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ABSTRACT

Hypernetworks were recently shown to improve the perfor-
mance of message passing algorithms for decoding error cor-
recting codes. In this work, we demonstrate how hypernet-
works can be applied to decode polar codes by employing a
new formalization of the polar belief propagation decoding
scheme. We demonstrate that our method improves the pre-
vious results of neural polar decoders and achieves, for large
SNRs, the same bit-error-rate performances as the successive
list cancellation method, which is known to be better than any
belief propagation decoders and very close to the maximum
likelihood decoder.

Index Terms— Error correcting codes, polar codes, belief
propagation, hypernetworks.

1. INTRODUCTION

The development of neural decoders for error correcting codes
has been evolving along multiple axes. In one axis, learnable
parameters have been introduced to increasingly sophisticated
decoding methods. Polar codes, for example, benefit from
structural properties that require more dedicated message pass-
ing methods than conventional LDPC decoders. A second axis
is that of the role of learnable parameters. Initially, weights
were introduced to existing computations. Subsequently, neu-
ral networks replaced some of the computations and general-
ized these. The introduction of hypernetworks, in which the
weights of the network vary based on the input, added a new
layer of adaptivity.

In this work, we address the specialized belief propagation
decoder for polar codes of Arikan [1], which makes use of the
structural properties of these codes. We generalize the work
of Xu et al. [2] and Teng et al. [3], both built upon the same
underlying decoder, by introducing a graph neural network
decoder whose architecture varies, as well as it weights. This
allows our decoder to better adapt to the input signal.

We demonstrate our results on polar codes of various block
sizes and show improvement in all SNRs over the baseline
methods. Furthermore, for large SNRs, our method matches
the performance of the successive list cancellation decoder [4].

2. RELATED WORK

Network decoders Deep learning techniques are increas-
ingly applied to decode error correcting codes. Vanilla fully
connected neural networks were applied for polar code de-
coding [5]. The performance obtained for short polar codes,
e.g., n = 16 bits, was close to that of the optimal maximum
a posteriori (MAP) decoding. The fully connected networks,
however, do not scale well, since the number of codewords
grows exponentially in the number of information bits k.

For decoding larger block codes (n > 100), message pass-
ing methods were augmented with learned parameters. For
example, in [6] the belief propagation (BP) decoding method
is reincarnated as a neural network with weights that are as-
signed to each variable edge. A hardware-friendly BP method
was introduced by employing the min-sum iterations [7]. In
both cases, an improvement is shown in comparison to the
baseline BP method.

Vasic et al. learn the node activations based on components
from existing decoders (BF, GallagerB, MSA, SPA) [8]. In
[9], a Recurrent Neural Network (RNN) decoder was shown to
achieve close to optimal accuracy in decoding convolutional
and Turbo codes, similar to the classical convolutional codes
decoders Viterbi and BCJRI [9].

Specifically for Polar codes, where the encoding graph
can be partitioned into sub-blocks, Cammerer et al. [10] per-
formed neural decoding for each sub-block separately and then
combine the sub-blocks and use a belief propagation decoding
algorithm. Doan et al. [11] improve this method by using
successive cancellation decoding between the sub-blocks, and
show a 42.5% improvement in the decoding latency. Doan
et al. further introduce in [12] a neural decoder for the CRC-
Polar code. The neural decoder uses trainable weights on
the concatenated factor graph and shows an improvement of
0.5dB over the CRC-aided BP decoder. Xu et al. [2] introduce
weights on the edges on the polar belief propagation decoder
of [1]. The training is done on the noisy zero codeword as
in [6]. Teng et al. [3] further improve the neural polar decoder
and introduce an RNN polar decoder with a lower number of
learnable parameters. Dai et al. [13] suggest a neural offset
min-sum decoder for polar codes, and show that their decoder
is more suitable for hardware implementation, since it uses
addition instead of multiplication. Wodiany et al. improve
the method of Dai et al., by presenting a new low-precision
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neural decoder and show that their method reduces by a factor
of 54 the number of weights [14]. Xu et al. [15] employ a
single weight for a min-sum neural polar decoder, which is
used as a unified weight for all edges that connect check nodes
to variable nodes. Their method shows comparative results to
the sum-product algorithm.
hypernetworks Dynamic networks, also know as hyper-
networks, are schemes in which one network f predicts the
weights θh of another network h. This was first used for
specific layers in order to adapt the network to motion or
illumination changes [16, 17]. More layers were subsequently
employed to interpolate video frames and predict stereo
views [18]. Hypernetworks in which both f and h are RNNs,
were used for state of the art sequence modeling [19]. Hyper-
networks can also be naturally applied to metalearning, since f
can share information between tasks [20]. Another advantage
is the ability to generate network weights on the fly without
backpropagation, which is useful in neural architecture search
(NAS) [21, 22].

In a recent application of hypernetworks to graphs, we
used an MLP to generate the weights of a message passing
network that decodes LDPC, BCH, and Polar error correcting
codes [23]. This generalizes earlier attempts in the domain of
network decoders mentioned above and is shown to greatly
improve performance over [24]. The input to both the weight
generating network f and the message generation network
h is the incoming message, where for the first network, the
absolute value is used, in order to focus on the confidence
of each message, rather than on the content of the message
and maintaining the symmetry conditions required for efficient
training. Hypernetworks often suffer from severe initialization
challenges, since the weights of h are determined by f and do
not follow a conventional initialization scheme. In that work,
we, therefore, present a new activation function that is more
stable than the arctanh activation typically used in message
passing decoders. In a followup work, we employ conven-
tional activations, but suggest combining the initial message
(from the first iteration) with the last message as an effective
way to stabilize the training of the graph hypernetwork [25].
Performance is similar or better than what is obtained in [23].

In this work, we use the hypernetwork graph neural net-
work scheme to augment the polar neural decoder from [2].
Furthermore, we modify the scheme to adapt the architecture
of the graph neural network via a gating mechanism that is
conditioned on the input.

3. METHOD

We begin by describing the evolution of neural polar decoders
and then describe our own method.

3.1. Background

Polar codes and their belief propagation decoder were first
introduced by Arikan in [26] and [1] respectively. More pre-

cisely, assume that we have a (N,K) polar code, where N is
the block size and K is the number of information bits. The
polar factor graph has (n+ 1)N nodes, N

2 log2N blocks and
n = log2N stages. Each node in the factor graph index by
tuple (i, j) where 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ N . The rightmost
nodes (n+ 1, ·) are the noisy input from the channel yj , and
the leftmost nodes (1, ·) are the source data bits uj . The polar
belief propagation decoder uses two types of messages in or-
der to estimate the log likelihood ratios (LLRs): left and right
messages L(t)

i,j , R(t)
i,j , where t is the number of the BP iteration.

The left messages are initialized at t = 0 with the input log
likelihood ratio:

L
(1)
n+1,j = ln

(
P (yj | xj = 0)

P (yj | xj = 1)

)
(1)

The right messages are initialized with the information bit
location:

R
(1)
n+1,j =

P (uj = 0)

P (uj = 1)
=

{
0 j is an information bit
∞ else (2)

The other messages L(1)
i,j , R(1)

i,j are set to 1. The iterative belief
propagation equation for the messages are:

L
(t)
i,j = g

(
L
(t−1)
i+1,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

L
(t)
i,j+Ni

= g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+ L

(t−1)
i+1,j+Ni

,

R
(t)
i+1,j = g

(
R

(t)
i,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

R
(t)
i+1,j+Ni

= g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+R

(t)
i,j+Ni

(3)

where Ni = N/2i and the function g is:

g(x, y) = ln
1 + xy

x+ y
. (4)

Alternatively, g can be replaced by the min-sum approxima-
tion [27]:

g(x, y) ≈ sign(x) · sign(y) ·min(|x| , |y|) (5)

The final estimation is a hard slicer on the left messages L(T )
1,j

where T is the last iteration:

ûNj =

{
0, L

(T )
1,j > 0,

1, L
(T )
1,j < 0

(6)

Xu at el. [2] introduce a neural polar decoder that unfolds
the polar factor graph and assigns weights in each edge. The
update equation is taking the form:

L
(t)
i,j = α

(t)
i,j · g

(
L
(t−1)
i+1,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

L
(t)
i,j+Ni

= α
(t)
i,j+Ni

· g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+ L

(t−1)
i+1,j+Ni

,

R
(t)
i+1,j = β

(t)
i+1,j · g

(
R

(t)
i,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

R
(t)
i+1,j+Ni

= β
(t)
i+1,j+Ni

· g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+R

(t)
i,j+Ni

(7)



where α(t)
i,j and β(t)

i,j are learnable parameters for the left

message L(t)
i,j and right message R(t)

i,j respectively. The output
of the neural decoder is defined by:

oj = σ
(
L
(T )
1,j

)
(8)

where σ is the sigmoid activation. The loss function was
the cross entropy between the transmitted codeword and the
network output:

L (o, u) = − 1

N

N∑
j=1

uj log(oj) + (1− uj)log(1− oj) (9)

Teng et al. [3] further introduced a recurrent neural polar
decoder, by sharing the weights among different iterations:
α
(t)
i,j = αi,j and β(t)

i,j = βi,j . Their BER-SNR curve achieves
comparable results to training the neural decoder without tying
the weights from different iterations.

3.2. The Hypernetwork Method

In this work, we propose a new structure-adaptive hypernet-
work architecture for decoding polar codes. The proposed
architecture adds three major modifications. First, we incor-
porate a graph neural network that uses the unique structure
of the polar code, following the work of [23]. Second, we
suggest adding a gating mechanism to the activations of the
(hyper) graph network, in order to adapt the architecture itself
according to the input. Third, we add a damping factor c to
the updating equations following [25] in order to improve the
training stability of the proposed method.

The method is illustrated in Fig. 1. At each iteration t, we
employ the hyper-network f :

θ
(t)
i,j , σ

(t)
i,j = f

(
|L(t−1)

i+1,j |, |L
(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

|
)

θ
(t)
i,j+Ni

, σ
(t)
i,j+Ni

= f
(
|R(t)

i,j |, |L
(t−1)
i+1,j |

)
θ
(t)
i+1,j , σ

(t)
i+1,j = f

(
|R(t)

i,j |, |L
(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

|
)

θ
(t)
i+1,j+Ni

, σ
(t)
i+1,j+Ni

= f
(
|R(t)

i,j |, |L
(t−1)
i+1,j |

)
(10)

where f is a neural network that determines the weights
and gating activation of network h. The network f has four
layers with tanh activations. Note that the inputs to the func-
tion f are in absolute value. We use the absolute value of
the input messages in order to focus on the correctness of the
messages and not the bit information, see [23] for more details.

Furthermore, we replace the updating Eq. 7 with the fol-

Fig. 1: An overview of our method for polar code with N = 4
and T = 1. The connections of the graph hypernetwork are
denoted by orange lines. f is the function that determines the
weights of the graph nodes h. To reduce clutter, the damping
factors are not shown.

lowing equations:

L
(t)
i,j = (1− c) · h

(
L
(t−1)
i+1,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

, θ
(t)
i,j , σ

(t)
i,j

)
+ c · α(t)

i,j · g
(
L
(t−1)
i+1,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

L
(t)
i,j+Ni

= (1− c) · h
(
R

(t)
i,j , L

(t−1)
i+1,j , θ

(t)
i,j+Ni

, σ
(t)
i,j+Ni

)
+ c · α(t)

i,j+Ni
· g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+ L

(t−1)
i+1,j+Ni

,

R
(t)
i+1,j = (1− c) · h

(
R

(t)
i,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

, θ
(t)
i+1,j , σ

(t)
i+1,j

)
+ c · β(t)

i+1,j · g
(
R

(t)
i,j , L

(t−1)
i+1,j+Ni

+R
(t)
i,j+Ni

)
,

R
(t)
i+1,j+Ni

= (1− c) · h
(
R

(t)
i,j , L

(t−1)
i+1,j , θ

(t)
i+1,j+Ni

, σ
(t)
i+1,j+Ni

)
+ c · β(t)

i+1,j+Ni
· g
(
R

(t)
i,j , L

(t−1)
i+1,j

)
+R

(t)
i,j+Ni

(11)

where the damping factor c is a learnable parameter, initialized
from uniform distribution [0, 1] and learned with clipping to
the range of [0, 1] during the training. The network h has two
layers with tanh activations. Note that the weights of network
h are determined by the network f , and the activations of each
layer in h are multiplied by the gating σ(t)

i,j from the network f .
The output layer and the loss function is the same as in Eq. 8
and Eq. 9 respectively.

It is straightforward to show that the conditions of Lemma
2 of [23] hold in our case as well and, therefore, the decoding
error is independent of the transmitted codeword, allowing
training solely with noisy versions of the zero codeword.



4. EXPERIMENTS

In order to evaluate our method, we train the proposed neu-
ral network for Polar codes with different block sizes N =
128, 32. The number of iterations was T = 5 for all block
codes. The f and h networks have 16 neurons in each layer,
with tanh activations and without a bias term. We generate the
training set of noisy variations of the zero codeword over an ad-
ditive white Gaussian noise channel (AWGN). Each batch con-
tains multiple examples from different Signal-To-Noise (SNR)
values, specifically we use SNRs values of 1dB, 2dB, .., 6dB.
A batch size of 3600 and 1800 examples is used for N = 32
and N = 128, respectively. Learning rate at epoch k is set
according to lrk = lr0/(1 + k · decay) where lr0 = 0.99 and
lr0 = 2.5 for N = 32 and N = 128 respectively. The decay
factor was 1e− 4 and every epoch contain 125 batches. In all
experiments, we use the feed-forward neural decoder, and do
not use weight tying as in [3].

Similar to previous work [3], the BER calculation uses the
information bits, i.e. we do not count the frozen bits when
calculating the error rate performance.

We compare our method with the vanilla belief propagation
algorithm, the neural polar decoder of Xu et al. [2] and the
successive list cancellation (SLC) method [4] which does not
employ learning and obtains state of the art performance.

In Fig. 2 and Fig. 3 we present the Bit-Error-Rate versus
EbN0 for N = 128 and N = 32, respectively. As can be seen,
for N = 32 our method’s accuracy matches that of SLC for
large SNRs (5dB, 6dB). Furthermore, for lower SNRs, our
method improves the results of Xu et al. [2] by 0.1dB. For
large block, N = 128, one can observe the same improvement
in large SNRs value, where our method achieves the same
performance as SLC, which is 0.4dB better than the baseline
method of Xu et al. For lower SNRs, our method improves Xu
et al. by 0.2dB.

In order to evaluate the contribution of the various compo-
nents of our method, we run an ablation analysis: (i) without
the damping factor (ii) when using a fixed c = 0.5 in Eq. 11
(iii) without the gating mechanism (iv) the complete method.
We run the ablation study on a polar code with N = 32.

Tab.1 reports the results of the ablation analysis. As can
be observed, the complete method, including the gating mech-
anism, outperforms a similar method without the damping
factor (i) and without the gating mechanism (iii). Moreover,
for training without the damping factor, the performance is
equal to a random guess. Training with a fixed c = 0.5 damp-
ing factor (ii) produces better results than c = 0, however
these results are worse then the complete method (iv).

5. CONCLUSIONS

We present a hypernetwork scheme for decoding polar codes
with a graph neural network. A novel gating mechanism is
added in order to allow the network to further adapt to the

Fig. 2: BER for Polar code (128,64)

Fig. 3: BER for Polar code (32,16)

Table 1: Ablation analysis for polar code (32, 16). The nega-
tive natural logarithm of BER results of our complete method
are compared with several variants. Higher is better.

Variant/SNR[dB] 1 2 3 4 5

(i) No damping factor c = 0 0.73 0.73 0.74 0.74 0.75
(ii) Unlearned damping c = 0.5 1.19 1.52 2.00 2.65 3.47
(iii) No gating mechanism 2.39 3.20 4.36 5.81 7.75
(iv) Complete method 2.42 3.25 4.40 5.85 7.87

input. We demonstrate our results on various polar codes and
show that our method can achieve the same performance as
successive list cancellation for large SNRs.
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