc) do

if not i ∈ vstate then

vstatei ← type of i

guardsi ← type of i

end if

if vstatei is indeterminate then

break

end if

end for

for all out ∈ outputs(pc) do

vstateout ← inferType(pc, out, vstate)
end for

postState← vstate

traceletInstrs.append(

TraceletInstr(pc, preState, postState))

pc← advance(pc)
until pc is control flow

return Tracelet(traceletInstrs, guards, vstate)

language JITs do, it operates on tracelets. A tracelet is a

single-entry, multiple-exit region of the source program, an-

notated with the types of all input values that flow into the

region. The JIT symbolically executes the HHBC instruc-

tions comprising the tracelet, performing a single-pass, for-

ward data-flow analysis. This symbolic execution annotates

each HHBC instruction with input types and output types.

Tracelet formation is summarized in Algorithm 1.

Any input types that were not derived internally from the

symbolic execution are resolved by observing the program’s

run-time state at JIT-compile time. The JIT then emits code

that uses this observed state as a prediction for the types that

the program will see going forward. In other words, HHVM

uses the run-time types observed at JIT time as predictors for

all future run-time types. As shown in Section 5.4, this crude

heuristic is wildly successful, because programs tend to be

overwhelmingly monomorphic. This heuristic also obviates

expensive value-profiling approaches that build up a high-

resolution statistical model of program types [6, 26].

When generating machine code for a tracelet, the JIT

must first guard to ensure that the preconditions that drove

the symbolic execution of the tracelet hold at run time. If the

guards pass, the JIT compiler is free to optimize the tracelet

body with all the type information harvested during sym-

bolic execution, as well as to perform classic compiler opti-

mization (constant propagation, dead code elimination, etc.)

within the tracelet body. Since Algorithm 1 constructs each

TraceletInstr with sufficiently precise types for its in-

puts, the JIT never needs to emit completely generic machine

code; guards instead direct execution to a type-specialized

version.

function max2($a, $b) {

return $a > $b ? $a : $b;

}

echo max2(2, 1) . "\n";

echo max2("wxy", "abc") . "\n";

Figure 4. Example illustrating control-flow and polymor-

phism.

.function("max2")

a: CGetL $b

CGetL $a

Gt

JmpZ c

b: CGetL $a

RetC

c: CGetL $b

RetC

Figure 5. HHBC for max2. Tracelet entry points have been

marked with labels a, b, and c.

Figure 6. Contents of code cache after compiling the first

tracelet of Figure 5.

4.2.3 Leaving Tracelets

At tracelet end, HHVM uses the well-known technique of

chaining to transfer control to the tracelet’s successor(s). In

the worst case, this involves a simple branch instruction. In

the common case where a tracelet’s successor is compiled

immediately after the first run of the tracelet, execution flows

through the bottom of the predecessor into the successor.

When a tracelet guard fails for the first time, HHVM

branches to a recovery routine that simply reruns Algo-

rithm 1, forming a new tracelet for the new run time types

observed. The guard failure branches are then patched to

point to the new tracelet translation. So, for modestly poly-

morphic code, the chain of tracelet guards performs a linear

search for a machine code fragment that matches the current

input types. Nearly all searches terminate after considering

one or two candidates, as shown in Section 5.4. To limit the

Figure 7. Contents of code cache after execution of

max2(2, 1).

Figure 8. Contents of code cache after execution of

max2("wxy", "abc").

possible explosion of such machine fragments for tracelets

with many, highly polymorphic inputs, we empirically de-

termined to limit the length of such tracelet chains at 12. In

the very rare case that the search fails after 12 candidates,

HHVM resorts to the bytecode interpreter.

4.2.4 Tracelet Example

As a concrete example of the tracelet mechanism, consider

the PHP fragment in Figure 4. It defines a max2 function that

computes the greatest of two input values using PHP’s poly-

morphic > operator. When applied to integers or floating-

point values, > has the usual numeric meaning, but when ap-

plied to strings it performs a lexical comparison. HHVM’s

front-end converts the body of max2 to the HHBC code

shown in Figure 5.

The first execution of max2 passes two integers. Algo-

rithm 1 creates a tracelet that begins at the function’s head

and continues until the first control-flow instruction. The

tracelet guards on the types of its two inputs, so that in the

body it can use the hardware’s integer comparison instruc-

tion to drive the branch. Guard failure chains to helpers that

recompile this tracelet. Since there are not yet any compi-

lations for either successor of the tracelet, both sides of the

branch temporarily point to helpers that will compile the re-

spective successors. This leaves the code cache in the state

shown in Figure 6.

In the example execution of max2(2, 1), the JmpLe

is not taken, so HHVM compiles the tracelet starting at b

as depicted in Figure 7. The return instruction in b ends

tracelet formation after just two instructions. The tracelet

again guards on the types of both local variables since the

compiler needs to know if any reference-counting operations

are required when leaving the function’s scope. The prede-

cessor’s branch is fixed up to point to the new compilation

of b; since the two were compiled back-to-back, no branch

is necessary, and execution flows from a1 directly into b1.

At completion of the first call to max2, the code cache looks

like Figure 7.

When the program invokes max2 on strings, the first

guard in a1 fails, causing a to be recompiled. Algorithm 1

runs again, producing a2, specialized to operate on strings.

a2 then jumps to b1, where the first guard fails, causing a

recompilation of b. b2 is created, which releases references

to the strings in $a and $b and then returns the value in $b.

This leaves the code cache in the state shown in Figure 8.

Any further invocations of max2 on integers or strings

with the first value greater than the second will execute

rapidly now, without any further compilation. As new types

are encountered, a’s tracelet chain will grow until it captures

the types the program naturally uses, or until it hits the

configurable limit for tracelet chain length.

4.2.5 Tracelet Summary

Tracelets offer the following benefits:

1. Complete type specialization. Machine code only ever

operates on fully disambiguated PHP values; integers

are added directly in registers with the hardware’s add

instruction.

2. Compact machine code in presence of polymorphism.

While polymorphism is unusual, it does occur. Trace

trees [13] can also achieve complete type specialization,

but they can also lead to code explosions [3]. A control

flow graph like A1 → A2 → . . . An that experiences two

different morphs would lead to 2
n machine code transla-

tions under trace trees, while it produces 2n translations

in the tracelet approach.

3. Graceful degradation in presence of polymorphism.

When the JIT’s type guesses are violated at run time,

HHVM does not discard entire method bodies and re-

compile from scratch. Instead, it slows down the poly-

morphic site by a single extra guard.

4. Low, predictable compile overheads. The JIT compiler

is operating on a very small scope, usually smaller than a

source basic block, so super-linear algorithms still com-

plete quickly.

5. Code locality. Dead code is eliminated as an emergent

property, because it is never reached. We pack compiler

output into the shared cache of compilations sequentially.

This has many favorable consequences. Code that is run

early is also run often, so the first few pages of the

compilation cache are much hotter than the last pages.

This provides a kind of emergent hot/cold splitting. Since

the JIT interleaves the bodies of methods, the body of a

caller often “wraps” the body of methods that it calls in

a natural way, which optimizes the layout of single-caller

methods.

In return, tracelets incur the following costs:

1. Limited compiler scope. General compiler optimiza-

tions are only applicable intra-tracelet. Even loop induc-

tion variables are written back to memory at back edges

and re-read at loop heads, for example.

2. Frequent, redundant guards. Every tracelet checks the

types of its inputs. If a local variable is frequently ac-

cessed, and its type could not be inferred ahead-of-time,

it may get checked once for each tracelet entered. While

some limited inter-tracelet analysis can, in theory, exploit

post-conditions of the predecessor to skip guards in the

successor, we have not been able to show a performance

win in real PHP programs from this technique and have

avoided it for sake of simplicity.

3. Inability to use common compiler infrastructure.

LLVM [19] has democratized high-quality compiler

infrastructure to a great extent, but it is inherently a

method-at-a-time system. At present, LLVM is not geared

towards compiling “open” method bodies of the sort re-

quired by HHVM’s tracelet approach.

4.2.6 Tracelet JIT Internals

The HHVM JIT compiles tracelets into machine code by

representing the tracelet’s HHBC instructions and type

information in a lower-level intermediate representation,

called HHIR. HHIR is based on the static single assign-

ment (SSA) form [10], and was specifically designed for

HHVM. HHIR’s key design decisions include:

1. Typed: Given the JIT philosophy of only performing

computation on specialized types, HHIR is a typed rep-

resentation (unlike HHBC).

2. PHP-aware: HHIR enables not only traditional compiler

optimizations, but also important PHP-specific optimiza-

tions.

3. Portable: HHIR is machine-independent, which reduces

the complexity of targeting different architectures. The

JIT currently supports x86-64, and an ARMv8 backend

is under development.

4. Low-level: Despite being machine-independent, HHIR is

close enough to typical microprocessors to enable effi-

cient machine code generation directly from HHIR. This

allows HHVM to produce efficient code in the absence of

target-specific representations and optimizations.

Once a tracelet is translated to HHIR, a number of clas-

sic compiler optimizations are performed, including con-

stant propagation and folding, common-subexpression elim-

ination, dead code elimination, and jump optimizations.

In addition to these classic optimizations, HHIR also sup-

ports several unusual optimizations. A tracelet-specific opti-

mization is guard relaxation, which attempts to unspecialize

tracelet guards for values that only feed instructions that do

not benefit from more precise type information. Guard relax-

ation increases the rate of guard success, reduces the number

of guards needed, and reduces the length of tracelet chains.

Another important optimization that we identified for

PHP is reference-counting elimination. PHP uses reference-

counting [9] to manage memory. Unfortunately, naive ref-

erence counting is costly, and there are several ways in

which a program can observe PHP’s use of reference count-

ing [34]. To cope with this, HHIR explicitly represents ref-

erence count manipulations, and eliminates them when an

optimization pass proves them to be unnecessary.

After HHIR optimization, the compiler performs register

allocation via the extended linear scan algorithm [35], and

finally generates machine-code.

4.3 Runtime System

Solving PHP’s unique challenges requires careful attention

in the runtime library, affecting HHVM’s loading and exe-

cution of functions, classes, constants, and other PHP con-

structs.

4.3.1 The Empty World Programming Model

PHP’s programming model starts every web request in an

“empty world”, with a namespace containing only a smat-

tering of special global variables and the standard library.

It is the PHP code’s responsibility, on each request, to bind

names to the user-defined classes, functions, and constants

that it wishes to use. In a multi-million line codebase, with

many tens of thousands of classes and functions, this me-

chanical process of reconstructing a mostly-identical global

namespace imposes a significant overhead on each request.

This empty-world model means that PHP’s binding of

names to program objects is both dynamic (not determinable

at compile time) and fluid (liable to change from request to

request). Developers may define multiple classes or func-

tions with the same name, as long as at most one of each

name is loaded in a single request. As shown in Figure 2, the

Figure 9. Illustration of the different definitions of the same

name available in different threads. The definition of the

class User is at offset 1 in every thread’s target cache, while

the definition of the function load friends is at offset 3.

Threads 0 and 1 share the same definition of User and thread

2 references a different User class. Threads 0 and 2 share the

same definition of the load friends function, while thread

1 has no definition.

developer may bind different definitions to the same name

along different control flow paths. HHVM fully supports this

dynamicity, while aggressively optimizing performance for

the common case.

4.3.2 Request-Local Lookup: the Target Cache

The definition of a class can vary from request to request,

so without some kind of global analysis, HHVM needs

an efficient per-request map from names to entities (func-

tions, classes, and constants). HHVM’s solution is the target

cache, a request-local section of memory with a globally de-

fined layout. The target cache holds information that must be

quickly accessible but may differ between requests, as illus-

trated in Figure 9. HHVM allocates fixed offsets in the target

cache to represent a given named entity. In this example, off-

set 1 has been chosen to refer to the User class, and offset 3

refers to the load friends function. Thread 1 does not

have an entry at offset 3, which means that load friends

has not yet been defined in thread 1’s request. This shared

layout allows HHVM to emit code that can trivially look up

the definition of a given class or function, regardless of how

or when it was defined.

4.3.3 PreClasses and Class Reification

As mentioned in Section 4.1, HHVM’s PreClass structure

encodes the contents of a class statement from the source

file. PreClasses record the names of referenced classes,

traits, and interfaces, but not the contents of the correspond-

ing definitions, which may possibly be defined in other

source files.

When a class definition from a source file is loaded at run

time, HHVM accesses the PreClass and looks up all the

parent classes, interfaces, and traits transitively and builds

a Class structure that represents the full class with all

its inherited methods, properties, constants, etc. HHVM’s

backend primarily uses Classes, and PreClasses are typi-

Figure 10. Example illustrating the relationship between

PreClasses and Classes. The files entity.php and

entity-new.php each define their own version of the

Entity class, and the file user.php defines a User class

that derives from Entity. This results in two distinct defini-

tions of a class named User from a single PreClass.

cally only used when loading PHP source files and reifying

Classes.

This split minimizes the amount of recompilation needed

when changing a single file. Consider a scenario where

two different definitions of a class Entity exist, in files

named entity.php and entity-new.php. A third file,

user.php, contains a class User, which extends entity.

Figure 10 shows one potential outcome after a few different

requests have executed. Notice that there are two different

instantiations of the User class, each referencing one of the

two Entity classes. Both User classes, however, reference

the same PreClass.

If the developer now changes entity.php and reloads a

page referencing that file, HHVM would only have to recom-

pile entity.php. The User class is reified by combining

the User PreClass, created completely from user.php,

with its parent, the Entity Class. This ability to incremen-

tally recompile a subclass of a popular parent class, with-

out recompiling all files depending on the parent class, helps

greatly with interactive performance in sandbox mode.

4.3.4 Fast Property Access via Func Cloning

Another challenge caused by PHP’s malleable class names-

pace is that a single textual definition of a PHP method may

have different behavior between requests. For example, con-

sider the PHP fragment of Figure 11.

The getName() method simply returns the object’s name

field. However, because of the dynamic definition of User’s

parent class, the name field may reside at different offsets

from the beginning of the object in different requests. Per-

forming a dynamic lookup of name on every run time access

to the field would be quite expensive relative to a simple

offset-load.

To resolve this problem, HHVM uses Func cloning. As

mentioned in Section 4.1, HHVM uses the Func structure

for representing a PHP function or method. Cloning a Func

if (f()) { class Named { var $name; var $a; } }

else { class Named { var $a; var $name; } }

class User extends Named {

function getName() {

return $this->name;

}

}

Figure 11. Accessing a property at an undecidable offset.

means creating a copy that shares most, but not all, of its

attributes with the original. Every Func created in the system

has a unique, 32-bit ID. When reifying a PreClass into a

Class, the runtime ensures that each combination of base

class and subclass has a unique cloned Func for each of its

methods. The ID of each of these Funcs may be combined

with a bytecode offset to form a SrcKey, which uniquely

identifies a program location.

By ensuring that a given SrcKey uniquely identifies both

a method and certain attributes of the class containing that

method, HHVM is able to generate significantly more effi-

cient code. Returning to the example of the name property,

this allows HHVM to assume that the property referred to by

the expression $this->name will always live at the same

fixed offset from the beginning of the object. If the User

class is ever instantiated with a different parent class in a

different request, the new Func for User::getName() will

have a different ID, making it a distinct source location from

the JIT’s perspective.

4.3.5 Ahead-of-Time Analysis

The target cache and Func cloning are critical for good per-

formance in sandbox mode, but in production mode HHVM

can do even better. Production mode begins with an ahead-

of-time global analysis. All the PHP in the codebase is

parsed and loaded into memory. The types of local vari-

ables, object properties, function return values, and other

program locations are inferred when possible, classic com-

piler optimizations such as dead code elimination and con-

stant propagation are performed, and the resulting bytecode

and metadata is serialized into an on-disk database called

the repo. In production mode, the repo is treated as the only

PHP code that exists. If there is only one class in the repo

named UserProfileLoader, HHVM can assume that any

reference to a class named UserProfileLoader will either

use the class from the repo or throw a fatal error because the

class has not yet been loaded. If there is only one function in

the repo named check friend count and it always returns

an integer, HHVM can assume that any call to a function

names check friend count will either throw an exception

or return an integer.

The ability to use these assumptions at run time allows

HHVM to emit more efficient code. The most valuable of

these optimizations is the ability to statically bind method

calls. However, there is a penalty to flexibility: safely de-

pending on these assumptions requires banning constructs

such as eval() in production mode. While a very limited

form of eval() is theoretically possible in production mode,

allowing user code to arbitrarily create new classes and func-

tions at run time could violate invariants discovered during

ahead-of-time analysis.

4.3.6 Autoloading

Production mode allows HHVM to make powerful assump-

tions, but it still must handle the “empty world” starting state

of each request. If HHVM assumes that uniquely-defined

functions and classes exist from the beginning of the request,

it could visibly change program behavior. However, the per-

formance gained by avoiding function and class loading on

every request is too significant to ignore.

HHVM makes it possible for PHP programmers to avoid

these overheads by extending PHP’s autoloading function-

ality. PHP already allows registration of an autoloader call-

back in user code, which the runtime calls when a non-

existent class is referenced. The autoloader function is given

the name of the missing class and is responsible for loading

the file defining that class. Once the autoloader returns, the

operation requiring the class continues. HHVM supports the

standard autoloader, and optionally extends the facility with

support for undefined functions and constants as well.

HHVM also uses information from ahead-of-time analy-

sis to tell the runtime which classes and functions are unique

and persistent. We call a class or function unique if it does

not share its name with any other class or function, and per-

sistent if it is defined unconditionally at the top level of a file,

and the transitive closure of classes, interfaces, and traits it

depends on are also persistent.

Armed with information about which entities are unique

and persistent, the runtime can construct a list of classes

and functions which are to be treated as though they are de-

fined from the beginning of time. This slightly modifies the

“empty world” assumption, so HHVM users must opt into

this behavior. Facebook’s production experience has been

that this greatly reduces the fixed startup costs associated

with each request.

5. Evaluation

We assess HHVM’s performance by comparing it to php,

the popular interpreter-based implementation that serves as

a de facto language standard [25], and to HPHPc, the PHP-

to-C++ translator previously developed and used at Face-

book [38]. We report the performance of each engine in

terms of its speedup over php. To avoid confusing the lan-

guage with one of its implementations, we write “PHP”

when referring to the language, independent of its execution

engine, and “php” to refer to the standard, interpreted imple-

mentation. Unless stated otherwise, all experiments are per-

formed with HHVM 2.4.1, php 5.5.9, and the last version

of HPHPc that can be built from the HipHop source tree.

The operating system is the 64-bit version of Ubuntu 12.04

server. The system is a 4-vCPU VMware Fusion [1] 6.0.4

virtual machine, running on an 8-core Intel(R) Core(TM) i7-

4960HQ CPU @ 2.60GHz.

5.1 Microbenchmarks

To measure the performance of each PHP engine in isola-

tion, we use a suite of 37 microbenchmarks. This suite in-

cludes the popular Programming Language Shootout bench-

marks [32] and a hand-constructed collection of benchmarks

called vm-perf, which is designed to exercise aspects of

whole-program behavior that are not stressed by typical

small benchmarks. For example, since HHVM seeks good

performance on large PHP programs, vm-perf/big is an

artificial program that is too large to fit in instruction cache.

Similarly, vm-perf/cache get scb is a 3,000-line kernel

extracted from an old version of Facebook’s data-fetching

layer, which once accounted for a significant fraction of

Facebook CPU utilization.

The results for php, HPHPc, and HHVM in both its

sandbox (HHVM) and production (HHVMr) configurations

are summarized in Figure 12. HHVM achieves a geometric

mean speedup of 2.64× in sandbox mode and 2.79× in pro-

duction mode, compared to HPHPc’s speedup of 1.93×. On

a few microbenchmarks, php outperforms HHVM due to su-

perior implementations of a few runtime library functions:

regex dna is dominated by regular expression matching

(preg match and preg replace), and revcomp is domi-

nated by wordwrap, which HHVM implements in pure PHP

and php implements natively. The main loops of dyncall

and mandelbrot 12 are written in the top level scope out-

side of any function bodies, which HHVM does not JIT due

to aliasing issues unique to that scope. HHVM outperforms

php on benchmarks that depend mostly on the PHP execu-

tion engine, such as binarytrees and spectralnorm.

5.2 Open-Source Applications

As a test of both language compatibility and performance,

we evaluate three popular PHP applications. These experi-

ments use the nginx web server [22], configured to use ei-

ther php or HHVM via FastCGI. For each application, we

followed the recommended installation procedure, gener-

ated some content (several wiki pages for Mediawiki, sev-

eral photos and documents posts for Wordpress and Dru-

pal), and benchmarked the end-to-end latency visible from

a client running on the host system via ab [31].

The results of this experiment are summarized in Fig-

ure 13. In sandbox mode HHVM attains a 1.6× speedup

over php. HPHPc is absent from these results because it can-

not run these applications, and HHVM cannot run Drupal

correctly in production mode.

2 The mandelbrot 1a benchmark was mechanically derived from

mandelbrot 1 by moving its body into a function. All three new engines

run mandelbrot 1a much faster than php.

������

�������

������

�����

����

��

� � 	
 � � � � �� �� �� �	

�
��
�
�
��
��
�
��
��
�
�
�
��
�
��
��
��
�
�
��
��

�����������������������

� ��!��

������

Figure 15. Distribution of tracelet-chain lengths. Note the

log scale. Static refers to the entire population of compiled

tracelet chains, and dynamic counts the number of steps

in tracelet searches at run time. 99.5% of static tracelet

chains have two or fewer members. 99.3% of tracelet walks

conclude after considering 4 or fewer tracelets.

of the three experiments, HHVM has increased its efficiency

1.8× since it was directly comparable to HPHPc. Com-

pounding this with its 10% initial advantage over HPHPc,

we estimate that HHVM is twice as CPU efficient as HPHPc.

Using a similar methodology, Zhao et al. estimated in [38]

that HPHPc was approximately 5.8× more efficient than

the significantly older version of php that HPHPc replaced.

While this indirect comparison is inherently problematic, it

suggests that HHVM runs facebook.com 11.6× more effi-

ciently than the version of php that HPHPc replaced.

5.4 Tracelet Polymorphism

Tracelet compilation is most effective when most code has a

small number of latent types. In a tracelet-based JIT, poly-

morphism manifests as long tracelet chains. To test the hy-

pothesis that short chains are predominant, we instrumented

a build of HHVM and examined the occurrence of long

tracelet chains running facebook.com.3 We summarize the

results of this study in Figure 15.

Examining the static count of tracelet chains, short chains

dominate: 97% of chains have length one, and 99% have

length one or two. This data confirms the hypothesis that

almost all code receives a narrow set of types.

Examining the dynamic occurrence of tracelet chains,

we observed that polymorphic code is more frequently exe-

cuted, so the length of tracelet chains searched at run time is,

on average, longer than the length of tracelet chains emitted

by the compiler. However, the distribution of chain lengths

is still dominated by short chains. 91% of tracelet chain

searches succeed on their first try, and 99% probe 4 or fewer

tracelets. Approximately one in every 21,000 tracelets exe-

cuted hits the maximum tracelet chain length of 12, and so

is executed by the interpreter.

3 This experiment was performed with a current version of HHVM, since

2.4.1 is unable to run facebook.com.

6. Related Work

HHVM builds on a rich tradition of JIT-compiled dynamic

programming language implementations. Smalltalk [15]

and SELF [17] pioneered the area, and we have directly

applied variants of inline caching to method dispatch in

HHVM. Those investigating the SELF [17] dynamic lan-

guage also observed and exploited the stable latent types

flowing through naturally occurring dynamic programs.

Most modern dynamic-language JITs use a compilation

strategy that can be grouped into one of two families: ei-

ther method-based, or trace-based. Method-based dynamic-

language JITs include Smalltalk, SELF, JavaScriptCore [2],

and V8 [16]. Two prominent examples of trace-based JITs

are LuaJIT [24] and TraceMonkey [13].

6.1 Dynamic Binary Translators

The tracelet abstraction was partially inspired by basic-

block-at-a-time dynamic binary translation (DBT) systems.

DBT is often useful in systems closer to the hardware/soft-

ware interface, where the source program is not available.

Some of the DBT systems that use basic-block-at-a-time

techniques include VMware’s virtual machine monitor [1],

the Embra machine simulator [37], the Shade instruction-

level profiler [8], and the DynamoRIO dynamic compilation

framework [14].

These DBT systems must solve the code/data disam-

biguation problem, of differentiating instruction bytes which

are executed by the CPU from those that are simply read and

written. Since machine code is free to interleave code and

data arbitrarily, the only completely reliable signal that a

sequence of bytes is meant as instructions rather than data

is when the CPU’s instruction pointer refers to them. So

DBT systems often compile a single-entry, single-exit unit

of source machine code at a time.

The VMware VMM also uses its basic-block-at-a-time

compilation technique to amortize the costs of handling

self-modifying code. When it detects that source code is

frequently modified, it amends the machine translation by

prepending guards to each native basic block that check

that the current source code matches the source code ob-

served at compile time. These guards are analogous to the

tracelet guards in HHVM. HHVM’s treatment of polymor-

phic code is very close to machine-level DBTs’ treatment of

self-modifying code. While a DBT’s basic-block-at-a-time

strategy limits compilation scope, and the guards for self-

modifying code impose overheads, these costs are accept-

able in DBTs, which inspired the idea that they might be

acceptable in a dynamic language context as well. However,

although we have not explored in this paper, it is possi-

ble that PHP execution will benefit from larger compilation

units as some DBTs have [23].

6.2 Other PHP Engines

A number of research and industrial efforts have attempted

to accelerate PHP.

Ahead-of-time PHP compilers. HHVM was built di-

rectly on the source and runtime of HPHPc [38], which pow-

ered Facebook’s PHP servers from 2010 to its replacement

by HHVM in early 2013. HPHPc used global ahead-of-time

analysis to generate optimized C++ as an intermediate rep-

resentation, allowing it to leverage highly optimizing C++

compilers. The phc project [5] and Roadsend [29] are con-

ceptually similar approaches that parse and analyze PHP

source, and then translate it to C or C++.

While HHVM is a JIT compiler, its production mode ex-

ploits many of the same ahead-of-time optimizations present

in its predecessor system, HPHPc, and these related systems.

“Repurposed JIT” compilers. Many other PHP im-

plementers have observed that PHP’s dynamicity makes

offline generation of efficient machine code hard. Since

JIT compilers and runtimes are notoriously complex en-

gineering artifacts, many projects seek to leverage an ex-

isting managed-code environment such as the Java Virtual

Machine (JVM) [20] or the Common Language Runtime

(CLR) [21].

Phalanger [4] compiles PHP source files ahead-of-time

into MSIL, the bytecode of the CLR. Quercus [27] and

P9 [30] similarly compile PHP source into JVM bytecodes

ahead-of-time. This approach to compilation is similar to

ahead-of-time compilation to C or C++, since both the CLR

and JVM are statically typed virtual machines. However,

since these environments defer machine code generation to

run time, the hope is that the indirections required in a static

runtime will be inlined and optimized away.

This approach has the great virtue of saving considerable

engineering effort. However, the semantics of PHP, and sta-

tistical behavior of PHP programs, differ enough from those

of the languages for which the JVM and CLR are designed

to expect that “the repurposed JIT phenomenon” identified

by Castanos et al. in [7] will bound the performance of this

approach relative to full-custom efforts like HHVM.

Partial evaluation approaches. A promising recent de-

velopment is the emergence of dynamic language JITs based

on partial evaluation. In systems like PyPy [28] and Truf-

fle [36], dynamic-language authors write specially annotated

interpreters in a host language (for PyPy, a restricted Python

dialect, and for Truffle, Java). Then, a unified runtime con-

sumes the interpreter annotations to partially inline pieces

of the interpreter into a JIT compilation for the dynamic-

language program the interpreter is running. This has the

promise of leveraging JIT engineering effort across many

languages, while avoiding the pitfalls outlined in [7].

HappyJIT [18] and HippyVM [12] are PHP implementa-

tions that leverage PyPy’s partial evaluation-based JIT com-

piler to accelerate PHP.

7. Conclusion

HHVM is overall the best performing PHP implementation

we are aware of, while being among the most complete, ca-

pable of running large open-source PHP applications, and

the Facebook server-side application at significant speedup.

It achieves this performance without compromising the de-

veloper workflow that makes PHP a productive environment:

from the point of view of a typical web developer, its behav-

ior is indistinguishable from that of the more familiar php.

HHVM is imperfect. It is still a living software system

that is undergoing rapid improvement. However, its ba-

sic design of a stack-based bytecode compiled into type-

specialized, guarded tracelets has been unchanged over its

four-year history. While more sophisticated approaches un-

doubtedly have a higher performance ceiling, the tracelet

JIT, despite its simplicity, provides large speedups for di-

verse, real PHP applications. We have found that the tracelet

approach works well because natural dynamic programs use

a narrow range of types per source location.

Acknowledgments

The HHVM project has been a huge engineering effort,

which would not have been possible without the contri-

butions and/or support of: Ali-Reza Adl-Tabatabai, Andrei

Alexandrescu, Paul Bissonnette, Sean Cannella, Jordan De-

Long, Fred Emmott, Qi Gao, Sara Golemon, Andrei Home-

scu, Eugene Letuchy, Scott MacVicar, Mike Magruder,

Alexander Malyshev, Joel Marcey, Aravind Menon, David

Mortenson, Jan Oravec, Michael Paleczny, Jay Parikh, Joel

Pobar, Iain Proctor, Xin Qi, Jeff Rothschild, Dario Russi,

Mike Schroepfer, Jason Sobel, Paul Tarjan, Herman Ven-

ter, Max Wang, Mark Williams, Jingyue Wu, Minghui Yang,

and Haiping Zhao. Special thanks to Haiping Zhao and Mark

Williams, who have made fundamental technical contribu-

tions to both HHVM and HipHop. We also thank Erik Meijer

and Ole Agesen for their feedback on earlier drafts of this

paper.

References

[1] K. Adams and O. Agesen. A comparison of software and

hardware techniques for x86 virtualization. In Proceedings

of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

pages 2–13, October 2006.

[2] Apple. JavaScriptCore. Web site:

http://trac.webkit.org/wiki/JavaScriptCore.

[3] M. Bebenita. Trace-Based Compilation and Optimization in

Meta-Circular Virtual Execution Environments. PhD thesis,

UC Irvine, 2012.

[4] J. Benda, T. Matousek, and L. Prosek. Phalanger: Compiling

and running PHP applications on the Microsoft .NET plat-

form. In Proceedings on the 4th International Conference on

.NET Technologies, pages 11–20, 2006.

[5] P. Biggar, E. de Vries, and D. Gregg. A practical solution

for scripting language compilers. In Proceedings of the ACM

Symposium on Applied Computing, pages 1916–1923, 2009.

[6] B. Calder, P. Feller, and A. Eustace. Value profiling. In

Proceedings of the IEEE/ACM International Symposium on

Microarchitecture, pages 259–269, December 1997.

[7] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar,

T. Nakatani, T. Ogasawara, and P. Wu. On the benefits and pit-

falls of extending a statically typed language jit compiler for

dynamic scripting languages. In Proceedings of the ACM In-

ternational Conference on Object Oriented Programming Sys-

tems Languages and Applications (OOPSLA), October 2012.

[8] B. Cmelik and D. Keppel. Shade: A fast instruction-set simu-

lator for execution profiling. In T. Conte and C. Gimarc, edi-

tors, Fast Simulation of Computer Architectures, pages 5–46.

Springer US, 1995.

[9] G. E. Collins. A method for overlapping and erasure of lists.

Communications of the ACM, 3(12), December 1960.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. Efficiently computing static single assignment form

and the control dependence graph. ACM Transactions on Pro-

gramming Languages and Systems, 13(4):451–490, October

1991.

[11] Facebook, Inc. The HipHop Virtual Machine. Web site:

http://hhvm.com.

[12] M. Fijalkowski. HippyVM. Web site: http://hippyvm.com.

[13] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.

Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff,

J. Ruderman, E. Smith, R. Reitmaier, M. Bebenita, M. Chang,

and M. Franz. Trace-based just-in-time type specialization for

dynamic languages. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, pages 465–478, 2009.

[14] T. Garnett. Dynamic optimization of ia-32 applications under

dynamorio. Master’s thesis, 2003.

[15] A. Goldberg and D. Robson. Smalltalk-80: The Language and

its Implementation. Addison-Wesley Longman Publishing

Co. Inc., Boston, MA, 1983.

[16] Google. The V8 JavaScript engine. Web site:

http://code.google.com/p/v8.

[17] U. Hölzle, C. Chambers, and D. Ungar. Optimizing

dynamically-typed object-oriented languages with polymor-

phic inline caches. In Proceedings of the European Confer-

ence on Object-Oriented Programming, 1991.

[18] A. Homescu and A. Şuhan. HappyJIT: a tracing JIT compiler

for PHP. In Proceedings of the 7th Symposium on Dynamic

Languages, pages 25–36, 2011.

[19] C. Lattner and V. Adve. LLVM: A compilation framework

for lifelong program analysis & transformation. In Proceed-

ings of the International Symposium on Code Generation and

Optimization, 2004.

[20] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-

tion. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2nd edition, 1999.

[21] E. Meijer, R. Wa, and J. Gough. Technical overview of the

common language runtime, 2000.

[22] Nginx. Nginx. Web site: http://wiki.nginx.org.

[23] G. Ottoni, T. Hartin, C. Weaver, J. Brandt, B. Kuttanna, and

H. Wang. Harmonia: a transparent, efficient, and harmo-

nious dynamic binary translator targeting x86. In Proc. of the

8th ACM International Conference on Computing Frontiers,

pages 26:1–26:10, May 2011.

[24] M. Pall. The LuaJIT project. Web site: http://luajit.org.

[25] PHP5. Web site: http://php.net.

[26] F. Pizlo and G. Barraclough. Value profiling for code opti-

mization, Feb. 13 2014. US Patent App. 13/593,404.

[27] Quercus: PHP in Java. Web site:

http://www.caucho.com/resin-3.0/quercus/.

[28] A. Rigo and S. Pedroni. PyPy’s approach to virtual ma-

chine construction. In Proceedings of the 21st ACM SIGPLAN

Symposium on Object-oriented Programming Systems, Lan-

guages, and Applications, pages 944–953, 2006.

[29] Roadsend compiler. Web site: http://www.roadsend.com.

[30] M. Tatsubori, A. Tozawa, T. Suzumura, S. Trent, and T. On-

odera. Evaluation of a just-in-time compiler retrofitted for

PHP. In Proceedings of the ACM International Conference

on Virtual Execution Environments, pages 121–132, 2010.

[31] The Apache Software Foundation. ab - Apache HTTP server

benchmarking tool. Web site:

http://httpd.apache.org/docs/2.2/programs/ab.html.

[32] The Computer Languages Benchmark Game. Web site:

http://shootout.alioth.debian.org/.

[33] Tiobe. TIOBE programming community index. Web site:

http://www.tiobe.com/tiobe index/index.htm.

[34] A. Tozawa, M. Tatsubori, T. Onodera, and Y. Minamide.

Copy-on-write in the PHP language. In Proceedings of the

ACM Symposium on Principles of Programming Languages,

pages 200–212, 2009.

[35] C. Wimmer and M. Franz. Linear scan register allocation on

ssa form. In Proceedings of the IEEE/ACM International Sym-

posium on Code Generation and Optimization, pages 170–

179, 2010.

[36] C. Wimmer and T. Würthinger. Truffle: A self-optimizing

runtime system. In Proceedings of the 3rd Annual Conference

on Systems, Programming, and Applications: Software for

Humanity, pages 13–14, 2012.

[37] E. Witchel and M. Rosenblum. Embra: Fast and flexible ma-

chine simulation. In Proceedings of the International Con-

ference on Measurement and Modeling of Computer Systems,

pages 68–79, 1996.

[38] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao,

G. Ottoni, A. Paroski, S. MacVicar, J. Evans, and S. Tu. The

HipHop compiler for PHP. In Proceedings of the ACM Inter-

national Conference on Object Oriented Programming Sys-

tems Languages and Applications, pages 575–586, October

2012.

A. Raw data

Here is the raw data for evaluation experiments.

A.1 Microbenchmarks

benchmark, hhvm, hhvmi, hhvmr, hphp, php

shootout/binarytrees_1.php,10.93,36.8,4.72,10.12,63.38

shootout/binarytrees_2.php,5.26,30.77,4.12,56.69,56.69

shootout/binarytrees_3.php,4.23,18.47,4.27,19.87,98.39

shootout/fannkuchredux_1.php,3.04,13.52,3.03,4.54,8.13

shootout/fannkuchredux_2.php,13.68,9.78,13.66,4.82,6.19

shootout/fasta_2.php,7.25,30.83,6.9,7.66,33.69

shootout/fasta_3.php,5.84,13.76,5.82,8.13,12.53

shootout/fasta_4.php,3.28,8.2,3.27,5.06,6.02

shootout/knucleotide_1.php,2.21,5.45,2.22,3.69,3.96

shootout/knucleotide_4.php,4.82,11.89,4.91,8.47,11.72

shootout/mandelbrot_1.php,57.88,42.83,57.9,14.79,17.06

shootout/mandelbrot_1a.php,4.84,42.84,4.83,3.89,17.07

shootout/nbody_3.php,11.28,10.81,11.27,5.37,6.41

shootout/nbody_3a.php,3.07,10.82,3.06,5.15,6.4

shootout/pidigits_1.php,10.55,10.67,10.56,10.54,13.53

shootout/regexdna_1.php,5.62,5.45,5.43,5.4,5.08

shootout/regexdna_2.php,17.36,17.25,17.3,17.13,16.94

shootout/regexdna_3.php,12.22,12.23,12.25,12.19,11.96

shootout/regexdna_4.php,4.89,4.62,4.9,4.75,4.47

shootout/revcomp_1.php,2.1,10.35,2.13,0.78,0.61

shootout/revcomp_2.php,2.13,10.33,2.14,0.81,0.6

shootout/spectralnorm_2.php,5.41,83.93,5.32,37.51,58.21

shootout/spectralnorm_3.php,2.13,26.44,2.15,12.41,18.47

vm-perf/big.php,14.49,56.04,11.87,26.56,44.9

vm-perf/cache_get_scb.php,2.94,8.26,2.78,3.79,12.08

vm-perf/center-of-mass.php,0.74,3.9,0.68,1.16,6.98

vm-perf/dyncall.php,2.4,1.29,2.4,0.46,1.24

vm-perf/fannkuch.php,1.68,12.55,1.69,4.23,7.17

vm-perf/fib.php,0.41,7.66,0.38,2.26,7.07

vm-perf/fibr.php,0.4,7.69,0.38,2.15,7.02

vm-perf/hopt_preparable.php,0.9,11.61,0.81,0.58,7.13

vm-perf/mixedbag_loop.php,1.94,9.38,1.9,3.82,9.36

vm-perf/nbody.php,5.36,22.5,5.36,7.83,13.6

vm-perf/obj-fib.php,0.37,5.24,0.29,1.3,5.17

vm-perf/perf-ad-hoc-hack.php,0.61,0.97,0.55,0.3,0.73

vm-perf/spectral-norm.php,0.16,1.54,0.16,0.72,1.04

vm-perf/t-test.php,21.6,96.06,21.68,23.94,79.16

A.2 Open Source Applications

This experiment collected thousands of data points for each

combination of application, endpoint, and engine. The data

can be downloaded at:

https://dl.dropboxusercontent.com/u/2184298/all.csv,

and it has md5 checksum:

6e326c74f284b94f9c804531f57912d3.

A.3 Facebook Production Improvements

date,worst;mid;best

2013-04-02,-0.05;0.02;0.06

2013-04-09,0.89;1.17;1.61

2013-04-16,-0.73;-0.73;-0.73

2013-05-03,0.89;1.20;1.68

2013-05-05,0.0;0.0;0.0

2013-05-27,0.1;0.2;0.6

2013-06-30,2.08;2.88;3.07

2013-07-22,3.07;3.14;3.26

2013-07-24,-1.82;-0.26;0.20

2013-08-07,0.17;0.59;1.11

2013-08-21,-1.72;-2.84;0.45

2013-09-19,-0.23;0.45;0.99

2013-10-02,0.00;0.21;0.83

2013-10-27,0.0;0.0;0.0,0.0;0.0;0.0

2014-01-03,-0.02;0.26;0.54

2014-01-23,-0.19;-0.01;0.16

2014-02-24,-0.35;-2.34;-4.35

