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Abstract
Lake and Baroni (2018) recently introduced
the SCAN data set, which consists of simple
commands paired with action sequences and is
intended to test the strong generalization abil-
ities of recurrent sequence-to-sequence mod-
els. Their initial experiments suggested that
such models may fail because they lack the
ability to extract systematic rules. Here, we
take a closer look at SCAN and show that it
does not always capture the kind of generaliza-
tion that it was designed for. To mitigate this
we propose a complementary dataset, which
requires mapping actions back to the original
commands, called NACS. We show that mod-
els that do well on SCAN do not necessarily do
well on NACS, and that NACS exhibits prop-
erties more closely aligned with realistic use-
cases for sequence-to-sequence models.

1 Introduction

In a recent paper, Lake and Baroni (2018) (L&B)
investigate if recurrent sequence-to-sequence
models can exhibit the same strong generalization
that humans are capable of, by virtue of our
capacity to infer the meaning of a phrase from
its constituent parts (i.e., compositionality),
providing empirical tests for this long-standing
goal (Fodor and Pylyshyn, 1988). Compositional
generalization might be a fundamental component
in making models drastically less sample-thirsty
than they currently are. L&B introduce the SCAN
data set (§2), meant to study such generaliza-
tion to novel examples. It consists of simple
command-action pairs, in which more complex
commands are composed of simpler ones (see
Figure 1 for examples).

SCAN comprises several tests of generaliza-
tion, namely with respect to (1) a random sub-
set of the data (‘simple’), (2) commands with ac-
tion sequences longer than those seen during train-
ing (‘length’), and (3) commands that compose a

jump
JUMP

turn around left
LTURN LTURN LTURN LTURN

jump thrice and turn left twice
JUMP JUMP JUMP LTURN LTURN

jump opposite left after walk twice
WALK WALK LTURN LTURN JUMP

Figure 1: SCAN maps commands to actions

primitive in novel ways that was only seen in isola-
tion during training (‘primitive’). In the latter case,
the training set would for example only include the
command ‘jump’, after which the test set includes
all other commands containing ‘jump’, e.g. ‘jump
opposite left after walk twice’.

In this paper we take a closer look at SCAN.
We start with the observation (§3) that there are
few target-side dependencies in the data, a conse-
quence of SCAN being generated from a phrase-
structure grammar. We show (§6) that this allows
simple sequence-to-sequence models (§5) to ob-
tain good accuracies e.g. on tasks involving a new
primitive, even without access to previous out-
puts. However, these simple models do not use
composition in any interesting way, and their per-
formance is therefore not a realistic indicator of
their generalization capability. We hence propose
NACS (§4) as a more realistic alternative: SCAN
with commands and actions flipped, i.e., mapping
actions back to their original commands. This is
harder, because different commands may map to
the same action sequence, and it introduces target-
side dependencies, so that previous outputs need
to be remembered.

We show in particular that well-tuned attention-
based models do achieve a certain degree of gen-
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eralization on SCAN, and, as predicted, simpler
models do better there. However, the models
still struggle in the more demanding NACS setup,
which we offer as a challenge for future work.

Our contributions can be summarized as fol-
lows:

1. we provide an analysis of SCAN and make
the important observation that it does not test
for target-side dependencies, allowing too
simple models to do well;

2. we propose NACS to introduce target-side
dependencies and remedy the problem;

3. we repeat all experiments in Lake and Ba-
roni (2018) using early-stopping on valida-
tion sets created from the training data.

2 SCAN

SCAN stands for Simplified version of the Com-
mAI Navigation tasks (Mikolov et al., 2016). Each
example in SCAN is constructed by first sam-
pling a command X = (x1, . . . , xT ) from a finite
phrase-structure grammar with start symbol C:

C → S and S | S after S | S
S → V twice | V thrice | V
V → D[1] opposite D[2] | D[1] around D[2] | D | U
D → U left | U right | turn left | turn right

U → walk | look | run | jump

For each command, the corresponding target ac-
tion sequence Y = (y1, . . . , yT ′) then follows by
applying a set of interpretation functions, such as:

JjumpK = JUMP

Ju around left K = LTURN JuK LTURN JuK
LTURN JuK LTURN JuK

Jx1 after x2K = Jx2K Jx1K

of which only the last function requires global
reordering, which occurs at most once per com-
mand. See the supplementary materials for the full
set. Figure 1 shows examples of commands and
their action sequences as obtained by the interpre-
tation functions. The commands can be decoded
compositionally by a learner by discovering the in-
terpretation functions, enabling generalization to
unseen commands. The total data set is finite but
large (20910 unambiguous commands).

3 SCAN prefers simple models

We observe an important property of the data set
generation process for SCAN: temporal depen-
dencies of the action sequence are limited to the
phrasal boundaries of each sub-phrase, which span
at most 24 actions (e.g. jump around left thrice).
Crucially, even rules that require repetition (such
as ‘thrice’) as well as global reordering, can be re-
solved by simple counting and without remember-
ing previously generated outputs, due to the lim-
ited depth of the phrase-structure grammar (see
e.g. Rodriguez and Wiles (1998)).

This observation has two important implica-
tions. First, because SCAN is largely a phrase-to-
phrase conversion problem, any machine learning
method that aims at solving SCAN needs to have
an alignment mechanism between the source and
target sequences. Such an alignment mechanism
could work fairly accurately by simply advanc-
ing a pointer. Somewhat contrary to the observa-
tion by Lake and Baroni (L&B), we therefore hy-
pothesize that an attention mechanism (Bahdanau
et al., 2015) always helps when a neural con-
ditional sequence model (Sutskever et al., 2014;
Cho et al., 2014) is used to tackle any variant of
SCAN. Second, we speculate that any algorithm
with strong long-term dependency modeling ca-
pabilities can be detrimental in terms of gener-
alization, because such an approach might inap-
propriately capture spurious target-side regulari-
ties in the training data. We thus hypothesize
that less powerful decoders generalize better on
to unseen action combinations on SCAN when
equipped with an attention mechanism.

To summarize: good performance on SCAN
does not necessarily indicate the capability of a
model to strongly generalize.

SCAN favors simpler models that need not cap-
ture target-side dependencies, which might not
work well on more realistic sequence-to-sequence
problems, such as machine translation, where
strong auto-regressive models are needed for good
results (Bahdanau et al., 2015; Kaiser and Bengio,
2016).

4 NACS: actions to commands

By simply flipping the source X and target Y
of each example, we obtain a data-set that sud-
denly features strong target-side dependencies.
Even when the mapping p(Y |X) from the source
to target is simple, the opposite p(X|Y ) ∝



si

ti

oi

ci

yieyi−1

si−1

e
s

et

c
s

c
t

s
t

ss

to

Figure 2: The decoder of Bahdanau et al. (2015)

p(Y |X)p(X) is non-trivial due to the complexity
of the prior p(X). The inclusion of p(X) naturally
induces strong dependencies among the output to-
kens, while maintaining the original properties of
SCAN that were intended to test various aspects
of systematic generalization.

NACS naturally makes the mapping that needs
to be learned stochastic and multi-modal (sensi-
tive to both commands and actions). For instance,
an action sequence of the form Jx1KJx2K could
be mapped to either Jx1 and x2K or Jx2 after x1K,
both of which are correct. In order for a model to
decide whether to output “and” or “after”, it is nec-
essary for it to remember what has already been
generated (i.e., Jx1K or Jx2K).

Another example is LTURN LTURN LTURN
LTURN, which can be translated into either “turn
around left” or two repetitions of “turn opposite
left”. Deciding whether to output “and” after
the first phrase requires the model to remember
whether “around” was generated previously.

In §6 we experimentally evaluate the proposed
NACS task using the same scenarios as SCAN
(simple, length and primitive). We observe that
NACS prefers more advanced models that could
capture long-term dependencies in the output (now
a command sequence) better. However, we notice
that even these powerful models, equipped with
GRUs and attention, cannot systematically gener-
alize to this task, as was also observed by Lake
and Baroni (2018). Based on this observation, we
believe that NACS (or perhaps a combination of
SCAN and NACS) is better suited for evaluating
any future progress in this direction.

5 Sequence-to-sequence models

In this section, we describe the sequence-to-
sequence models we use for evaluating on SCAN
and its proposed sibling NACS.

We directly model the probability of a tar-

get sequence given a source sequence p(Y |X).
Our encoder-decoder is modeled after Cho et al.
(2014) and our attention-based encoder-decoder
after Bahdanau et al. (2015). The attention-based
decoder is a function that takes as input the previ-
ous target word embedding eyi−1 , the context vec-
tor ci, and the previous hidden state si−1 (see also
Figure 2): si = f(eyi−1 , ci, si−1).

The prediction for the current time step
is then made from a pre-output layer ti:
ti = Weeyi−1 +Wcci +Wssi. We do not apply
a max-out layer and directly obtain the output by
oi = Woti. For the encoder-decoder without at-
tention, the prediction is made directly from de-
coder state si. We vary the recurrent cell, exper-
imenting with simple RNN (Elman, 1990), GRU
(Cho et al., 2014), and LSTM cells (Hochreiter
and Schmidhuber, 1997). For conciseness we only
report results with RNN and GRU cells in the main
text, and LSTM results in the appendix.

In this paper, we investigate the properties
of both SCAN and NACS using RNN-based
sequence-to-sequence models for evaluation. We
leave further investigation of alternative architec-
tures (see, e.g., Vaswani et al., 2017; Gehring
et al., 2017; Chen et al., 2018) for the future.

6 Experiments

6.1 Settings

Our models are implemented in PyTorch and
trained using mini-batch SGD with an initial learn-
ing rate of 0.2, decayed by 0.96 each epoch. We
use a batch size of 32, 256 hidden units (64 for
embeddings), and a dropout rate of 0.2. We test
on all SCAN/NACS tasks1, as well as on the Fr-
En Machine Translation (MT) task that L&B used.
The reported results are averaged over three runs
for each experiment. Models with attention are
marked as such with +Attn, e.g. ‘GRU +Attn’.

Validation Set. L&B split each SCAN subtask
into a training set (80%) and a test set (20%). They
train for a fixed number of updates (100k) and
evaluate on the test set. Because any training run
without early stopping may have missed the op-
timal solution (Caruana et al., 2001), we believe
their results may not reflect the reality as closely
as they could. We thus augment each of the SCAN
variants with a validation set that follows the train-
ing distribution but contains examples that are not

1github.com/facebookresearch/NACS

github.com/facebookresearch/NACS


Simple Length Turn left Jump

SCAN NACS SCAN NACS SCAN NACS SCAN NACS

GRU 100.0 ±0.0 99.0 ±0.1 14.4 ±0.8 12.9 ±1.2 53.4 ±11.7 47.5 ±4.7 0.0 ±0.0 0.0 ±0.0

RNN +Attn 100.0 ±0.0 99.8 ±0.1 9.6 ±0.9 19.4 ±0.7 81.1 ±14.7 44.1 ±0.9 1.9 ±1.2 0.3 ±0.3

RNN +Attn -Dep 100.0 ±0.0 61.1 ±0.3 11.7 ±3.2 0.5 ±0.2 92.0 ±5.8 18.6 ±1.0 2.7 ±1.7 0.0 ±0.0

GRU +Attn 100.0 ±0.0 99.8 ±0.1 18.1 ±1.1 17.2 ±1.9 59.1 ±16.8 55.9 ±3.5 12.5 ±6.6 0.0 ±0.0

GRU +Attn -Dep 100.0 ±0.0 51.2 ±1.2 17.8 ±1.7 2.0 ±1.4 90.8 ±3.6 16.9 ±1.2 0.7 ±0.4 0.0 ±0.0

L&B best 99.8 - 20.8 - 90.3 - 1.2 -
L&B best overall 99.7 - 13.8 - 90.0 - 0.1 -

Table 1: Test scores on the simple, length, and primitive (turn left, jump) tasks. +Attn marks attention, -Dep has the
connections from the previous target word embedding removed (es and et in Figure 2). L&Bbest is the best reported
score for each task by L&B, and L&Bbest overall is the score for their best-scoring model all tasks considered.

contained in the corresponding training set. This
allows us to incorporate early stopping in our ex-
periments so that they are better benchmarks for
evaluating future progress. For each experiment
we remove 10% of the training examples to be
used as a validation set.

Accuracy. Following L&B we measure perfor-
mance according to sequence-level accuracy, i.e.,
whether the generated sequence entirely matches
the reference. This metric is also used for early
stopping. For NACS, an output (command) is
considered correct if its interpretation (‘back-
mapping’) produces the input action sequence.

Ablations. To validate our analysis, we remove
the connections from the previous target word em-
bedding eyi−1 to the decoder state and the pre-
output layer (es and et in Figure 2), so that the
current prediction is not informed by previous out-
puts. If our analysis in §3 is correct, then these
simpler models should still be able to make the
correct predictions on SCAN, but not on NACS.

6.2 Results and Analysis

Results on the three SCAN and NACS tasks are
listed in Table 1. The full results including mod-
els with LSTM cells and MT experiments may be
found in the supplementary materials. We will
now discuss our observations.

SCAN is not enough. Table 1 shows that all
model variants perform (near) perfectly on the
SCAN simple task. While this is impressive, re-
sults for the severed models (+Attn -Dep) on the
simple task for NACS show that it is possible to
have a perfect accuracy on SCAN, while at the

same time failing to do well on NACS.2 Crucially,
a (near) perfect score on SCAN does not imply
strong generalization. A model can exploit the de-
terminism and lack of target-side dependencies of
SCAN by developing a simple translation strategy
such as advancing a pointer and translating word
by word, and the use of such a simple strategy is
not revealed by SCAN.

NACS is harder. NACS is a harder problem to
solve compared to SCAN, as evidenced by con-
sistently lower accuracies in Table 1 for all tasks.
The discrepancy between SCAN and NACS per-
formance is the most extreme when we look at the
primitive tasks (turn left and jump). For turn left,
the severed models (+Attn -Dep) obtain the high-
est scores on SCAN, but are the worst on NACS.

The ‘turn left’ task benefits from TURNL oc-
curring on the target-side in other contexts dur-
ing training, which is not the case for ‘jump’.3

Since there is no evidence in the training data that
‘jump’ is a verb, Table 2 shows results where addi-
tional (composed) ‘jump’ commands were added
for training. We see that performance quickly goes
up when adding more commands.4 Again here the
simpler models (+Attn -Dep) perform better.

Machine Translation. We repeat L&Bs
English-French MT experiment for both direc-
tions. Table 3 shows that models that perform
well on NACS also perform well here, with the
GRU outperforming the other cells (see appendix

2We made similar observations using LSTM cells, as we
show in the appendix.

3See Lake and Baroni (2018) for a discussion.
4L&B performed this experiment without attention,

which we show has a large positive impact.



1 2 4 8 16 32

RNN +Attn SCAN 35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn -Dep SCAN 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn SCAN 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn -Dep SCAN 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

RNN +Attn NACS 2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn -Dep NACS 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn NACS 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn -Dep NACS 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

L&B SCAN 0.1 0.1 4.1 15.3 70.2 89.9

Table 2: Test scores on the ‘jump’ task with additional commands. +Attn marks attention, -Dep has the es and et
connections removed (Figure 2). The test set contains all jump commands except the 32 used for training. Columns
indicate how many commands with ‘jump’ were added to the training set, such as ‘jump around left thrice.’

En-Fr Fr-En

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn -Dep 30.2 ±0.3 35.9 ±0.3

Table 3: Results (BLEU) on the Machine Translation
experiment for both directions using a GRU. See ap-
pendix for results using SRN and LSTM cells.

for other cell types). In a setting similar to the
jump task, the sentence pair ‘I am daxy’ (‘je suis
daxiste’) was added to the training set. The goal
is now to test if eight novel sentences that contain
‘daxy’ are correctly translated.

In our setting with mini-batching and early-
stopping, the GRU gets 70.8% (En-Fr) and 54.2%
(Fr-En) of the daxy-sentences right, which is sur-
prisingly good compared to L&B (12.5%).

Other observations. As expected, Table 1
shows that attention always helps. Generalizing
to longer sequences is generally hard, and this re-
mains an open problem.

7 Related Work

Ever since Fodor and Pylyshyn (1988) conjectured
that neural networks are unable to show strong
generalization, many attempts were made to show
that the opposite is true, leading to inconclusive
evidence. For example, Phillips (1998) found that
feed-forward nets and RNNs do not always gen-
eralize to novel 2-tuples on an auto-association
task, while Wong and Wang (2007) and Brakel and
Frank (2009) found that RNNs can show system-
atic behavior in a language modeling task.

In the context of analyzing RNNs, Rodriguez
and Wiles (1998) found that simple RNNs can

develop a symbol-sensitive counting strategy for
accepting a simple (palindrome) context-free lan-
guage. Weiss et al. (2018) show that LSTMs and
simple RNNs with ReLU-activation can learn to
count unboundedly, in contrast to GRUs.

Linzen et al. (2016) probed the sensitivity of
LSTMs to hierarchical structure (not necessarily
in novel constructions). Instead of a binary choice,
with SCAN a sequence-to-sequence model pro-
ductively generates an output string.

Liska et al. (2018) found that a small number
of identical RNNs trained with different initializa-
tions show compositional behavior on a function
composition task, suggesting that more specific ar-
chitectures may not be necessary.

Finally, Lake and Baroni (2018) introduced the
SCAN data set to study systematic compositional-
ity in recurrent sequence-to-sequence models, in-
cluding gating mechanisms and attention. This
work is a direct response to that and aims to facil-
itate future progress by showing that SCAN does
not necessarily test for strong generalization.

8 Conclusion

In the quest for strong generalization, benchmarks
measuring progress are an important component.
The existing SCAN benchmark allows too simple
models to shine, without the need for composi-
tional generalization. We proposed NACS to rem-
edy this. NACS still requires systematicity, while
introducing stochasticity and strong dependencies
on the target side. We argue that a good bench-
mark needs at least those properties, in order not to
fall prey to trivial solutions, which do not work on
more realistic use-cases for sequence-to-sequence
models such as machine translation.
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Supplementary Materials

Jwalk K = WALK
JlookK = LOOK
JrunK = RUN
JjumpK = JUMP

Jturn leftK = LTURN
Jturn rightK = RTURN

Ju leftK = LTURN JuK
Ju rightK = RTURN JuK

Jx twiceK = JxK JxK
Jx thriceK = JxK JxK JxK

Jturn around leftK = LTURN LTURN LTURN LTURN
Jturn around rightK = RTURN RTURN RTURN RTURN
Ju around leftK = LTURN JuK LTURN JuK LTURN JuK LTURN JuK
Ju around rightK = RTURN JuK RTURN JuK RTURN JuK RTURN JuK

Jturn opposite leftK = LTURN LTURN
Jturn opposite rightK = RTURN RTURN
Ju opposite leftK = Jturn opposite leftK JuK
Ju opposite rightK = Jturn opposite rightK JuK

Jx1 and x2K = Jx1K Jx2K
Jx1 after x2K = Jx2K Jx1K

Figure 3: The interpretation functions for translating SCAN commands to actions.

Simple Length Turn left Jump

RNN 75.6 ±5.4 0.2 ±0.0 26.7 ±12.8 0.0 ±0.0

GRU 100.0 ±0.0 14.4 ±0.8 53.4 ±11.7 0.0 ±0.0

LSTM 99.8 ±0.1 10.1 ±2.0 56.5 ±0.8 0.1 ±0.0

RNN +Attn 100.0 ±0.0 9.6 ±0.9 81.1 ±14.7 1.9 ±1.2

RNN +Attn-Dep 100.0 ±0.0 11.7 ±3.2 92.0 ±5.8 2.7 ±1.7

GRU +Attn 100.0 ±0.0 18.1 ±1.1 59.1 ±16.8 12.5 ±6.6

GRU +Attn-Dep 100.0 ±0.0 17.8 ±1.7 90.8 ±3.6 0.7 ±0.4

LSTM +Attn 100.0 ±0.0 15.6 ±1.6 83.8 ±16.8 9.7 ±2.9

LSTM +Attn-Dep 100.0 ±0.0 12.5 ±1.3 57.6 ±3.8 0.8 ±0.5

L&B best 99.8 20.8 90.3 1.2
L&B best overall 99.7 13.8 90.0 0.1

Table 4: SCAN test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.



Simple Length Turn left Jump

RNN 26.9 ±0.2 0.2 ±0.1 26.4 ±12.0 0.0 ±0.0

GRU 99.0 ±0.1 12.9 ±1.2 47.5 ±4.7 0.0 ±0.0

LSTM 99.1 ±0.1 10.9 ±1.3 42.9 ±2.9 0.0 ±0.0

RNN +Attn 99.8 ±0.1 19.4 ±0.7 44.1 ±0.9 0.3 ±0.3

RNN +Attn-Dep 61.1 ±0.3 0.5 ±0.2 18.6 ±1.0 0.0 ±0.0

GRU +Attn 99.8 ±0.1 17.2 ±1.9 55.9 ±3.5 0.0 ±0.0

GRU +Attn-Dep 51.2 ±1.2 2.0 ±1.4 16.9 ±1.2 0.0 ±0.0

LSTM +Attn 99.1 ±0.2 17.1 ±2.0 48.3 ±1.7 0.0 ±0.0

LSTM +Attn-Dep 38.9 ±0.9 1.0 ±0.5 17.2 ±1.2 0.0 ±0.0

Table 5: NACS test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.5 ±0.3 1.4 ±0.3

GRU 0.1 ±0.0 0.2 ±0.1 0.6 ±0.2 2.5 ±1.1 3.3 ±0.9 13.1 ±2.4 42.4 ±2.5

LSTM 0.1 ±0.0 0.3 ±0.2 1.3 ±0.2 3.8 ±1.8 2.5 ±1.1 6.5 ±2.7 21.3 ±1.4

RNN +Attn 3.5 ±3.0 35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn-Dep 2.7 ±1.7 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn 12.5 ±6.6 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn-Dep 0.7 ±0.4 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

LSTM +Attn 7.8 ±0.9 40.2 ±9.3 37.7 ±10.7 50.3 ±13.9 62.2 ±7.7 94.0 ±2.7 98.6 ±1.0

LSTM +Attn-Dep 0.8 ±0.6 39.0 ±6.5 43.6 ±17.6 66.0 ±1.6 86.1 ±2.3 98.7 ±1.6 99.8 ±0.2

L&B 0.1 0.1 0.1 4.1 15.3 70.2 89.9

Table 6: SCAN test scores for jump with additional composed commands.

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.2 ±0.0 0.7 ±0.2 0.4 ±0.0 0.8 ±0.1

GRU 0.0 ±0.0 0.3 ±0.2 0.4 ±0.1 0.3 ±0.2 1.0 ±0.4 5.8 ±0.1 20.8 ±2.2

LSTM 0.0 ±0.0 0.6 ±0.4 0.5 ±0.3 0.7 ±0.0 1.0 ±0.3 3.7 ±0.4 11.4 ±1.2

RNN +Attn 0.3 ±0.3 2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn-Dep 0.0 ±0.0 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn 0.0 ±0.0 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn-Dep 0.0 ±0.0 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

LSTM +Attn 0.0 ±0.0 2.1 ±0.2 3.7 ±0.9 6.6 ±0.5 12.5 ±2.5 21.8 ±2.6 34.2 ±1.7

LSTM +Attn-Dep 0.0 ±0.0 0.4 ±0.2 0.9 ±0.1 1.5 ±0.2 1.9 ±0.3 3.2 ±0.6 7.4 ±0.9

Table 7: NACS test scores for jump with additional composed commands.



En-Fr Fr-En

RNN +Attn 29.1 ±0.4 34.9 ±0.8

RNN +Attn-Dep 27.5 ±0.7 32.9 ±0.8

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn-Dep 30.2 ±0.3 35.9 ±0.3

LSTM +Attn 31.5 ±0.2 36.9 ±1.1

LSTM +Attn-Dep 28.7 ±0.2 34.0 ±0.1

Table 8: Results (BLEU) on the Machine Translation experiment for both directions.

En-Fr Fr-En

RNN +Attn 79.2 ±15.6 41.7 ±5.9

RNN +Attn-Dep 66.7 ±5.9 41.7 ±5.9

GRU +Attn 70.8 ±11.8 54.2 ±5.9

GRU +Attn-Dep 58.3 ±5.9 45.8 ±11.8

LSTM +Attn 75.0 ±10.2 41.7 ±15.6

LSTM +Attn-Dep 50.0 ±10.2 41.7 ±5.9

Table 9: Machine Translation: accuracy on eight novel sentences containing ‘daxy’ (‘daxiste’).

En-Fr Fr-En

RNN +Attn 66.7 ±5.9 20.8 ±5.9

RNN +Attn-Dep 66.7 ±5.9 29.2 ±15.6

GRU +Attn 62.5 ±0.0 33.3 ±5.9

GRU +Attn-Dep 66.7 ±5.9 25.0 ±20.4

LSTM +Attn 66.7 ±5.9 25.0 ±10.2

LSTM +Attn-Dep 62.5 ±0.0 25.0 ±17.7

Table 10: Machine Translation: accuracy on eight novel sentences containing ‘tired’ (‘fatigué’).
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