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Fig. 1. Given a neural implicit scene representation trained with multiple views of a scene, SNeRF stylizes the 3D scene to match a reference style. SNeRF
works with a variety of scene types (indoor, outdoor, 4D dynamic avatar) and generates novel views with cross-view consistency.

This paper presents a stylized novel view synthesis method. Applying state-
of-the-art stylization methods to novel views frame by frame often causes
jittering artifacts due to the lack of cross-view consistency. Therefore, this
paper investigates 3D scene stylization that provides a strong inductive bias
for consistent novel view synthesis. Specifically, we adopt the emerging
neural radiance fields (NeRF) as our choice of 3D scene representation for
their capability to render high-quality novel views for a variety of scenes.
However, as rendering a novel view from a NeRF requires a large number of
samples, training a stylized NeRF requires a large amount of GPU memory
that goes beyond an off-the-shelf GPU capacity. We introduce a new training
method to address this problem by alternating the NeRF and stylization op-
timization steps. Such a method enables us to make full use of our hardware
memory capacity to both generate images at higher resolution and adopt
more expressive image style transfer methods. Our experiments show that
our method produces stylized NeRFs for a wide range of content, including
indoor, outdoor and dynamic scenes, and synthesizes high-quality novel
views with cross-view consistency.
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1 INTRODUCTION
With the increasing availability of new social media platforms and
display devices, there has been a growing demand for new visual
3D content, ranging from games and movies to applications for
virtual reality (VR) and mixed reality (MR). In this paper, we focus
on the problem of stylizing 3D scenes to match a reference style
image. Imagine putting on a VR headset and walking around a 3D
scene: one is no longer constrained by the look of the real world,
but instead can view how the world would look like through the
artistic lenses of Pablo Picasso or Claude Monet.

Naively applying image-based stylization techniques [Gatys et al.
2016] to 3D scenes might lead to flickering artefacts between differ-
ent views, since each view is stylized independently without any
consideration for the underlying 3D structure. Therefore, recent
work has explored various choices of 3D representations to address
this issue: one can stylize the underlying 3D scenes and then render
new consistent views from them [Huang et al. 2021; Kopanas et al.
2021]. However, these methods does not capture the target style well
since they only stylize the scene’s appearance, although geometry
is also an important part of styles [Kim et al. 2020; Liu et al. 2021].
Recently, neural radiance fields (NeRF) [Mildenhall et al. 2020]

offers a compact 3D scene representation that produces high-quality
novel-view synthesis results. Later work shows the flexibility of
NeRF as 3D scene representations, ranging from large outdoor
scenes [Zhang et al. 2020] to dynamic avatars [Gafni et al. 2021]. Its
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compactness, expressiveness and flexibility make NeRF an attractive
choice of 3D representation for stylization. However, adopting NeRF
for neural style transfer poses a great memory constraint. To render
a pixel from NeRF, one has to sample densely along a camera ray.
This requires high memory usage for rendering and performing
back-propagation (for example, it takes 17, 934 MB to render an
image patch of size 81 × 67 [Chiang et al. 2022]). Concurrent work
by Chiang et al. [2022] addresses this limitation by performing styl-
ization on rendered patches of NeRF instead of the whole images.
However, results from patch-based approaches tend to suffer from
global style inconsistencies due to the mismatch between patches
in the target style and content images [Huang and Belongie 2017].

We propose to combine NeRF and image-based neural style trans-
fer to perform 3D scene stylization. While NeRF provides a strong
inductive bias to maintain multi-view consistency, neural style trans-
fer enables a flexible stylization approach that does not require ded-
icated example inputs from professional artists [Fišer et al. 2016;
Sýkora et al. 2019a; Texler et al. 2020]. Additionally, we address the
memory limitations of NeRF by splitting the 3D scene style transfer
process into two steps that run alternatingly. This enables us to fully
utilize the memory capacity of our hardware to either render NeRF
or perform neural style transfer on images with high resolutions.
In this paper, we present SNeRF, a 3D scene neural stylization

framework that generates novel views of a stylised 3D scene while
maintaining cross-view consistency. Our primary technical contri-
butions include the following:

• We introduce a novel style transfer algorithm with neural
implicit 3D scene representations, producing high-quality
results with cross-view consistency.

• We introduce a general, plug-and-play framework, where
various implicit scene representations and stylization meth-
ods can be plugged in as a sub-module, enabling results on
a variety of scenes: indoor scenes, outdoor scenes and 4D
dynamic avatars.

• We develop a novel training scheme to effectively reduce the
GPU memory requirement during training, enabling high-
resolution results on a single modern GPU.

• Through both objective and subjective evaluations, we demon-
strate that our method delivers better image and video quality
than state-of-the-art methods.

2 RELATED WORK

2.1 Image and video style transfer
Style transfer aims to synthesize an output image that matches a
given content image and a reference style image. Image analogies
by Hertzmann et al. [2001] and follow-up work [Liao et al. 2017]
address this problem by finding semantically-meaningful dense
correspondences between the input images, which allows effective
visual attribute transfer. However, they require the content and style
image to be semantically similar. Stylize-by-example approaches
also adopt a patch-based approach using high-quality examples as
guidance [Fišer et al. 2016; Sýkora et al. 2019b; Texler et al. 2019].
Despite impressive results, these methods require dedicated guiding
examples provided by professional artists. A blind approach to image
stylization, neural style transfer, is later on proposed by Gatys et al.

[2016]. Unlike example-based approaches, neural style transfer can
perform stylization on arbitrary style reference images. Originally,
this is done by optimizing the output image to match the statistics
of the content and style images, which are computed using a pre-
trained deep network. This optimization process is later replaced by
feed-forward networks to speed up the stylization process [Johnson
et al. 2016; Ulyanov et al. 2016]. Instead of redoing the stylization
for every new style, recent frameworks use the adaptive instance
normalization (AdaIN) [Huang and Belongie 2017], whitening and
coloring transform (WCT) [Li et al. 2017], linear transformation
(LST) [Li et al. 2019], or feature alignment [Svoboda et al. 2020] to
perform style transfer with arbitrary new styles at test time.

While relatively similar to image style transfer, video style trans-
fer methods mainly focus on addressing the temporal consistency
across the video footage. Recently, key-frame based approaches [Chi-
ang et al. 2022; Jamriška et al. 2019] expand stylize-by-examples to
videos and have shown impressive results, but require guiding exam-
ples from artists for every keyframe. For blind approaches without
dedicated guiding style reference, this can be done using optical
flow to calculate temporal losses [Chen et al. 2017, 2020] or align
intermediate feature representations [Gao et al. 2018; Huang et al.
2017] to stabilize models’ prediction across nearby video frames.
Recently, there have been efforts to improve consistency and speed
for video style transfer for arbitrary styles through temporal regu-
larization [Wang et al. 2020a], multi-channel correlation [Deng et al.
2021], and bilateral learning [Xia et al. 2021]. Similarly, style trans-
fer for stereo images [Chen et al. 2018; Gong et al. 2018] also aims
to achieve cross-view consistency by using dense pixel correspon-
dences (via stereo matching) constraints. However, these methods
mostly focus on improving short-range consistency between nearby
frames or views, and do not support novel view synthesis.

2.2 3D style transfer
While style transfer in the image domain is a popular and widely
studied task, style transfer in the 3D domain remains relatively new.
Most approaches focus either on stylizing a single object, using
either meshes [Ma et al. 2014] or point clouds [Segu et al. 2020], or
material [Nguyen et al. 2012]. Later work focuses on performing
style transfer on both geometry and texture [Hauptfleisch et al. 2020;
Kato et al. 2018; Yin et al. 2021], but still limited to single objects.

For style transfer at 3D scene level, recent approaches use point
clouds [Cao et al. 2020; Huang et al. 2021; Kopanas et al. 2021]
or meshes [Höllein et al. 2021] as scene representations. However,
these approaches are limited to static scenes. Concurrent work by
Chiang et al. [2022] uses implicit scene representations, in particu-
lar, NeRF, for 3D scene stylization. However, they only work with
static outdoor scenes, while we show that our method works on a
variety of scene types. Moreover, due to memory constraints, they
only perform stylization on image patches, which tend to generate
results that lack global style consistency and thus does not capture
the reference style well. Meanwhile, our proposed stylization ap-
proach can be trained with images in full resolution and adopt more
memory-intensive style transfer approaches such as ArcaneGAN
[Spirin 2021]. Finally, their method only focuses on stylizing the

ACM Trans. Graph., Vol. 41, No. 4, Article 142. Publication date: July 2022.



SNeRF: Stylized Neural Implicit Representations for 3D Scenes • 142:3

appearance of the scene, although geometry has been acknowledged
to be an important factor of style [Kim et al. 2020; Liu et al. 2021].

2.3 Novel view synthesis
Novel view synthesis aims to estimate images at unseen viewpoints
from a set of posed source images. When source images can be
sampled densely, light field approaches work well [Gortler et al.
1996; Levoy and Hanrahan 1996]. Other approaches often use the
scene geometrical proxy to warp and blend input views to create
novel views [Buehler et al. 2001; Chaurasia et al. 2013; Penner and
Zhang 2017; Zitnick et al. 2004]. Recently, a wide variety of deep
learning-based approaches have been developed for novel view
synthesis [Flynn et al. 2016; Hedman et al. 2018; Kalantari et al.
2016]. Aliev et al. [2020] develop a neural point-based rendering
method. This method associates a feature descriptor for each 3D
point, projects the feature descriptors to the target view, and fi-
nally uses a neural network to synthesize the target view. Deferred
neural rendering employs a similar approach to mesh-based render-
ing [Thies et al. 2019]. Sitzmann et al. [2019] develop a scene repre-
sentation, called DeepVoxels, that can encode the view-dependent
effects without explicitly modeling the scene geometry. Zhou et
al. [2018] estimate multi-plane images from two input images as
the scene representation, which can be projected to the target view
to render the target view. This method is further improved to take
more input views [Mildenhall et al. 2019a], handle larger viewpoint
shifts [Srinivasan et al. 2019], and produce VR videos [Broxton
et al. 2020]. Mildenhall et al. [2020] represent scenes as neural ra-
diance fields (NeRF), and show impressive results for novel view
synthesis. Since then, a large number of NeRF methods have been
developed [Barron et al. 2021; Li et al. 2021; Martin-Brualla et al.
2021; Zhang et al. 2020], which are described in a survey by Dellaert
and Yen-Chen [2021]. Given NeRF’s ability to render high-quality
views and represent a variety of scene types, we adopt NeRF for
stylization to render cross-view consistent stylized novel views.

3 METHOD
Given a 3D scene, we aim to manipulate it such that rendered images
of this scene match the style from a reference image 𝐼𝑠𝑡𝑦𝑙𝑒 . Addi-
tionally, rendered images of the same scene from different views
should be consistent. In this work, we use NeRF as our choice of
scene representation for its compactness and flexibility. We propose
a memory-efficient training approach that alternates between styl-
ization and NeRF training. This enables us to make full use of our
hardware memory for either stylization or training NeRF, but not
both at the same time, and thus achieve results with high resolution.

3.1 Preliminaries
3.1.1 NeRF overview. NeRF is a continuous 5D function whose
input is a 3D location x and 2D viewing direction d, and whose
output is an emitted color c = (𝑟, 𝑔, 𝑏) and volume density 𝜎 . NeRF
is approximated by a multi-layer perceptron (MLP): 𝐹Θ : (x, d) ↦→
(c, 𝜎), which is trained using the following loss function:

𝐿𝑁𝑒𝑅𝐹 (𝐹Θ) =
1
𝑀

𝑀∑︁
𝑖=1



c(r𝑖 ) − c′(r𝑖 )



2 (1)

where {r𝑖 }𝑀𝑖=1 is a batch of randomly sampled camera rays using
the corresponding camera poses and the camera intrinsic at each
optimization step, c′(r𝑖 ) is the color of a pixel rendered from 𝐹Θ,
and c(r𝑖 ) is the ground truth pixel color.

In this work, we assume that the stylization process starts with a
NeRF pre-trained with realistic RGB images {𝑥𝑖 }𝑁𝑖=1 and correspond-
ing camera poses {𝜃𝑖 }𝑁𝑖=1. We apply our approach to 3 different
NeRF scene types: classic NeRF [Mildenhall et al. 2020] for indoor
scenes, NeRF++ [Zhang et al. 2020] for 360°outdoor scenes and
finally, dynamic 4D human avatar [Gafni et al. 2021].

3.1.2 Style transfer overview. Given a content image 𝐼𝑐𝑜𝑛𝑡𝑒𝑛𝑡 and
target style reference image 𝐼𝑠𝑡𝑦𝑙𝑒 , we want to generate a new image
𝑥 ′ that matches the style of 𝐼𝑠𝑡𝑦𝑙𝑒 , but still maintain the content of
𝐼𝑐𝑜𝑛𝑡𝑒𝑛𝑡 . This is done by optimizing the generated image to match
the content statistics of the content image and the style statistics of
the style reference image using the following loss functions:

𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = 𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝐼𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , 𝑥 ′) + 𝐿𝑆𝑡𝑦𝑙𝑒 (𝐼𝑆𝑡𝑦𝑙𝑒 , 𝑥 ′) (2)

𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =


Φ(𝐼𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ) − Φ(𝑥 ′)




2 (3)

𝐿𝑆𝑡𝑦𝑙𝑒 =


Φ(𝐼𝑆𝑡𝑦𝑙𝑒 ) − Φ(𝑥 ′)




2 (4)

where Φ are the image statistics, which are usually features ex-
tracted from different layers of a pre-trained network such as VGG
[Simonyan and Zisserman 2015]. In our case, 𝐼𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is a rendered
view of the scene function, and 𝑥 ′ is a stylized version of that view.
While most of the results in this paper is stylized using the neural
style transfer algorithm proposed by Gatys et al. [2016], we also use
a GAN-based method [Spirin 2021] to stylize dynamic 4D avatars.

3.2 Stylizing implicit scene representation
We stylize a 3D scene represented as a NeRF to match a reference
style image 𝐼𝑠𝑡𝑦𝑙𝑒 using the following loss function:

𝐿𝑆𝑁𝑒𝑅𝐹 = 𝐿𝑁𝑒𝑅𝐹 + 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (5)

where 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 performs stylization to match a given style image
and 𝐿𝑁𝑒𝑅𝐹 maintains the underlying scene structure to preserve
multi-view consistency.

Previous work [Chiang et al. 2022; Huang et al. 2021; Kopanas et al.
2021] optimizes for both losses at the same time to perform scene
stylization. This would require rendering full images (or patches as
proposed by Chiang et al. [2022]) from NeRF to compute 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟
at every training step, which is time consuming. Additionally, this
approach requires that the memory has to be shared between three
memory-intensive components: the feature extractor (such as VGG)
to compute image statistics, the volumetric renderer of NeRF, and
back-propagation. This greatly limits the resolution of stylized re-
sults as well as the choice of stylization methods. For example, with
a 32GB GPU (NVIDIA V100), we could only perform stylization
simultaneously for images at size 252 × 189 using VGG-16-based
losses similar to [Gatys et al. 2016], and quickly ran into OOM error
with larger images at size 366 × 252.

To address the memory burden of the methods described above,
we propose an alternating training regime inspired by coordinate
descent. Our insight is that we can decouple 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 and 𝐿𝑁𝑒𝑅𝐹 ,
and minimize one at a time. To compute 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 , we only need
the feature extractor, the target style image, and rendered images
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Fig. 2. Overview: We propose an alternating training approach to stylize implicit scene representations. For one iteration: (1) Given a pre-trained scene
function, we render images from different views. (2) We then stylize these images using the image stylization module. (3) We train the scene function to match
multi-view stylized images similar to training a NeRF function. In the next iteration, (1) we again render images from different views from a now more stylized
scene function, (2) perform image stylization on this new set of images, and (3) train NeRF with the new set of images.

of the scene, which can be precomputed from NeRF. Meanwhile, to
compute 𝐿𝑁𝑒𝑅𝐹 , we only need the volumetric renderer and target
images, which can be precomputed by a separate stylization process.
In practice, we train NeRF with 𝐿𝑁𝑒𝑅𝐹 for a number of steps on
batches of randomly sampled rays across different views, before
rendering a set of images at different views to compute 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 .
Figure 2 provides an overview of our method.

The proposed alternating training regime allows one to dedicate
the full hardware capacity to either image stylization or NeRF train-
ing. For image stylization, this enables us to perform stylization
on the whole image and achieve more globally consistent stylized
results. For NeRF training, we can train NeRF to generate results
at higher resolution, and apply our method to dynamic scenes (in
particular, dynamic avatar). With the same hardware, our training
regime can now stylize NeRF to synthesize images at size 1008 × 756,
4 times larger thanwhat we previously could when performing train-
ing and stylization simultaneously. This also opens up potentials
to use more expressive pre-trained models to compute 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 ,
such as StyleGAN [Karras et al. 2019] or CLIP [Radford et al. 2021].

3.3 Alternating training regime details
Starting from a set of “realistic” RGB image {𝑥𝑖 }𝑁𝑖=1 rendered from
pre-trained NeRF using camera poses {𝜃𝑖 }𝑁𝑖=1, we perform style
transfer independently on each image (as the target content) by
minimizing 𝐿𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 . Note that after this step, the stylized images
are not necessarily multi-view consistent. Secondly, we use this
set of stylized images {𝑥 ′𝑖 }𝑁𝑖=1 as target images to train the NeRF
scene function 𝐹Θ using 𝐿𝑁𝑒𝑅𝐹 . Note that here we can train NeRF
on batches of random rays across multiple views, instead using
full images which can be time and memory-consuming. Finally,
using the stylised NeRF, we render a new set of images. While
these images might not yet capture the full details of the target
style, they are multi-view consistent thanks to the underlying scene
structure of NeRF. In the next iteration, we perform stylization on

the new set of (more stylized) images of NeRF. By boostraping the
image stylization algorithm to the output images of NeRF, we obtain
more multi-view consistent stylized results, even when each view is
stylized independently.We then use the new set of stylized images to
further finetune NeRF. The outline of the overall stylization process
is described in Algorithm 1. Please refer to the supplementary video
for converging results at each iteration.

ALGORITHM 1: Neural Implicit Scene Representation Stylization
Input: Neural implicit scene function 𝐹Θ pre-trained on realistic

multi-view images, target style image 𝐼𝑆𝑡𝑦𝑙𝑒
Output: Stylised implicit scene function 𝐹Θ.

Initialize 𝐹Θ with 𝐹Θ.
for each iteration t = 1,...,T do

Render a set of images {𝑥𝑖 }𝐾𝑖=1 using the stylized scene function 𝐹Θ.
Optimize the stylized images {𝑥′

𝑖
}𝐾
𝑖=1 to minimize the style transfer

loss:
∑𝐾
𝑖=1 𝐿𝑆𝑡𝑦𝑙𝑒 (𝐼𝑆𝑡𝑦𝑙𝑒 , 𝑥′𝑖 ) + 𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝑥𝑖 , 𝑥′𝑖 ) .

Optimize 𝐹Θ to minimize 𝐿𝑁𝑒𝑅𝐹 (𝐹Θ) using {𝑥′
𝑖
}𝐾
𝑖=1 as reference.

3.4 Implementation Details
For stylization, we use a pre-trained VGG16 network [Simonyan
and Zisserman 2015] to extract the image statistics. In particular, we
use layer relu4_1 to extract image features for the content loss, and
layers relu1_1, relu2_1, relu3_1 and relu4_1 for the style loss. For the
4D avatar, we use a pre-trained ArcaneGAN model [Spirin 2021].

For each scene, we perform scene stylization for 5 iterations
(𝑇 = 5 in Algorithm 1). For each iteration, we perform neural style
transfer optimization for 500 steps for each input image, and train
the scene function NeRF for 50000 steps (100000 steps for NeRF++).
We use the learning rate of 5e-4 for all of our experiments. We train
each model using one NVIDIA V100 GPU.
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4 RESULTS
To show the flexibility of our stylization method, we train SNeRF on
3 different scene types: indoor scenes, outdoor scenes and dynamic
avatar. For indoor scenes, we train NeRF using scenes Fern and TRex
from the LLFF dataset [Mildenhall et al. 2019b]. For outdoor scenes,
we train NeRF++ [Zhang et al. 2020] using scenes Truck, Train, M60
and Playground from the Tank and Temples dataset [Knapitsch et al.
2017]. We also use our method to stylize 4D avatars [Gafni et al.
2021]. For NeRF scenes, we stylize 3D scenes using images at size
1008 × 756. For NeRF++, we use images at 980 × 546 for Truck, 982
× 546 for Train, 1077 × 546 for M60 and 1008 × 548 for Playground.
For the dynamic 4D avatar, we train with images at size 512 × 512.
We use all available training views for image stylization.

In Section 4.1 and 4.2, we compare SNeRF with both 2D and 3D
approaches. In particular, we compare our method to the following
4 categories of methods:

• Image stylization→ Novel view synthesis: we perform image
stylization on the input images and synthesize new views
from them using LLFF [Mildenhall et al. 2019b].

• Novel view synthesis→ Image stylization: we perform novel
view synthesis using the input images and then stylize each
new view independently using AdaIN [Huang and Belongie
2017], WCT [Li et al. 2017] and LST [Li et al. 2019].

• Novel view synthesis → Video stylization: we perform novel
view synthesis using the input images, compile the results
into a video, and then perform video stylization using ReReVST
[Wang et al. 2020a] and MCCNet [Deng et al. 2021].

• 3D scene stylization→Novel view synthesis: we compare our
method with StyleScene by Huang et al. [2021], a point cloud-
based approach and with Chiang et al. [2022], a NeRF-based
approach but with a patch-based stylization strategy.

4.1 Qualitative results
We show qualitative comparison with other approaches in Figure
3, in which we compare our approach with image, video and 3D-
based approaches. We encourage our readers to look at the sup-
plementary videos to see the full effectiveness of our approach in
generating cross-view consistent 3D stylization results compared to
other methods. Image style transfer approaches produce more no-
ticeable inconsistency artifacts than the other two, since each frame
is stylized independently. Video-based approaches perform better
than the image-based approaches since they take into short-term
consistency. However, MCCNet [Deng et al. 2021] still produces
noticeable artifacts when two frames are far apart, and ReReVST
[Wang et al. 2020a] does not capture the reference style as well.
For 3D-based approaches, we observe that StyleScene [Huang

et al. 2021], Chiang et al. [2022] and our approach generate view-
consistent results since all methods aim to stylize a holistic 3D
scene. (Note that StyleScene results from the authors’ model are at
size 538 × 274.) However, StyleScene’s results do not capture the
reference style image as well as ours, as also shown in the user study
in Section 4.2.1 and Figure 3. Similarly, Chiang et al. [2022]’results
fail to capture the reference style well, such as the overall colour
schemes or the fine-grained stippling details (Figure 3 left). This can
be mostly explained by the fact that both of these methods stylize

only scenes’ appearance instead of both geometry and appearance
(see ablation study in Section 4.2.3). Additionally, Chiang et al. [2022]
only trained with small patches of size 81 × 67 out of 1008 × 550
images, which has been shown to produce results that lack global
structural coherence [Huang and Belongie 2017; Texler et al. 2019]
or diversity [Wang et al. 2021]. Finally, it is non-trivial to extend
StyleScene to dynamic scenes, whereas our method can be directly
applied to stylize 4D dynamic avatars (see Figure 6).
Figures 1, 4, 5 and 6 show additional qualitative results of our

method on different scene types. Although we choose to use the
original stylization approach by Gatys et al. [2016] in this work,
our scene stylization framework is not restricted to a particular
stylization technique. For example, to stylize the dynamic avatar in
Figure 1, we use ArcaneGAN [Spirin 2021], which is built upon a
memory-intensive StyleGAN model [Karras et al. 2019]. This makes
it challenging when naively combining ArcaneGAN with NeRF to
perform scene stylization. However, thanks to our alternating train-
ing approach, we can easily adopt this model to stylize a dynamic
4D avatar and produce results at high resolution (512 × 512).

4.2 Quantitative results
4.2.1 User study. We conduct a user study to compare the user
preference between our proposed and alternative approaches. In
particular, we want to measure users’ preferences in two aspects,
split into two tests: (1) which method produces more consistent
results across different views (e.g., less flickering), and (2) which
method matches the style of a given reference style image better. For
each question, we ask the participant to compare two videos of the
same scene and style, one generated by our method and the other
by one alternative method. To generate the videos for the study,
we stylize 5 scenes: Fern, Truck, Train, Playground and M60. We
collect answers from 35 participants for both questions. As shown
in Figure 7, our method (coloured in grey) performs better than other
approaches on both stylization quality and multi-view consistency.

4.2.2 Cross-view consistency. One of the main advantages of using
implicit scene representation for stylization is cross-view consis-
tency. To test the performance of our approach, we adopt a similar
strategy to Lai et al. [2018] to measure the consistency between
different novel views of the stylized 3D scene. In particular, we
create testing videos where each frame is a rendered image at a
novel view of our stylized scene. We then compute the optical flow
and the occlusion mask 𝑂 using two ground truth views 𝐼𝑟𝑒𝑎𝑙

𝑖
and

𝐼𝑟𝑒𝑎𝑙
𝑖+𝛿 rendered from a pre-trained NeRF scene. Note that unlike Lai
et al. [2018] who use FlowNet2 [Ilg et al. 2017], we use RAFT [Teed
and Deng 2021], a state-of-the-art method to predict optical flow
between two views. Secondly, we warp a stylized view 𝐼𝑠

𝑖
to obtain a

new view 𝐼𝑠
𝑖+𝛿 using the optical flow. Finally, we compute the error

between the novel view obtained from our stylized scene 𝐼𝑠
𝑖+𝛿 , and

the previously computed 𝐼𝑠
𝑖+𝛿 using:

𝐸𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝐼𝑠𝑖+𝛿 , 𝐼
𝑠
𝑖+𝛿 ) =

1
|𝑂 ′ |



¤𝐼𝑠
𝑖+𝛿 − 𝐼𝑠

𝑖+𝛿


2
2 (6)

where |𝑂 ′ | denotes the number of non-occluded pixels calculated
using 𝑂 . Following Huang et al. [2021] and Chiang et al. [2022], we
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Ours

AdaIN

WCT

LST

MCCNet

ReReVST

StyleScene

t t + 8

Input scene and reference style image

t t + 8

Chiang et al,
2022

Chiang et al,
2022

Fig. 3. Qualitative comparisons. We encourage readers to look at the supplementary material to compare the consistency between different methods. We
show stylized results from two frames that are far apart (𝑡𝑡ℎ and (𝑡 + 8)𝑡ℎ frame). Cross-view inconsistencies are highlighted in blue boxes.
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Fig. 4. SNeRF’s stylization results on 360°scenes using NeRF++. Here we show our results from different views.

Fig. 5. SNeRF’s stylization results on indoor scenes using NeRF. Here we show our stylization results from different views.
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Fig. 6. SNeRF’s stylization results for a dynamic avatar. Using neural implicit representations, which are compact and flexible, allows us to seamlessly extend
our method to stylize this 4D dynamic avatar. Our stylized avatar can generate results that are consistent across different views and expressions.

Our method Compared method
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Fig. 7. User preference study. We present two videos of novel view synthesis
results, one generated by our method (grey) and one by another approach
(blue - each column corresponds to one approach we are comparing against).
We ask the participant to select the one that (a) shows less flickering artifacts
and (b) matches the reference style image better.

measure both short-range and long-range consistency between differ-
ent testing video frames. Specifically, we compute the error between
𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ video frames to measure short-range consistency,
and between 𝑖𝑡ℎ and (𝑖 + 7)𝑡ℎ frames for long-range consistency.
We show our results for short and long-range consistency mea-

surement in Table 1 and 2 respectively. We compare our method
with image-based approaches (AdaIN, WCT and LST), as well as
video-based approaches (ReReVST and MCCNet), and report the av-
erage errors of 12 diverse styles. Unfortunately, we could not match
the camera path and resolution for the results of StyleScene [Huang
et al. 2021], and thus do not include this work in this comparison. In
general, the image stylization alternative methods produce worse
results than video-based and 3D-based methods (ours). We observe

that ReReVST produces competitive results with our method. How-
ever, as shown in Figure 3, and user study in Section 4.2.1, ReReVST
does not capture the reference style well. As shown in the user

Table 1. Qualitative comparisons on short-range consistency. We compute
the consistency score (the lower the better) between two nearby stylized
novel views. The best result is in bold and the second best is underscored.

Methods Truck Playground M60 Train

AdaIN 0.043 0.044 0.054 0.039
WCT 0.064 0.063 0.084 0.056
LST 0.027 0.026 0.032 0.024

ReReVST 0.010 0.009 0.010 0.015
MCCNet 0.025 0.025 0.028 0.021

SNeRF (Ours) 0.009 0.004 0.012 0.008

Table 2. Qualitative comparisons on long-range consistency. We compute
the consistency score (the lower the better) between two far-away stylized
novel views. The best result is in bold and the second best is underscored.

Methods Truck Playground M60 Train

AdaIN 0.059 0.060 0.075 0.062
WCT 0.084 0.087 0.110 0.082
LST 0.037 0.032 0.042 0.036

ReReVST 0.015 0.015 0.016 0.024
MCCNet 0.035 0.030 0.039 0.034

SNeRF (Ours) 0.026 0.010 0.032 0.016

studies and consistency measurements, SNeRF can stylize 3D scenes
to generate novel views faithful to both the reference style and the
original scene content while maintaining cross-view consistency.

4.2.3 Freezing geometry. Recent 3D scene stylization approaches
focus only on stylizing the appearance instead of both the under-
lying geometry and appearance [Chiang et al. 2022; Huang et al.
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                 Ground truth image                                                   Renered view from the pretained NeRF                                 Rendered view from the stylized NeRF

Fig. 8. The quality of our stylized results partly depends on the quality of the underlying implicit scene function. If the scene function fails to capture sharp
details (shown in the red box), the stylized results will be blurry.

Reference style Freeze geometry Stylizing geometry

Fig. 9. The effects of only updating the appearance of NeRF. Stylizing both
geometry and appearance leads to results with sharper details and closer to
the reference style, especially for more abstract reference style images.

2021]. However, Liu et al. [2021] and Kim et al. [2020] show that
geometry is also a component of style, and thus stylizing both style
and geometry leads to stylized results that are closer to the tar-
get style. Therefore, our method stylizes both the appearance and
geometry (represented as density) of the scene functions. Figure
9 shows that this produces stylized results that are closer to the
target style, especially when the style is more abstract or contains
lots of fine-grained details. Meanwhile, when we only stylize the
appearance (by keeping the weights of NeRF’s shared and opacity
branch fixed, and only updating the weights of the RGB branch),
the results only capture the style’s color scheme.

4.2.4 Alternating training scheme. In addition to addressing the
memory limitations, our alternating training framework can also
produce stylization results that capture the reference style better.
The 3D scene stylization process comprises two main steps: image
stylization, which allows us to perform stylization using a reference
image but does not guarantee multi-view consistency, and scene
stylization, which modulates the scene to match the set of styl-
ized views and maintain consistency. In our method, we alternate
between these two steps for a few iterations, where one iteration
comprises stylization and NeRF training.
We show that naively training a scene function using a set of

inconsistent stylized images leads to cross-view consistent results,
but fails to capture the target style, similar to the novel view synthe-
sis results by LLFF. This is the equivalent of performing only one
iteration of our approach. However, as shown in Figure 10, if we
repeat the same process of stylization and NeRF training for more
iterations, we get better results that are multi-view consistent and
capture fine-grained details of the reference style.

Single-stage training Alternating training

Fig. 10. Alternating between training NeRF and stylization leads to better
results than a single-stage training using individually stylized images.

5 DISCUSSION
In this paper, we have shown both qualitatively and quantitatively
the advantages of SNeRF in terms of generating multi-view con-
sistent results, compared to image and video style transfer meth-
ods [Deng et al. 2021; Huang and Belongie 2017; Li et al. 2019, 2017;
Wang et al. 2020a]. We also show that our method generates better
stylization results than other 3D-based approaches [Chiang et al.
2022; Huang et al. 2021], which can be mostly attributed to our
method’s flexibility in stylizing both the 3D scene geometry and ap-
pearance. Unlike these existing methods that focus on static scenes,
our method can also stylize dynamic content, such as 4D avatars.

We observe that the quality of our stylized results partly depends
on the quality of the scene function trained with RGB images, as
also observed by Chiang et al. [2022]. For example, in Figure 8,
the underlying NeRF model fails to capture sharp details of the
vegetation in the background, compared to the ground truth RGB
image. This eventually leads to blurry stylized results.
Our method adopts NeRF which is more time-consuming and

computationally demanding than point clouds. Depending on the
resolution of the scene, on a single Nvidia V100 GPU, training (in-
cluding training the original NeRF models) can take 3-5 days and
rendering an image at size 1008 × 548 can take 55 seconds. We
believe that our alternating stylization framework will enable quick
adoption of fast emerging advances in research on NeRF to improve
quality [Barron et al. 2021, 2022] and speed [Hedman et al. 2021a;
Müller et al. 2022; Neff et al. 2021], as well as style transfer methods
to improve the fidelity and variety of stylization results [Gal et al.
2021; Texler et al. 2019]. Note that, even though it takes a while to
train a stylized NeRF using our method, once trained, they can be
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“baked” [Hedman et al. 2021b] for real-time rendering in AR, VR
and MR applications.
Apart from RGB images, future work can explore using addi-

tional segmentation or depth maps (queried from NeRF models)
for stylization [Liu et al. 2017; Wang et al. 2020b]. Secondly, we
currently stylize each scene independently, and cannot apply an
arbitrary style to each scene without restarting the optimization
process. Therefore, it will be an interesting direction to combine
our framework with recent work on arbitrary style transfer.

6 CONCLUSION
In this work, we present a method for 3D scene stylization using
implicit neural representations (NeRF). This provides a strong induc-
tive bias to produce stylized multi-view consistent results that also
match a target style image well. Additionally, our alternating styl-
ization method enables us to make full use of our hardware memory
capability to stylize both static and dynamic 3D scenes, allowing
us to both generate images at higher resolution and adopt more
expressive image style transfer methods. As NeRF increasingly at-
tracts more research in improving generalisation, quality, and speed
in both training and test time, we believe that using implicit scene
representations for 3D scene stylization will open up a wide range
of exciting applications for AR, VR and MR.
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