
Scaling Speech Technology to 1,000+ Languages

Vineel Pratap♢ Andros Tjandra♢ Bowen Shi♢

Paden Tomasello Arun Babu Sayani Kundu∗ Ali Elkahky†

Zhaoheng Ni Apoorv Vyas Maryam Fazel-Zarandi Alexei Baevski‡

Yossi Adi§ Xiaohui Zhang Wei-Ning Hsu Alexis Conneau¶

Michael Auli♢

Meta AI ♢ core team

Abstract

Expanding the language coverage of speech technology has the potential to im-
prove access to information for many more people. However, current speech
technology is restricted to about one hundred languages which is a small frac-
tion of the over 7,000 languages spoken around the world. The Massively Mul-
tilingual Speech (MMS) project increases the number of supported languages
by 10-40x, depending on the task. The main ingredients are a new dataset
based on readings of publicly available religious texts and effectively leverag-
ing self-supervised learning. We built pre-trained wav2vec 2.0 models covering
1,406 languages, a single multilingual automatic speech recognition model for
1,107 languages, speech synthesis models for the same number of languages, as
well as a language identification model for 4,017 languages. Experiments show
that our multilingual speech recognition model more than halves the word er-
ror rate of Whisper on 54 languages of the FLEURS benchmark while being
trained on a small fraction of the labeled data. The MMS models are available at
https://github.com/pytorch/fairseq/tree/master/examples/mms.

1 Introduction

Speech technology has made much progress over the past decade [Chan et al., 2015, Graves et al.,
2006, Baevski et al., 2020b, Radford et al., 2022] and has been integrated into many consumer
products, such as home assistants and smartphones. Despite this progress, speech technology is still
absent for the vast majority of the over 7,000 languages spoken around the world [Lewis et al., 2016].
Moreover, many of these languages are at risk of disappearing by the end of this century and the
narrow language coverage of current technology may contribute to this trend [Bromham et al., 2021].

Speech models have traditionally been built by training models on large amounts of labeled training
data which is only available for a small number of languages. More recently, self-supervised speech
representations have dramatically lowered the amount of labeled data required to build speech
systems [van den Oord et al., 2018, Schneider et al., 2019, Baevski et al., 2020b]. But despite this
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Figure 1: Illustration of where the languages supported by MMS are spoken around the world:
MMS models support speech-to-text and text-to-speech for 1,107 languages as well as language
identification for 4,017 languages.

progress, prominent recent work still only supports about 100 languages [Radford et al., 2022, Zhang
et al., 2023a].

To address this, we build a new dataset comprising a moderate amount of labeled data for 1,107
languages and another dataset of unlabeled speech in 3,809 languages (§3). We leverage this data to
pre-train wav2vec 2.0 models supporting several times more languages than any known prior work
(§4) and then fine-tune these models to build a multilingual speech recognition model supporting
1,107 languages (§5), language identification models for 4,017 languages (§6) and text-to-speech
models for 1,107 languages (§7).

The Massively Multilingual Speech (MMS) project aims to expand speech technology to many more
people and we hope that it can be a small contribution to preserving the languages diversity of this
world. Figure 1 illustrates the location where the languages supported in this work are spoken and
which tasks we cover for each language.

2 Related Work

Multilingual Speech Datasets. Current multilingual speech datasets with transcriptions are drawn
from a variety of domains, including Wikipedia [Ardila et al., 2020, Conneau et al., 2022], political
speech [Wang et al., 2021], audiobooks [Pratap et al., 2020c] to name a few. They are limited to
about 100 languages with some datasets only containing data for European languages [Wang et al.,
2021, Pratap et al., 2020c]. Multilingual datasets without transcriptions include VoxLingua107 [Valk
and Alumäe, 2020] spanning data in 107 languages, or VoxPopuli [Wang et al., 2021] which contains
large amounts of unlabeled data for European languages. Leong et al. [2022] covers 56 low-resource
languages and 428 hours of data.

Compared to prior work utilizing read versions of the New Testament Black [2019], MMS covers
many more languages (58% more for MMS-lab and over five times more for MMS-unlab) and our
alignments are of much higher quality which leads to better models as we show in §3.3.1. We also
use the resulting data to train self-supervised models, build speech recognition systems as well as
language identification models while as Black [2019] focused on speech synthesis.
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Multilingual Automatic Speech Recognition (ASR). Prior work on multilingual speech recog-
nition includes both non-neural methods [Burget et al., 2010, Lin et al., 2009], hybrid neural and
HMM models [Heigold et al., 2013] and more recently neural systems [Cho et al., 2018, Toshniwal
et al., 2018, Kannan et al., 2019, Li et al., 2019]. Li et al. [2021] built multilingual ASR for up to 15
languages, Pratap et al. [2020a], Lugosch et al. [2022], Tjandra et al. [2022b] trained and explored
several strategies for 50+ languages.

Whisper [Radford et al., 2022] mines 680K hours of data from the web and their model supports
the transcription of 99 different languages. Zhang et al. [2023a] trained a multilingual ASR model
based on YouTube audio data and successfully scaled to 100 languages. A notable exception is Li
et al. [2022] who created ASR for 1,909 languages by mapping the phoneme-like output of an
eight language multilingual model to appropriate phonemes for the language of interest. In contrast,
MMS uses actual paired speech and text for over 1,100 languages and present a comparison to their
approach below (§3.3.2).

Spoken Language Identification (LID). Whisper [Radford et al., 2022] also supports language
identification and can distinguish between 99 different languages. Fan et al. [2021] utilizes wav2vec
2.0 for language identification using the API17-OLR dataset that consists of ten Asian languages.
Later, Tjandra et al. [2022a] demonstrated that a cross-lingual self-supervised model can improve
language identification performance by training a language identification model for 26 languages
using a proprietary dataset. Babu et al. [2022] fine-tunes a pre-trained model to perform LID for 107
languages using the VoxLingua-107 dataset [Valk and Alumäe, 2020]. In this work, we scale the
number of languages to over 4,000 which to our knowledge is the broadest coverage spoken language
identification model so far.

Multilingual Text-To-Speech (TTS). Speech synthesis has been undergoing a transition from
controlled settings to the generation of more diverse speech, with multilinguality being a crucial
aspect [Casanova et al., 2022, Zhang et al., 2023b]. However, the lack of multilingual training
data, particularly for low-resource languages, presents a common obstacle in scaling TTS to more
languages. To address data scarcity, prior work explored various approaches including byte encoding
to unify text representations which was evaluated on English, Spanish, and Chinese [Li et al., 2019]
Further studies explored other input representations, including phonemes [Zhang et al., 2019] and
phonological features [Staib et al., 2020].

Additionally, various modeling schemes have been developed to encourage knowledge sharing be-
tween languages, such as parameter generation networks [Nekvinda and Dušek, 2020] and leveraging
unpaired speech or text data for pre-training [Saeki et al., 2023b,a]. Despite these efforts, most
prior work still covers a small number of languages but there are a few efforts which scaled to 46
languages [He et al., 2021] or use unsupervised techniques to scale to 101 languages [Saeki et al.,
2023b]. Meyer et al. [2022] also builds VITS models based on readings of the Bible but their work is
limited to ten African languages.

Multilingual NLP. Multilinguality has been a very active research area in NLP where researchers
introduced cross-lingually pre-trained sentence encoders [Conneau and Lample, 2019] spanning
100 languages, or pre-trained multilingual sequence to sequence models [Liu et al., 2020] applied
to machine translation. Multilingual machine translation models have also been scaled to 200
languages [NLLB_Team et al., 2022] and even 1,000 languages [Bapna et al., 2022a].

3 Dataset Creation

Our work leverages two new datasets to expand the language coverage of speech technology. In
this section, we first detail how we create a labeled dataset which includes speech audio paired
with corresponding text in 1,107 languages (MMS-lab; 44.7K hours; §3.1). Second, we discuss the
creation of an unlabeled dataset for which we only have audio recordings and no corresponding text.
This dataset spans 3,809 languages (MMS-unlab; 7.7K total hours; §3.2).

We also use an unlabeled version of MMS-lab for pre-training and language identification. This spans
a larger number of languages, as we can also use unlabeled audio from our data source (MMS-lab-U;
1,362 languages; 55K hours). Figure 2 compares the datasets to existing corpora. A full list of the
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(b) Unlabeled Datasets.

Figure 2: Dataset Overview. MMS-lab, MMS-lab-U and MMS-unlab compared to existing mul-
tilingual speech corpora in terms of the supported languages and dataset size. We compare to
BABEL [Gales et al., 2014], CMU Wilderness [Black, 2019], CommonVoice [Ardila et al., 2020],
Dhwani [Javed et al., 2022], FLEURS [Conneau et al., 2022], M-AILABS [M-AILABS, 2018],
MLS [Pratap et al., 2020c], VoxLingua107 [Valk and Alumäe, 2020], and VoxPopuli [Wang et al.,
2021] .

languages supported is available at https://github.com/facebookresearch/fairseq/tree/
main/examples/mms.

3.1 Paired Data for 1,107 Languages (MMS-lab)

We obtain speech data and transcriptions for 1,107 languages by aligning New Testament texts
obtained from online sources (§3.1.1) using the following steps:

1. Download and preprocess both the speech audio and the text data (§3.1.2).

2. Apply a scalable alignment algorithm which can force align very long audio files with text
and do this for data in 1000+ languages (§3.1.3).

3. Initial Data Alignment: we train an initial alignment model using existing multilingual
speech datasets covering 8K hours of data in 127 languages and use this model to align data
for all languages (§3.1.4).

4. Improved Data Alignment: we train a second alignment model on the newly aligned data
for which the original alignment model has high confidence and generate the alignments
again. The new alignment model supports 1,130 languages and 31K hours of data including
the data used in step 3 (§3.1.5).

5. Final data filtering: we filter the low-quality samples of each language based on a cross-
validation procedure. For each language, we train a monolingual ASR model on half of the
aligned data to transcribe the other half of the data. We retain only samples for which the
transcriptions are of acceptable quality (§3.1.6).

6. We partition the data into training, development and test portions (§3.1.7).

3.1.1 Data Source

The MMS-lab dataset is based on recordings of people reading the New Testament in different
languages. The New Testament consists of 27 books and a total of 260 chapters. Specifically, we
obtain data from Faith Comes By Hearing6, goto.bible and bible.com. This includes the original text
data as we well as the corresponding audio recording.

6https://www.faithcomesbyhearing.com/
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Basic Data Characteristics. The data sources provide 1,626 audio recordings of the New Testament
in 1,362 languages, totaling 55K hours and we refer to this data as the MMS-lab-U dataset.7 Out of
these, both text and audio is available for 1,306 different recordings in 1,130 languages and a total of
49K hours, which we focus on for MMS-lab. For 99 languages, we have multiple recordings. Each
recording provides separate audio files for each chapter and the duration of each chapter is on average
6.7 minutes but there is significant variance, depending on the language and chapter. Recordings
are almost always single speaker which makes it well suited for building speech synthesis systems
(§7). However, speakers are often male which may introduce unwanted biases into machine learning
models which we analyze below (§8.1).

Multiple Scripts or Dialects per Language. When there are multiple recordings per language, we
found that some recordings differ in the used writing script, e.g., for Serbian there are recordings
using the Latin script and another which uses Cyrillic.8 Recordings can also differ in the spoken
dialect, e.g., for the Poqomchi’ language there are recordings with western and eastern dialects.

Depending on the downstream task, we handle these cases differently: for language identification, we
merge the different recordings regardless of writing script or dialect, for speech synthesis models, we
choose one recording per dialect/script to avoid introducing additional speakers into the training data,
and for automatic speech recognition, we combine all the recordings within the same script/dialect
into one and treat them as different languages, e.g., srp-script:latin, srp-script:cyrillic.

Micro and Macro Language Distinction. When there is a micro and macro language distinction,
then we generally keep micro languages as distinct languages. However, for languages which are part
of benchmarks we use for evaluation, e.g., FLEURS [Conneau et al., 2022], we deviate from this
policy if the respective benchmark only contains the macro language, by merging the micro languages.
For example, Azerbaijani is a macro language and MMS-lab provides data for two associated micro
languages, North Azerbaijani and South Azerbaijani. For ASR, our evaluation benchmarks also keep
the same distinction and so we model both micro languages separately, however, for LID, one of
our benchmarks, VoxLingua-107 [Valk and Alumäe, 2020], only contains the macro language, and
therefore, for LID only, we merge both micro languages into a single macro language.

Recordings with Background Music. Some of the recordings contain background music and we
refer to these as drama recordings. In our final MMS-lab dataset, 38% of languages are represented
solely by a drama recording and 11% have both drama recordings and recordings without background
music (non-drama recordings). For speech synthesis, we apply pre-processing to remove background
music (§7).

While this data source covers a lot of languages, it requires careful curation to make it usable for
building high-quality models which presents unique challenges given the large number of languages.
We detail the steps we take in the remainder of this section.

3.1.2 Data Pre-processing

Speech. The original audio files are available in MP3 stereo format using a 22/24/44 kHz sampling
rate. We convert all of them to a single channel and 16 kHz sampling rate.

Text Normalization. We design a generic text normalization pipeline that works well across the
languages we consider. First, we perform NFKC normalization and lower case all characters.9 NFKC
normalization helps to make sure the character encoding is consistent. Next, we remove HTML tags
such as "&gt;" or "nbsp;". We also remove punctuation and try to perform this carefully by including
characters for which we are confident that they are in fact punctuation.10

We noticed that some recordings have a relatively high rate of brackets in the text: our criteria is
recordings where at least 3% of verses contain brackets which resulted in about 50 recordings. We

7For the audio files with no paired text, we perform VAD and segment them into smaller files.
8Specifically, we measure the correlation of the character frequency distribution for all pairs of the recordings

and examine recordings with a correlation lower than 0.99 further.
9For example, there are two ways to represent Ç (Latin C with combining cedilla): splitting it into Latin

capital C and combining cedilla (NFKD), or having a single Unicode character C with cedilla.
10We obtain an initial set of punctuation characters from the respective Unicode category.
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1This morning Tom was going to school. 2Suddenly, it started raining heavily. 3Tom had to go back home.

1This morning Tom was going to school. 2Suddenly, it started raining heavily. 3Tom had to go back home.

Alignment Step

Splits the long audio file into verse level segments

Figure 3: Illustration of Data Alignment. Forced alignment enables segmenting audio recordings
and corresponding text into smaller segments that can be used to train machine learning models.

listened to a few instances of each recording to verify whether the text in the brackets is present in the
audio or not. In many cases, we noticed that the text in the brackets was not spoken and we removed
the brackets and the text within.

3.1.3 Scalable Forced Alignment

The chapter recordings from the data source can be up to 43 minutes long which cannot be directly
used by current machine learning algorithms: we use Transformer models which require large
amounts of GPU memory and their computational complexity is quadratic in the input size. We
therefore segment the data into smaller units so it can be used by standard algorithms. Forced
alignment determines which parts of the audio correspond to which parts of the text.

Given this alignment, the data can be segmented in different ways. In our case, we segment the
data into individual verses which are typically a single sentence but can sometimes contain several
sentences. The average duration of a verse is about 12 seconds. Figure 3 illustrates how the alignments
enable creating verse-level audio segments for each chapter recording. In this section we detail how
we perform efficient forced alignment on GPUs.

Generating Posterior Probabilities. Forced alignment requires posterior probabilities from an
acoustic model which we use for alignment (§3.1.4). This acoustic model is a Transformer which
requires substantial amounts of memory to store activations which makes it infeasible to use for long
audio files. As a workaround, we chunk the audio files into 15 second segments, generate posterior
probabilities for each audio frame using the alignment model, and then concatenate these posterior
probabilities into a single matrix again. The acoustic model is trained with Connectionist Temporal
Classification (CTC; Graves et al. 2006).

Forced Alignment using CTC. Next, we perform forced alignment which finds the most likely
path in the posterior probabilities for a given input audio sequence of length T and a text transcription
of length L. These posterior probabilities require O(T × L) memory and a path will be of length T .
This path is computed using the Viterbi algorithm. There are open source libraries implementing the
algorithm on CPU [Kürzinger et al., 2020, Kahn et al., 2022], however, the CPU versions are slow to
run, particularly on long recordings, as we will show below.

Efficient Forced Alignment on GPUs. In order to make force alignment efficient for our purpose,
we implemented a GPU version that computes the Viterbi path memory in a memory efficient way.
Storing all O(T × L) forward values for the Viterbi algorithm is infeasible on GPUs due to memory
constraints. We therefore only store forward values for the current and the previous time-step and
regularly transfer the computed backtracking matrices to CPU memory. This reduces the required
GPU memory to O(L) compared to O(T × L) and enables forced alignment for very long audio
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Figure 4: Efficiency of Forced Alignment Implementations. The MMS implementation runs on
GPU and can process long audio sequences in reasonable time compared to CPU alternatives.

some respectable houseprovided
text

i shall rent a room in some respectable house

some respectable house

i shall rent a room in some respectable house

Figure 5: Illustration of the ⟨∗⟩ Token in Forced Alignment. We show the text to which we would
like to align the audio at the top and what is actually spoken at the bottom in italics. Left: erroneous
alignment when the provided text is incomplete. The word some is aligned incorrectly. Right: using
⟨∗⟩ token at the beginning enables correct alignment of the provided text.

sequences at high speed. Appendix A illustrates the algorithm and an implementation is available as
part of TorchAudio [Yang et al., 2021].11

Figure 4 shows that the forced alignment implementation scales much better to longer sequences than
CPU alternatives such as ctc-segmentation [Kürzinger et al., 2020], a popular segmentation library
used in ESPNet [Watanabe et al., 2018], SpeechBrain [Ravanelli et al., 2021] and Flashlight [Kahn
et al., 2022].

Robust Alignment for Noisy Transcripts. For many recordings, speakers introduce the chapter
name and the version of the New Testament before reading the first verse, however, the corresponding
text does not contain this information. This is problematic for forced alignment because the algorithm
will still try to align the beginning of the audio to the text which can result in incorrect alignments.
Another challenge is that numbers are generally spelled as digits in the text whereas our alignment
model is trained on existing corpora which follow common practice of spelling numbers out fully
(§3.1.4). Spelling numbers out requires language-specific and hand-crafted tooling which is not
available for the 1,107 languages we consider.

To enable robust alignment in both cases, we introduce a star token (⟨∗⟩; Pratap et al. 2022, Cai
et al. 2022) to which audio segments can be mapped if there is no good alternative in the text.12

We insert ⟨∗⟩ at the beginning of the text data of each chapter and replace numerical digits with ⟨∗⟩
throughout. The posterior probability for this token is set to one. After alignment, we add back the
original digits and the subsequent data filtering often removes segments where the audio contains
additional information not present in the aligned text (§3.1.6). Figure 5 illustrates how adding the ⟨∗⟩
token helps to improve alignment when the paired text does not cover the beginning of the audio.

11https://github.com/pytorch/audio
12This is different from an OOV token or silence token in an HMM topology, which model a certain type of

acoustic behavior and are independent from other in-vocabulary tokens.
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Text

आप कैसे ह( 
Mandarin Chinese

Hindi

Language

你叫什么名字

Arabic

Qué música te gusta

French

Spanish

Je suis ravi de vous rencontrer

كتلباقم يرورس يعاودنم

Que musica te gusta

nijiaoshenmemingzi

Je suis ravi de vous rencontrer

mndwa'y srwry mqabltk

uroman

aap kaise haim

Table 1: Illustration of Text Encoding for Forced Alignment. Example outputs of uroman [Herm-
jakob et al., 2018].

3.1.4 Initial Data Alignment

Acoustic Model. To perform the forced alignment, prior work typically uses acoustic models
trained on data in the same language. For example, for the eight languages of the MLS dataset Pratap
et al. [2020c] the authors used acoustic models trained on existing data for these languages. However,
our setting includes many languages for which no datasets or acoustic models exist. We therefore
train a multilingual acoustic model on FLEURS [Conneau et al., 2022] and CommonVoice 8.0 [Ardila
et al., 2020] to learn a shared representation across languages which we hope to generalize to unseen
languages. The multilingual model is based on fine-tuning XLS-R [Babu et al., 2022] using a total
8K hours of data covering 127 languages.

Text Encoding. The text data is represented using the uroman transliteration tool [Hermjakob et al.,
2018] which maps different writing scripts to a common Latin script representation.13 This is done
using character descriptions based on Unicode tables and a large number of additional heuristics
and it has language-specific romanization rules for some languages. Prior work [Black, 2019] used
Unitran [Yoon et al., 2007, Qian et al., 2010, Black, 2019] which converts UTF-8 encoded text into a
phonetic transcription in either WorldBet [Hieronymus, 1993] or X-SAMPA [Wells, 1995].

Inspired by Black [2019], we initially investigated X-SAMPA but found that uroman led to similar
quality results and we decided to use uroman since it is easier to interpret compared to International
Phonetic Alphabet (IPA) based symbols generated by Unitran. Table 1 shows some example outputs
from uroman. We lowercase all the letters of the uroman output and retain only a to z characters as
well as the apostrophe character to train acoustic models for forced alignment (§ 3.1.3).

3.1.5 Improved Data Alignment

To improve the alignments, we use a subset of good-quality samples to train a new alignment
model. Samples are selected based on a score which is the length-normalized difference between the
probability of the forced alignment path P (Y aligned | X) and the probability of greedy decoding
from the alignment model P (Y greedy | X). The former is constrained by the text used in the
alignment and the latter is unconstrained. A large difference between these two quantities may
indicate that the alignment is incorrect.14 Concretely, the score is

1

T
logP (Y aligned | X)− logP (Y greedy | X) (1)

where T is the length of the audio. The score can vary from − inf , indicating low quality samples, to
0, indicating high quality samples. After manual inspection of sample quality and their corresponding
score for several languages, we select −0.2 as the threshold and choose samples with scores greater
than this threshold. The improved alignment model is trained on a total of 23K hours in 1,130
languages which includes the data we used for the initial alignment model.15 We use this new model
to re-generate verse level alignments for our data.

13https://www.isi.edu/~ulf/uroman.html
14It may also indicate that the alignment model is of poor quality but in practice we found that the metric

identifies many incorrect alignments.
15This model is available at https://github.com/facebookresearch/fairseq/tree/main/

examples/mms
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Figure 6: MMS-lab: Amount of Speech Data across Languages. We show the size of the training
data sets and name some of the 1,107 languages.

3.1.6 Final Data Filtering

After generating the improved alignments, we noticed that some samples are still of low quality. Some
recordings are not entirely faithful to the text and speakers sometimes add their own interpretation or
paraphrase parts of the text. This will negatively impact ASR and TTS models trained on the data
and we therefore perform a final data filtering step to improve data quality as much as possible.

We we train monolingual ASR models on half of the the aligned samples of each recording, measure
performance on the remaining half and remove samples which have a character error rate (CER) in
excess of 10%. This removes about 1.7% of all samples across all languages.

High CER may be due to low quality samples in either half of the data, that is the training data of the
ASR model or the data being evaluated. To help ensure we use recordings that are generally of good
quality, we remove 3837 recordings which have CER in excess of 5% on the developmet set. We
retain a total of 1,239 recordings covering 1,107 languages.

3.1.7 Creating train/dev/test splits

The recordings often contain only a single speaker which makes it challenging to measure generaliza-
tion performance of models trained on this data. This is why we evaluate models trained on MMS-lab
data on existing benchmarks as much as possible in the remainder of this paper. The advantage of
this is that it side steps the aforementioned issues and it also enables us to better understand how the
data can be useful in other domains.

However, existing benchmarks only cover a small fraction of the languages in MMS-lab and in order
to be able to develop models for all languages, we split the aligned recordings into train/dev/test splits.
We aim to make the content of the splits as disjoint from each other as possible and use a similar split
across different recordings. To do so, we try to use different books for each split and use the same
books for each split across recordings and languages as much as possible.

Concretely, we use the book Mark (MRK) as development set, the book John (JHN) as test set and
the remaining books for training. For the 147 recordings where not all 260 chapters are available, we
deviate from this and make a best effort split by books depending on which books are available in the
respective recording. In this case, we aim to have at least 10% of all available data in the development
set and the test set each, or at most two hours of data in each set, whichever is less.

The final dataset contains 44.7K hours of paired speech data where we use 36.8K hours for training
(82.3%), 3.5K hours for development (7.8%) and 4.4K hours for testing (9.9%). For each language,
the train split contains an average of 32 hours (stddev=19), the dev split contains an average of 3.1
hours (stddev=1.8) and test split an average of 3.9 hours (stddev=2.3). Figure 6 shows the data
distribution across languages.
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Figure 7: MMS-unlab: Amount of Speech Data across Languages. We show the size of the
training data sets and name a few of the 3,809 languages.

3.2 Unpaired Data for 3,809 Languages (MMS-unlab)

Data Source. The data source for this dataset is Global Recordings Network which provides
recordings of Bible stories, evangelistic messages, scripture readings, and songs in more than 6,255
languages and dialects.16 The audio files are not accompanied by a corresponding text transcription
but the source makes clear which language is being spoken. We group the data by language, combining
dialects of the same language resulting in a total of 3,860 languages and 9,345 hours of audio.

Pre-processing. We convert the audio files to single channel and a sample rate of 16kHz. Next, we
use inaSpeechSegmenter [Doukhan et al., 2018], a CNN-based audio segmentation model, to identify
segments of speech, music, noise and silence in the audio. If two segments of speech are separated
by intermediate segments containing music or noise, then we consider joining these segments if the
intermediate segment is no longer than 20% of all segments together. This is to build samples that are
of longer duration and still contain mostly speech. The remaining non-speech segments are discarded.

Next, we randomly split the speech segments into portions of between 5.5 and 30 seconds. This
makes the data usable for training downstream models and creates a length distribution of the samples
that is in line with other datasets such as FLEURS where the average sample length is about 12
seconds.

Dataset Split. Finally, we split the samples of each language randomly into 80% training data, 10%
development data, and 10% test data. We also remove 51 languages for which we have less than 5
minutes of training data to ensure we have sufficient data to train models. The final dataset comprises
a total of 7.7K hours of data in 3,809 languages. The training portion is 6.2K hours and there are
770 hours for the valid and test sets each. For each language, the train set contains an average of
97 minutes (stddev=177.4), and the dev/test sets contain an average of 12.1 minutes (stddev=22.3).
Figure 7 shows the data distribution across languages.

3.3 Comparison to Existing Broad Coverage Approaches and Other Datasets

In this section, we present a comparison to two related studies which aimed to expand speech
technology to many languages. The CMU Wilderness project [Black, 2019] also used New Testament
data to build speech synthesis models for 699 languages (§3.3.1) and ASR-2K [Li et al., 2022] focused
on automatic speech recognition for nearly two thousand languages (§3.3.2). Finally, we assess the
viability of the new data for building machine learning models by comparing the performance of
ASR models trained on MMS-lab to models trained on an existing dataset in an out-of-domain setting
(§3.3.3).

16https://globalrecordings.net/
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Figure 9: MMS-lab vs. Common Voice. Character
Error Rate on FLEURS dev set for ASR models trained
on Common Voice (CV) data and MMS-lab data for 18
languages.

3.3.1 CMU Wilderness Dataset

The most comparable prior work is the CMU Wilderness project which used data from similar
sources [Black, 2019]. To better understand how our data creation process compares to their method,
we conduct a best effort side-by-side reproduction of their process and use the resulting data to train
monolingual ASR models under the same settings.17

To compare the effectiveness of their data creation method to ours (§3.1), we take the original data
from our data source and apply either our protocol or the protocol of Black [2019]. For languages
where multiple recordings exist, we only use the recordings used in the CMU Wilderness dataset
to enable a better comparison. Next, we use the resulting data to fine-tune XLS-R models [Babu
et al., 2022] for monolingual ASR and then measure accuracy in terms of character error rate on the
FLEURS dev set.

Figure 8 shows that the MMS-lab data preparation process results in better quality ASR models
compared to CMU Wilderness with improvements between 2.1%-4.7% CER, depending on the
language. Our alignment procedure also retains a much larger amount of the training data compared
to the CMU Wilderness protocol: for Telugu, there are 26.5 hours of data, MMS-lab retains 26.2
hours compared to 11.1 hours for the CMU Wilderness process. For English, we start with 17.3 hours,
MMS-lab retains 17 hours vs. 10.6 hours for CMU Wilderness.

3.3.2 ASR-2K

The most comparable multilingual ASR work to ours is ASR-2K [Li et al., 2022] which covers 1,909
languages. Their approach is based on mapping the output of an eight language multilingual model
to appropriate phonemes for the language of interest. In contrast, MMS-lab has actual paired speech
and text data.

ASR-2K reports average character error rate (CER) on 34 languages of Common Voice 6.0 and uses
a language model for decoding. MMS-lab covers 22 out of these 34 languages and we use it to train
monolingual ASR models without language models. The monolingual models trained on MMS-lab
dataset obtain an average CER of 9.6 on 22 languages. ASR-2K reports CER 50.9 on 34 languages.
While not a like for like comparison, this difference suggest that MMS-lab enables higher quality
ASR models. We stress that this is a best effort comparison and does not enable strong conclusions.18

17We reproduced the data by following the steps outlined at https://github.com/festvox/
datasets-CMU_Wilderness

18We could not obtain a per-language break down of the ASR-2K results.

11

https://github.com/festvox/datasets-CMU_Wilderness
https://github.com/festvox/datasets-CMU_Wilderness


3.3.3 Other Existing Datasets

The MMS-lab covers a large number of languages but it also has potential downsides: it is both from
a particular narrow domain and most recordings are from a single speaker. This may lead to poor
performance on other domains or when the systems are applied to unseen speakers.

To get a better sense of both issues, we train monolingual ASR models by finetuning XLSR [Babu
et al., 2022] on MMS-lab and evaluate these models on the FLEURS benchmark. For comparison, we
train another set of ASR models on labeled data from Common Voice which is an existing dataset and
does not have the aforementioned downsides: the domain is general and the data contains multiple
speakers. We control the amount of training data of both datasets by using exactly ten hours of
training data and one hour of development data from both datasets.

Figure 9 shows that models trained on CommonVoice perform better on 18 languages of FLEURS
(average CER 9.3 vs. 12.2) but the models MMS-lab still enable good performance.19 This is despite
the fact that MMS-lab utterances are often from a single speaker and are from a very narrow domain.
While there is certainly higher quality data for head languages, this result suggests that the quality of
the MMS-lab data can enable high quality speech systems for a large number of other languages.

4 Cross-lingual Self-supervised Speech Representation Learning

As a first step, we train a self-supervised model of speech representations on the data outlined above
as well as other existing public corpora. We use wav2vec 2.0 for pre-training on unlabeled data
which we later use as the basis for several downstream speech tasks (Baevski et al. 2020b; §4.1).
The resulting models were pre-trained on 1,406 languages which is over four times the number of
languages of known prior work (Zhang et al. 2023a; §4.2). The increased language coverage results
in better performance for both ASR and LID compared to XLS-R (Babu et al. 2022; §4.3) which
covered 128 languages and is publicly available.

4.1 Method: wav2vec 2.0 and XLS-R

Our work builds on Babu et al. [2022] who pretrain wav2vec models on data from multiple languages.
The wav2vec project created a series of models for learning self-supervised speech representa-
tions [Schneider et al., 2019, Baevski et al., 2020a,b] from unlabeled speech data. The resulting
models can then be used to solve downstream speech tasks by fine-tuning them on labeled data or by
tackling these tasks without labeled data using unsupervised learning [Baevski et al., 2021, Liu et al.,
2022].

The most prominent one is wav2vec 2.0 [Baevski et al., 2020b] which enables building speech
recognition models with only ten minutes of labeled data and even no labeled data at all [Baevski
et al., 2021]. The basic architecture of wav2vec 2.0 is as follows: a convolutional feature encoder
f : X 7→ Z maps raw audio X to latent speech representations z1, . . . , zT which are input to a
Transformer g : Z 7→ C to output context representations c1, . . . , cT [Baevski et al., 2020a]. Each zt
represents 25ms of audio strided by 20ms and the Transformer architecture follows BERT [Vaswani
et al., 2017, Devlin et al., 2019].

During training the feature encoder representations are discretized to q1, . . . , qT with a quantization
module Z 7→ Q to represent the targets in the objective. The quantization module uses a Gumbel
softmax to choose entries form the codebooks and the chosen entries are concatenated [Jegou et al.,
2011, Jang et al., 2016, Baevski et al., 2020a].

The model is trained by solving a contrastive task over masked feature encoder outputs. At training
time, spans of ten time steps with random starting indices are masked. The objective requires
identifying the true quantized latent qt for a masked time-step within a set of K = 100 distractors
sampled from other masked time steps. The objective is augmented by a codebook diversity penalty
to encourage the model to use all codebook entries [Dieleman et al., 2018].

19Spanish (spa), Catalan (cat), Polish (pol), German (deu), Portoguese (por), Russian (rus), Ukrainian (ukr),
Turkish (tur), Swahili (swh), French (fra), Dutch (nld), Farsi (fas), English (eng), Welsh (cym), Luganda (lug),
Arabic (ara), Tamil (tam), Thai (tha).
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Model #langs Datasets B M F A #params

Prior work
XLSR-53 53 MLS, CV, BBL 24 1024 4096 16 317M
VP-100K 23 VP-100K 24 1024 4096 16 317M
XLS-R (0.3B) 128 VP-400K, MLS, CV, VL, BBL 24 1024 4096 16 317M
XLS-R (1B) 128 VP-400K, MLS, CV, VL, BBL 48 1024 4096 16 965M

MMS (0.3B) 1,406 MMS-lab, FL, VP-400K, MLS, CV, VL, BBL 24 1024 4096 16 317M
MMS (1B) 1,406 MMS-lab, FL, VP-400K, MLS, CV, VL, BBL 48 1024 4096 16 965M

Table 2: Self-supervised Models. Details of our models including prior work: XLSR-53 [Conneau
et al., 2020a], VP-100K [Wang et al., 2021], XLS-R [Babu et al., 2022] and the MMS models: the
number of languages (#langs), pretraining data (Datasets), the number of Transformer blocks (B),
the number of hidden states (M ), the inner dimension of feed-forward blocks (F ), the number of
attention heads (A) and the total number of parameters (#params).

XLSR and XLS-R train wav2vec 2.0 on many different languages from several datasets to obtain
cross-lingual representations [Conneau et al., 2020a, Babu et al., 2022]. In order to balance the
training data, two data sampling steps are performed. First, for each dataset, we sample the data for
the different languages L from a distribution pl ∼

(
nl

N

)βL where l = 1, . . . , L, nl is the amount of
unlabeled data for each language in the dataset, N is the total amount of training in the dataset, and
βL is the upsampling factor which controls the trade-off between high- and low-resource languages
during pretraining. Second, we balance the different datasets by treating each dataset as a language in
the above sampling scheme with a sampling parameter βD.

4.2 Pre-training Setup

Hyperparameters. We largely follow prior work in training cross-lingual wav2vec 2.0 mod-
els [Conneau et al., 2020a, Babu et al., 2022] and use the wav2vec 2.0 implementation available in
fairseq [Ott et al., 2019] to train models with roughly 300M and 1B parameters (Table 2). To make
efficient use of GPU memory, we use a fully sharded backend [Rajbhandari et al., 2021] as well as
activation checkpointing [Chen et al., 2016] implemented in FairScale [Baines et al., 2021].

Our models are optimized with Adam [Kingma and Ba, 2015] and the learning rate is warmed up
for the first 32K steps followed by polynomial decay to zero for the remainder of training. Training
audio sequences are cropped to a maximum of 320K samples, or 20 seconds, and all models were
pre-trained for a total of one million updates on A100 GPUs with 80GB of memory. The MMS (0.3B)
model was trained with an effective batch size of 2.3 hours of data across 48 GPUs and the MMS
(1B) model was trained with an effective batch size of 3.5 hours on 64 GPUs.

Data. The pre-training data covers about 491K hours in 1,406 languages. This data is drawn from
six training corpora with different characteristics, including the corpora used in XLS-R [Babu et al.,
2022]:

• MMS-lab-U: 1,362 languages comprising 55K hours (§3.1).

• Multilingual Librispech (MLS): 8 European languages of read books totaling 50K
hours [Pratap et al., 2020c]

• CommonVoice (CV): 89 languages totaling 8.8 hours of read Wikipedia text; we use v9.0 of
the corpus [Ardila et al., 2020])

• VoxLingua-107 (VL): 107 languages totaling 5.3K hours of YouTube content [Valk and
Alumäe, 2020]

• BABEL (BBL): 17 African and Asian languages totaling about 1K hours of conversational
telephone data [Gales et al., 2014]

• VoxPopuli (VP): 371K hours of unlabeled speech data in 23 languages derived from Euro-
pean Parliament event recordings [Wang et al., 2021]

Pre-training only uses the speech audio and none of the transcriptions and we balance the data
following the strategy outlined in §4.1 using βL = βD = 0.5
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Figure 10: MMS vs. XLS-R. Character error rate (CER) on 61 FLEURS languages when fine-tuning
multilingual ASR models on MMS-lab data. We report average performance on FLEURS dev data.
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Figure 11: MMS vs. XLS-R Breakdown. We show the absolute character error rate difference
between multilingual ASR models based on XLS-R and MMS models with 1B parameters. Positive
values indicate better performance of MMS and negative values better performance of XLS-R. Models
are fine-tuned on MMS-lab data and evaluated on the development sets of 61 FLEURS languages.

4.3 Comparison to XLS-R

To better understand how the MMS models compare to XLS-R we fine-tuned both for automatic
speech recognition on the 61 languages of the FLEURS benchmark for which MMS-lab provides
training data. Models are evaluated without a language model and we report the average character
error rate (CER) on FLEURS development data over all languages.

Figure 10 shows that the MMS models perform better: for the 300B size, MMS has 0.6 lower
CER than XLS-R, and for the 1B size, the difference is 0.7 CER. More capacity helps to improve
performance: for XLS-R the error rate decreases by 3.2 CER absolute when scaling the number of
parameters from 300M to 1B and for MMS-lab there is a 3.0 CER improvement.

MMS pre-trains on over ten times the number of languages of XLS-R and this improves performance,
particularly on low resource languages (Figure 11) such as Amharic (amh), Lao (lao) or Malayalam
(mal). Compared to XLS-R, the pre-training data of MMS covers the following languages which
improve: Chewa (nya), Fulah (ful) and Oromo (orm). However, improvements at low resource
languages result in a small degradation in some of the high-resource languages such as English (eng)
or Spanish (spa) but there are also other languages such as Tajik (tgjk) or Welsh (cym) which perform
less well.

Equipped with this new pre-trained model we now investigate the use of MMS-lab and MMS-unlab
for several downstream tasks.
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5 Automatic Speech Recognition

We first turn to the task of transcribing speech in up to 1,107 different languages. We use the labeled
dataset we collected (§3.1) to fine-tune our pre-trained models (§4) for ASR. We first outline our
modeling approach (§5.1) and then scale the number of languages for multilingual ASR from 61 to
1,107 in order to better understand the impact of supporting more languages (§5.2). Next, we compare
our models to existing multilingual work (§5.3), and build robust multilingual models supporting
1,162 languages trained on several existing corpora as well as the MMS-lab data (§5.4). Finally, we
evaluate our multilingual models on all languages they support (§5.5).

5.1 Modeling and Training Approach

We train multilingual speech recognition models by fine-tuning our pre-trained MMS (1B) model
(§4) using labeled data, similar to Baevski et al. [2020b]. To output transcriptions, we add a linear
layer on top of the model which maps to an output vocabulary which is the set of letters in the labeled
training data of all languages considered in a particular setting. Next, we fine-tune the entire model
with the Connectionist Temporal Classification (CTC) criterion [Graves et al., 2006].

Optimization. We use Adam [Kingma and Ba, 2015] with exponential decay rates β1 = 0.9,
β2 = 0.98 to train model weights using a tri-stage schedule where the learning rate is warmed up for
the first 10% of updates, held constant for the next 40% updates, and then decayed in the final 50%
updates. We experimented with different learning rates (1× 10−4, 7× 10−4, 3× 10−4 1× 10−5,
7× 10−6, 3× 10−6, 1× 10−6) and number of updates (50K, 100K, 200K, 300K). Unless otherwise
mentioned, we fine-tune models for a total of 50K updates with a batch size of 0.8 hours of data using
16 A100 GPUs with 80GB of memory.

Language-specific Adapters, Head and Fine-Tuning (LSAH). In addition to training dense mod-
els which share all parameters across languages, we also consider adding adapter modules [Houlsby
et al., 2019] to models where we use a different set of adapter weights for each language. Specifically,
we introduce adapters at every block of the transformer, and the adapter is added after the last
feed-forward block. The adapter module consists of a LayerNorm Ba et al. [2016] layer, a downward
linear projection followed by a ReLU activation and an upward linear projection; the inner dimension
of the projections is 16.

For each language, using an adapter increases the number of parameters by 2M or about 2% of the
total number of parameters without adapters. We then perform a second stage of fine-tuning for
each language where we introduce a randomly initialized linear layer mapping to the specific output
vocabulary of a language in addition to language-specific adapter and fine-tune these additional
parameters only for another 2K updates on the labeled data of the respective language.

5.2 Scaling Multilingual ASR to 1,107 Languages

We first analyze training multilingual ASR models with an increasing number of languages by scaling
from 61 to 1,107 languages, roughly doubling the number of languages at every step. Models are
trained on the labeled data of MMS-lab by fine-tuning the MMS (1B) pre-trained model (§4) and we
consider training models with and without language specific adapters and output layers. Each setting
is evaluated on the 61 FLEURS languages covered by MMS-lab (FLEURS-61) as well as the 49
languages of CommonVoice covered by MMS-lab (CV-49). Results are reported on the development
sets of FLEURS and CommonVoice in terms of Character Error Rate without a language model.

Figure 12 shows that performance degrades quickly for dense models which have no language-specific
parameters: for FLEURS-61, CER increases by 5.1 when moving from 61 to 1,107 languages and
for CV-49, there is a 2.1 CER increase. This is mainly due to languages being confused with each
other which results in large performance drops for certain languages. Language-specific parameters
(LSAH) alleviate this issue and show only very little degradation (0.4 CER for FLEURS-61 and 0.2
CER for CV-49).
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Figure 12: Scaling Multilingual ASR to 1,107 Languages. We fine-tune both dense and LSAH
models with 61, 128, 256, 512 and 1,107 languages on MMS-lab data and show average CER on 61
languages of FLEURS and 49 languages of CommonVoice. LSAH models have language-specific
adapter modules and output layers.

#lang labeled train FLEURS-54
data (h) dev test

Prior Work
Whisper medium 99 680K - 50.1
Whisper large-v2 99 680K - 44.3

This Work
MMS 61 3K 20.9 20.7
MMS (LSAH) 61 3K 19.0 19.1
MMS 1,107 45K 24.8 24.8
MMS (LSAH) 1,107 45K 18.7 18.7

Table 3: Comparison to Whisper. We report average WER on the 54 languages of the FLEURS
benchmark supported by both Whisper and MMS (FLEURS-54). MMS is a CTC-based model and to
enable a fairer comparison we use n-gram models trained on web data when comparing to Whisper
whose decoder is a neural sequence-model that serves as a language model and was trained on billions
of web tokens.

In summary, this shows that scaling multilingual ASR models to over one thousand languages
is feasible and that there is little performance degradation when coupled with language-specific
parameters.

5.3 Comparison to Other Work

Next, we present comparisons to other recent related work on multilingual ASR: Whisper [Radford
et al., 2022] uses large quantities of labeled web data to train a model supporting 99 languages
(§5.3.1) and Google USM [Zhang et al., 2023a] builds multilingual ASR models supporting 100
languages by pre-training on YouTube data (§5.3.2).

5.3.1 Whisper

Whisper is a multilingual model trained on 680K hours of weakly labeled audio data from the web
and able to transcribe speech in 99 languages [Radford et al., 2022]. The model uses a sequence to
sequence architecture [Sutskever et al., 2014] which has a neural sequence model as decoder that
acts in part like a language model. The decoder has been trained on the target side text of the labeled
training data which likely amounts to several billions of words of text from the web.20

20Assuming 10K words of text per hour of paired speech data, the decoder was trained on about 6.8B words.
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FLEURS-102
dev test

Prior Work
w2v-BERT [Chen et al., 2022] - 12.3
Maestro-U [Chen et al., 2022] - 8.7
USM [Zhang et al., 2023a] - 6.9
USM-M [Zhang et al., 2023a] - 6.5
USM-M-adapter [Zhang et al., 2023a] - 6.7

This Work
MMS FL-102 (LSFT) + LM 6.3 6.3

Table 4: Comparison to Google USM. We report average CER on the 102 languages of FLEURS
and use n-gram models together with our CTC acoustic models. USM-M is an RNN-T model which
uses both unlabeled text as well as labeled speech data during pre-training and for MMS we use
unlabeled text to train language models for inference.

In contrast, MMS is a CTC model whose decoder is a simple linear layer mapping to a set of
characters (§5.1). When comparing CTC models to models with sequence-model based decoders,
the former are typically paired with an external language model to enable a fairer comparison. We
therefore train simple n-gram models on web data (Common Crawl) for each language and use it
during inference time (CC LM; Heafield 2011, Conneau et al. 2020b, NLLB_Team et al. 2022);
Appendix B details the training procedure. We evaluate both models on the 54 languages of FLEURS
supported by both Whisper and MMS (FLEURS-54) and report word error rate except for Thai, Lao,
Burmese and Khmer where we use character error rate.21

The results (Table 3) show that MMS reduces the word error rate of Whisper by a relative 58% while
supporting over 11 times the number of languages. Moreover, MMS was trained on 44.7K hours of
labeled data compared to 680K for Whisper.22 A reduced version of MMS trained on 61 languages
can still outperform Whisper to a similar degree while being trained on only about 3K hours of
labeled training data. Overall, MMS (LSAH) outperforms Whisper on 31 out of the 54 languages.
Appendix C provides a per-language breakdown of the results.

5.3.2 Google USM

This model is pre-trained on 12M hours of proprietary YouTube audio spanning 300 languages and
then fine-tuned to perform ASR for up to 100 languages on a labeled dataset of 90K hours [Zhang
et al., 2023a] which results in large improvements over Whisper.23 In a best effort comparison, we
adopt the USM setup where the authors fine-tune their pre-trained model on the labeled FLEURS
data. We follow the same training regime as outlined above (§5.1) but fine-tune this model for a total
of 300K updates. Results are in terms of character error rate.24

There are several important differences between their approach and MMS: first, USM uses an RNN-T
model [Chan et al., 2015] which has a built-in neural language model while as MMS is a CTC-
based acoustic model.25 Second, some of the USM models were pre-trained on large quantities of
unlabeled text as well as 20K hours of labeled audio data (USM-M/USM-M-adapter) while as MMS
is pre-trained only on unlabeled speech data.

21We follow Whisper’s evaluation methodology but add Khmer to the list of languages where evaluation is in
terms of CER because there is no standard tokenization we are aware of.

22The non-English portion of the Whisper training data is still 117K hours and covers less than 100 languages,
while MMS-lab is less than half the size and covers 11 times the number of languages.

23We were not able to obtain the list of languages involved in their comparison to Whisper and therefore resort
to a comparison not involving the labeled YouTube data. This has the downside of removing the impact of the
labeled datasets of each approach in the comparison.

24Zhang et al. [2023a] did not perform any additional pre-processing on the reference transcriptions when
reporting CER which enables a comparison to their results [Yu Zhang, personal communication 5 May 2023].

25RNN-T may benefit particularly from pre-training on unlabeled text data in the case of USM-M, effectively
training a strong neural language model.
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#lang FLEURS CV VP MLS

Prior Work
VoxPopuli [Wang et al., 2021] 1 15.3
Maestro [Chen et al., 2022] 14 8.1
RNN-T 1B [Li et al., 2021] 15 7.9
Whisper [Radford et al., 2022] 99 13.6∗ 7.3*
ML-IO [Tjandra et al., 2022b] 70 7.5
USM-M [Zhang et al., 2023a] 102 6.5

This Work - Single-Domain training
FL 102 6.4
CV 76 19.7
VP 14 10.3
MLS 8 8.7

This Work - Multi-Domain training
MMS-lab+FL+CV+VP+MLS 1,162 6.2 19.6 10.6 9.0

Table 5: Evaluation of MMS on Multilingual Benchmarks. MMS is fine-tuned on MMS-lab,
FLEURS, CommonVoice, Voxpopuli and MLS. We report CER on FLEURS and WER on the other
benchmarks. Results are averaged over all languages of a benchmark and (∗) indicates results with
a different data normalization which does not enable a strict comparison to other results [Radford
et al., 2022]. Our models use n-gram language models trained on Common Crawl during inference.
For each approach, we show the number of languages an individual models supports and some prior
results are based on multiple models, e.g., Wang et al. [2021].

To enable a fairer comparison, we use n-gram language models trained on unlabeled text during
inference: for each language, we use either an n-gram model trained on CommonCrawl or a model
trained on the transcriptions of the FLEURS training set, depending on dev set performance and data
availability. Appendix B details the training procedure.

Table 4 shows that MMS performs very competitively compared to USM. We note that the approaches
have significant differences in the model architecture and uses of unlabeled/labeled data, however,
we believe that the result convinces the reader that a simple CTC model paired with n-gram models
can perform very competitively to more advanced architectures and more elaborate pre-training
procedures. Appendix D shows a per-language breakdown of the results.

5.4 Robust Multilingual ASR Models

In this section, we turn to building multilingual ASR models on data from multiple domains following
a similar approach as prior work for English-only models [Likhomanenko et al., 2020, Chan et al.,
2021, Hsu et al., 2021]. We fine-tune the pre-trained MMS (1B) model on MMS-lab, FLEURS,
CommonVoice, VoxPopuli, and MLS data to support 1,162 language and perform 300K updates;
we denote this as multi-domain training. During fine-tuninig, the data of each language and dataset
is balanced similar to pre-training (§4.2; using βD = 0 and βL = 0.3). The validation set for this
model is the concatenation of the dev sets of each dataset for every language.

We evaluate this single model on FLEURS, CommonVoice, VoxPopuli and MLS. For FLEURS we
measure average CER on the 102 languages of FLEURS, for CommonVoice WER over 76 languages,
for VoxPopuli WER over 14 languages and for MLS WER over eight languages. We also fine-tune
MMS (1B) on each benchmark individually (single-domain training).26 During inference, we use
n-gram models trained on CommonCrawl data.

Table 5 shows that the multi-domain model (MMS-lab+FL+CV+VP+MLS) can perform very com-
petitively in several settings: For both FLEURS and CommonVoice it outperforms prior work as well
the single-domain baselines and for VoxPopuli and MLS it is slightly worse than the single-domain
baselines. For VoxPopuli, the MMS model it is outperformed by Maestro which supports a much

26Models trained on FLEURS data were trained for 300K updates, for MLS models we found 50k updates to
work well, CommonVoice and VoxPopuli models were trained for 200K updates.
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#lang CER CER ≤ 5 %

Asia 335 1.6 ± 0.1 330 99%
South America 136 1.5 ± 0.2 132 97%
North America 144 2.2 ± 0.2 139 97%
Europe 41 1.7 ± 0.4 40 98%
Africa 363 2.9 ± 0.2 331 91%
Pacific 88 1.7 ± 0.5 87 99%

1,107 2.1 ± 0.1 1,059 96%

Table 6: ASR Evaluation on 1,107 Languages. We evaluate the MMS multi-domain model trained
on MMS-lab, FLEURS, CommonVoice, VoxPopuli, and MLS supporting 1,162 languages (§5.4)
Results are in terms of the average character error rate on the MMS-lab test sets for the languages of
different geographical regions. We also show the number of languages for which the model achieves
CER less than five, indicating systems which on average produce no more than one incorrect character
every twenty characters. All results are shown with confidence interval 95%.

smaller number of languages and on MLS other approaches are better which attribute to a focus on
fewer languages. Whisper results are not strictly comparable due to the different normalization but it
appears to perform better on MLS due to a focus on head languages. Overall, this demonstrates that a
combined model supporting well over 1,000 languages can perform in aggregate competitively on a
range of benchmarks.

5.5 Evaluation on 1,107 Languages

Finally, we evaluate the multi-domain model trained on MMS-lab, FLEURS, CommonVoice, Vox-
Populi and MLS on the test sets of all 1,107 languages in MMS-lab. We measure character error
rate and group languages into six geographical regions covered by MMS-lab: Asia, North America,
South America, Europe, Africa and the Pacific region. In order to get a broader sense of quality, we
measure the number of languages for which CER ≤ 5. This indicates for how many languages the
model makes on average no more than one error in twenty characters. While this measure is very
coarse, it enables us to get a sense of quality across such a large number of languages.

Table 6 shows that our model meets the CER quality threshold for 96% of the 1,107 languages. The
region with the lowest rate is Africa at 91% and we attribute this in part to different writing scripts.
We note that this metric is by far not perfect as it imposes the same threshold for every language which
may not be appropriate due to different character sets etc. Also, many of the recordings in MMS-lab
are single speaker which means that both the training data and the test data contains utterances with
the same voice for a particular language. While this makes evaluation challenging, we hope that this
analysis gives a sense that the model can be used to transcribe a wide variety of languages.

6 Language Identification

Language Identification (LID) is the task of determining the language which is spoken in a given
utterance. This has several important applications: despite much work on multilingual speech
recognition [Burget et al., 2010, Lin et al., 2009, Heigold et al., 2013, Bourlard et al., 2011, Cho
et al., 2018, Toshniwal et al., 2018, Kannan et al., 2019, Li et al., 2019, Pratap et al., 2020b], many
deployed systems are still trained on data in a single language despite the need to transcribe speech in
different languages. It is therefore crucial to route utterances to the correct system and this routing
depends on an LID model. Moreover, much work on mining speech data from the web relies on
LID, including some of the most recent large-scale weakly-supervised work [Radford et al., 2022].
Training a language identification system requires speech data for which the spoken language is
known, however, the most diverse public corpora span no more than about 100 languages [Valk and
Alumäe, 2020, Conneau et al., 2022].

In this section, we first describe our methodology to build LID models (§6.1), then evaluate the
feasibility of training LID systems using MMS-lab-U and MMS-unlab data compared data from
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Figure 13: LID Performance with Different Training Datasets. Models trained on MMS-lab-
U+unlab are very competitive to models trained on existing data (FLEURS, VoxLingua-107) when
evaluated out-of-domain (comparison in dashed line). We train models on data from MMS-lab-U,
MMS-unlab, FLEURS and VoxLingua-107 on a common subset of 72 languages and evaluate on
FLEURS and VoxLingua-107.

existing corpora (§6.2) and then build LID models with 40x more languages compared to existing
systems (§6.3).27

6.1 Training Setup

We train models by fine-tuning the MMS (1B) pre-trained model (§4.2) for language identification.
This is done by stacking a linear classifier on top of the pre-trained model, which maps to the set
of possible languages for a particular task, followed by fine-tuning all parameters, including the
pre-trained model.

We optimize models with Adam with exponential decay rates β1 = 0.9 and β2 = 0.98 and a tri-
state learning rate schedule where the learning rate is warmed up for the first 10% of updates, held
constant for the next 40% and then linearly decayed for the remainder of training [Kingma and Ba,
2015]. During development, we experiment with different hyper-parameters and perform final model
selection based on development set accuracy. We experiment with different learning rates (1× 10−5,
3× 10−5, 3× 10−6, 5× 10−6, 7× 10−6), training updates (10K, 20K, 30K, 40K, 50K) and batch
sizes (1.5min, 3min, 6min). We train models on 16 GPUs.

To balance the different languages and corpora during training, we first balance the data of every
language in the different corpora, using sampling parameter βL. This is followed by balancing each
language using the resampled data of the first step, using sampling parameter βD with the sampling
distribution outlined in §4.1. We experiment with βL and βD settings 0, 0.3, 0.5, 0.7 and 1.

When we train models on multiple datasets, then we use a development set containing up to 30
minutes of data for each language and we sample an equal amount of data from each corpus. For
models supporting 1K, 2K or 4K languages, we reduce the amount of data per language to 15 min,
7min and 3min to enable faster development.

6.2 Comparison to Existing Datasets

We first assess the effectiveness of training LID models on MMS-lab-U and MMS-unlab data
compared to existing LID training data (FLEURS, VoxLingua-107). Performance is evaluated
both on the FLEURS and VoxLingua-107 benchmarks. In this setting, FLEURS and VoxLingua-
107 models are at an advantage because there is no domain shift compared to systems trained on
MMS-lab-U and MMS-unlab data.

We are particularly interested in the setting where models trained on existing corpora are evaluated
out-of-domain, i.e., the performance of a model trained on VoxLingua-107 evaluated on FLEURS or

27Note that we use MMS-lab-U instead of MMS-lab because it supports more languages and we do not require
the data to be paired with transcriptions for LID (§3.1.1).
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#lang in-domain out-of-domain

FLEURS VL BABEL VoxPopuli
(102 lang.) (33 lang.) (23 lang.) (25 lang.)

Prior Work
mSLAM [Bapna et al., 2022b] 102 77.7 - - -
Whisper [Radford et al., 2022] 82 64.5 - - -
ASRL [Chen et al., 2023] 102 95.9 - - -
XLS-R [Babu et al., 2022] 107 - 94.3 - -
SpeechBrain [Ravanelli et al., 2021] 107 - 93.3 - -
AmberNet [Jia et al., 2022] 107 - 95.3 - -

Our Baselines (based on existing datasets)
MMS (FL) 102 96.2 - - -
MMS (VL) 107 - 94.7 - -
MMS (FL + VL) 126 97.4 94.3 78 87.8

This Work
MMS (MMS-lab-U+unlab+FL+VL) 126 97.5 93.9 84.1 87.3

256 97.2 93.4 80.1 87.6
512 96.8 92.9 81.6 85.6

1,024 97 92.8 80.5 86.2
2,048 97.3 92.8 81.5 86.6
4,017 97.2 93.9 80.5 87.1

Table 7: Scaling LID to 4,017 Languages. We show test accuracy of LID models trained on an
increasing number of languages using data from FLEURS (FL), VoxLingua-107 (VL) and MMS-
lab-U+unlab; smaller language subsets are included in the larger subsets. There is little performance
degradation when scaling to more languages. We also show results from the literature as well as
baselines trained only on FL or VL.

a model trained on FLEURS evaluated on VoxLingua-107 data, and how this compares to models
trained on MMS-lab-U/MMS-unlab. To enable a controlled comparison, we report LID accuracy on
the 72 languages supported by all considered datasets and train only on data of these languages.

The results (Figure 13) show that MMS-lab-U+unlab enables LID with slightly lower performance
compared to systems trained on existing datasets when both are evaluated out-of-domain: on FLEURS
evaluation data the gap is 2.1% compared to a VoxLingua-107 model and on VoxLingua-107 eval-
uation data MMS-lab-U+unlab trails a FLEURS model by 1.6%. Combining MMS-lab-U and
MMS-unlab works particularly well as MMS-unlab is more varied which improves performance.
Naturally, models trained on in-domain training data (FLEURS or VoxLingua-107) perform best. We
conclude that MMS-lab-U and MMS-unlab enable good quality LID models while enabling LID for
many more languages as we will demonstrate next.

6.3 Scaling Language Identification to 4,017 Languages

Next, we scale spoken language identification from about 100 languages to 4,017 languages by
combining MMS-lab-U, MMS-unlab, FLEURS, and VoxLingua-107 data. Our primary goal is to
understand how accuracy is impacted as models support more and more languages. We start with 126
languages, the union of the languages in both FLEURS and VoxLingua-107, and then add languages
from MMS-lab-U+unlab, roughly doubling the number of languages at every experiment. Languages
are sorted by descending speaker count and we add the most spoken languages first.28

Performance is evaluated on FLEURS and VoxLingua-107 which is in-domain with respect to the
models we train. To get a sense of how the models perform on domains not seen in the training
data, we also evaluate on two other datasets which are out-of-domain with respect to the training
data domain: first, BABEL is conversational telephone speech data and we evaluate on 23 African

28We obtain the number of speakers of each language from https://www.ethnologue.com

21

https://www.ethnologue.com


and Asian languages [Gales et al., 2014].29 Second, VoxPopuli [Wang et al., 2021] consists of
parliamentary speech in 25 languages from the European parliament. We evaluate on 2.5 hours of
data for each language sampled from the VoxPopuli unlabeled data portion.

Table 7 shows that MMS models scale very well: increasing the number of languages from 126 to
4,017 results in a modest performance drop of just 0.3% on FLEURS and no drop on VoxLingua-107.
Out-of-domain we observe a drop of 3.6% on BABEL and 0.2% on VoxPopuli. The results are
also competitive to models trained only on in-domain data: On FLEURS evaluation data, the 4,017
language MMS model performs 1% better than the baseline trained only on FLEURS data and is
only 0.2% behind the baseline trained on both FLEURS and VoxLingua-107. On VoxLingua-107
evaluation data, the gap is 0.4-0.8%. This shows that scaling LID to 4,017 can result in models with
competitive performance to models trained on much fewer languages.

7 Speech Synthesis

As a final downstream task we consider speech synthesis or text-to-speech (TTS) where models
output speech for a corresponding input text. Most prior work focuses on English using clean corpora
and high quality phonemizers [Tan et al., 2021]. These resources are only available for a small
number of languages which is why expanding TTS to 1,107 languages requires different choices.
Black [2019] built TTS systems for 699 languages using data from a similar source as MMS-lab.
Encouraged by our initial results indicating higher quality data (§3.3.1), we extend their work by
building models for 1,107 languages.

We first describe the model architecture on which we build (§7.1), how we pre-process the data to
train TTS models (§7.2) and how we evaluate our models (§7.3). Next, we present an ablation of
our design choices compared to a highly optimized setup used for English (§7.4). We also measure
performance when synthesizing out-of-domain data for 61 languages of the FLEURS benchmark
(§7.5), and finally present results for all 1,107 languages (§7.6).

7.1 Text-To-Speech Model

Our Text-to-Speech (TTS) model is based on VITS [Kim et al., 2021], which is one of the state-
of-the-art TTS approaches. While VITS has previously been applied in a multilingual setting for
English, Portuguese, and French [Casanova et al., 2022], we scale it to 1,107 languages.

VITS is an end-to-end speech generation network that predicts the raw speech waveform from a text
sequence. It can be viewed as a conditional variational auto-encoder (VAE; Kingma and Welling
2013) that estimates audio features based on the input text. The spectrogram-based acoustic features
are generated by a flow-based sub-network, which includes multiple affine coupling layers [Dinh
et al., 2017] and a text encoder. The waveform is decoded using a stack of transposed convolutional
layers that have been adapted from HiFi-GAN [Kong et al., 2020]. The model is trained end-to-end
with a combination of losses derived from variational lower bound and adversarial training. During
inference, the text encodings are upsampled based on an internal duration prediction module and then
mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder.

We train separate VITS models for each language. Most of our hyperparameters are identical to
the VITS model trained on LJSpeech [Ito and Johnson, 2017, Kim et al., 2021] except for these
differences: Instead of training the model for 800K steps, we train each model for 100K steps using
eight V100-GPUs with a batch size of 64 per GPU. This setup was only slightly worse than the
original configuration but reduced training time by approximately eight times which made training a
large number of TTS systems feasible (§7.3). We experimented with different learning rate settings
and found that the original learning rate schedule of VITS worked best.

7.2 Text and Speech Data Pre-processing

Data Selection. To train models we use the MMS-lab dataset which provides paired speech and text
data. For most languages we have a single recording of the New Testament, however, for 99 languages

29Amharic, Assamese, Bengali, Cantonese, Cebuano, Georgian, Guarani, Haitian Creole, Igbo, Javanese,
Kazakh, Lao, Lithuanian, Dholuo, Mongolian, Pashto, Swahili, Tagalog, Tamil, Telugu, Turkish, Vietnamese,
Zulu. We evaluate on test utterances longer than 10 seconds.
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multiple recordings are available (§3.1.1). For these languages, we choose a single recording in order
to avoid introducing additional speakers into the training data. To choose a recording, we train ASR
models on the data and select the recording based on which the corresponding ASR model achieves
the lowest CER on a held-out set of an out-of-domain evaluation set. If no out-of-domain evaluation
set is available, we choose a random recording. Finally, if there are both drama and non-drama
recordings, then we consider only non-drama recordings.

Text Representations. Most current TTS models convert text to phonemes using grapheme-to-
phoneme tools such as g2p [Park and Kim, 2019] which rely on a lexicon to map input characters to
phonetic representations. However, such lexicons are not available for most low resource languages
since they require manual annotation. In order to scale TTS to over one thousand languages, we
represent the input text as individual letters for languages with a small vocabulary. For languages with
200 or more characters, we use a uroman encoding (Hermjakob et al. 2018; §3.1.4). We validated this
strategy on the languages of FLEURS where found that letter-based models outperform uroman-based
systems across all languages, except for Amharic and Korean, which both have large character sets of
between 200-1,000 characters. We therefore used this mixed strategy.30

Speech Data Pre-processing. For drama recordings, we remove background music to enhance
the quality of TTS models. We use a denoiser model [Defossez et al., 2020] to remove background
music. We also noticed that some utterances contain multiple speakers, usually voicing different
characters in the read stories. We use a simple heuristic to detect those utterances and remove them
from the training data. The heuristic computes the variance of the pitch on voiced frames and removes
utterances with high variance in the pitch; the pitch estimation is based on Mauch and Dixon [2014].
We found that removing 15% of the utterances with the highest pitch variance in each recording
removed many multi-speaker utterances.

7.3 Evaluation Methodology

Evaluation of speech synthesis is not straightforward even in the most researched English setting
comprising a clean corpus with single speaker data [Ito and Johnson, 2017] and expanding evaluation
to a large number of languages poses additional challenges. Similar to prior work, we rely on both
automatic metrics (MCD and ASR) and human studies which we detail next.

Mel-Cepstral Distortion (MCD). Mel-cepstral distortion is an automatic metric which measures
the closeness of synthesized speech to a human utterance for the same text in terms of the warping
distance of mel frequency cepstral coefficients. There are two disadvantages of MCD: first, it is
only meaningful when the voice and prosody of the speaker as well as recording conditions in the
training data matches the evaluation data because the mel cepstral sequences are sensitive to these
aspects. This prevents evaluation on data outside the MMS-lab domain. Second, it is not well suited
to measuring the intelligibility of the TTS output. We address the former by focusing MCD evaluation
on MMS-lab data and the latter via the next metric.

Automatic speech recognition (ASR). Transcribing the synthesized speech with automatic speech
recognition and then measuring the error rate has the potential to address both issues of MCD: it can
be measured on evaluation sets which are out-of-domain and it captures the content of the synthesized
speech. Specifically, we synthesize both in-domain data from the MMS-lab evaluation sets as well as
out-of-domain data from the FLEURS corpus. Next, we apply ASR models and compute CER of the
ASR model output with respect to the input text of the TTS system. Low CER indicates that the TTS
model is able to capture the content of the input text. Unless otherwise stated, we use ASR models
trained on FLEURS data.

Mean Opinion Score (MOS). Finally, we evaluate models using MOS and because it is very hard
to find human raters proficient for a large number of languages, we ask raters to judge the fidelity
of the synthesized samples together with how natural the speech sounds. We rely on ASR to get a
sense of how much of the content is preserved in the TTS outputs and consider the MOS score for
generation quality and naturalness. We evaluate 50 samples per method of each language, collect

30For all 1,107 languages, the following languages use a uroman encoding: Amharic, Gumuz, Korean, Sebat
Bet Gurage and Tigrinya.
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train train text ASR (CER) MOS
upd data repr. MMS-lab LJS FLEURS MMS-lab LJS FLEURS

Natural speech 4.4 4.3 9.3 3.89 ± 0.06 3.96 ± 0.06 3.37 ± 0.07

800K LJS phon. 5.5 4.9 5.9 3.87 ± 0.08 3.82 ± 0.06 3.73 ± 0.07

100K LJS phon. 6.3 4.9 6.3 3.64 ± 0.09 3.74 ± 0.07 3.66 ± 0.07

100K MMS-lab phon. 7.2 6.8 7.9 3.68 ± 0.07 3.51 ± 0.08 3.54 ± 0.07

100K MMS-lab chars 7.2 9.2 10.0 3.58 ± 0.08 3.45 ± 0.08 3.34 ± 0.09

Table 8: Ablation of Training Setup. Our design choices (last row) lead to a moderate quality
reduction compared to the standard VITS setup (second row) but enable scaling TTS to 1,107
languages. The standard VITS setting performs 800K training updates on clean LJSpeech data using
a high quality phonemizer while as MMS is trained on MMS-lab data for fewer updates and with
characters. Natural speech results are based on the human utterances of each dataset. We report ASR
CER and MOS scores from a human study with confidence interval 95% on the English development
sets of MMS-lab, LJSpeech and FLEURS.

ASR (CER) MOS
MMS-lab LJS FLEURS MMS-lab LJS FLEURS

Natural speech 4.4 4.3 9.3 3.89 ± 0.06 3.96 ± 0.06 3.37 ± 0.07

no background music 7.2 9.2 10.0 3.51 ± 0.07 3.52 ± 0.08 3.41 ± 0.09

background music 11.8 15.6 16.1 3.24 ± 0.08 2.98 ± 0.08 3.01 ± 0.08

+ denoise 10.8 13.2 14.4 3.32 ± 0.08 3.18 ± 0.07 3.16 ± 0.08

+ denoise + filter 7.8 10.8 11.9 3.47 ± 0.07 3.32 ± 0.08 3.12 ± 0.07

Table 9: Ablation of Building TTS Models using Data with Background Music. Curating the
training data containing background music results in TTS systems which approach the performance
of models trained on recordings without background music. We show MOS ratings as well as ASR
CER on three different benchmarks for English data for the development sets of MMS-lab, LJSpeech
and FLEURS. The TTS model labeled "no background music" is identical to the last row in Table 8
and we use the MMS-lab development set of the non-drama recording.

ten judgements per sample and ask raters to judge the quality from 1 (lowest quality) to 5 (highest
quality). Results are reported in terms of the mean score as well as the 95% confidence interval. We
use the CrowdMOS [Ribeiro et al., 2011] package with the recommended recipes for detecting and
discarding inaccurate ratings. We do not require raters to be able to speak the respective language
(except for English) as it is very hard to find raters that speak all the languages we consider. We rely
on the ASR error rate to get a sense of content preservation in the TTS models.

7.4 Evaluation of Design Choices

7.4.1 Training Setup

We first analyze the quality of our training setup (§7.1) and compare it to the common VITS setup [Kim
et al., 2021] which trains models for up to 800K updates on the clean LJSpeech corpus [Ito and
Johnson, 2017] with text data pre-processed by a high-quality phonemizer [Park and Kim, 2019].
This contrasts to our setup where we train the same model for 100K updates on the MMS-lab data
using letters.

We evaluate performance on the development sets of MMS-lab which is in-domain for MMS-lab
models, LJSpeech (LJS; Ito and Johnson 2017) which is in-domain for the original VITS setup and
FLEURS which is out-of-domain for both.31 The audio of FLEURS frequently contains high levels
of noise and reverberation and it is relatively uncommon to use it for TTS, however, it does cover a

31For measuring CER on LJSpeech, we remove punctuation and capitalization of both references and
hypothesis using the normalization of Radford et al. [2022].
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ASR (CER) MOS (modified)
TTS ref TTS ref

In-domain 11.1 9.2 3.51 ± 0.11 3.61 ± 0.11

Out-of-domain 11.3 8.8 3.52 ± 0.11 3.33 ± 0.12
∗

Table 10: TTS in-domain and Out-of-domain Evaluation on 61 Languages. We synthesize the test
sets of MMS-lab (in-domain) and FLEURS (out-of-domain) to measure character error rate (CER)
and collect human judgements (MOS) for both the model outputs (TTS) and human utterances (ref).
The MMS models are robust with little performance degradation when applied to general domain data
(out-of-domain): they retain much of the original content (low difference between CER of TTS and
ref) and the systems produce outputs with good prosody and sound quality (low difference between
MOS scores between TTS and ref). We show MOS scores with confidence interval 95%. (∗) human
judges assigned low ratings since the human reference audio in FLEURS contains a lot of variability
compared to synthesized speech or the MMS-lab reference speech (in-domain ref).

large number of languages and it is out-of-domain with respect to the MMS-lab training data which
makes it an interesting evaluation set, particularly for the experiment in §7.5.

Table 8 shows that our reduced setup (row 5) generally performs less well than the highly optimized
setup of VITS for LJSpeech (row 2; Kim et al. 2021) and each design choice (fewer training updates,
MMS-lab training data and character inputs) leads to a reduction in quality. In terms of character
error rate, the degradation is most pronounced on out-of-domain settings with respect to our reduced
setup (row 5) and less so on the in-dmain MMS-lab development set. We stress that these choices
enable scaling TTS to over 1,000 languages at manageable compute requirements and no need for
language-specific text processing tools.

Note that the CER of almost all models on FLEURS data is lower than for the corresponding natural
speech and that the MOS scores of the human reference utterances is also lower than for other datasets.
We attribute this to the high levels of noise and reverberation in the FLEURS audio which results in
increased CER for the original samples compared to the CER of the synthesized samples.

7.4.2 Data with Background Music

Next, we ablate how we build speech synthesis models based on recordings with background music
which is a setting that applies to about 38% of the languages (§3.1.1). For this purpose, we train
a model on an English recording with background music before and after the pre-processing steps
outlined in §7.2 and compare this to a model trained on another English recording that does not
contain any background music to start with (no background music). The pre-processing denoises the
data and removes utterances with multiple speakers.

The results (Table 9) show that both denoising and removing samples with multi-speaker utterances
results in performance improvements compared to the original data with background music. Both
steps reduce the CER gap to models trained on no background music data by 69-87% relative to
the CER of the system trained on data with background music. MOS scores also increase after
pre-processing, sometimes close to the level of the data with no background music on MMS-lab
evaluation data (3.47 vs. 3.51).

7.5 Out-of-Domain Evaluation

The MMS-lab data is from a particular narrow domain (§3.1.1) which poses the question of whether
TTS models trained on this data will generalize to other domains. To get a better sense of this, we
train speech synthesis models and evaluate their quality on both in-domain and out-of-domain data.
As in-domain data we use the test sets of MMS-lab and as out-of-domain data we use FLEURS. This
enables evaluation on 61 languages of the FLEURS benchmark (FLEURS-61) which are covered by
MMS-lab data. However, a downside of FLEURS is that it contains high levels of noise which makes
it challenging when comparing synthesized audio to the human reference audio.

Table 10 shows that MMS models are robust to domain shift: the CER of synthesized speech (TTS)
is only slightly higher out-of-domain compared to in-domain and MOS scores for the synthesized
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#lang MCD ASR (CER) TTS CER %
TTS ref ≤ 5

Asia 335 4.30 ± 0.1 3.1 ± 0.2 1.9 ± 0.1 296 88%
South America 136 4.10 ± 0.1 2.6 ± 0.2 1.8 ± 0.1 129 95%
North America 144 4.12 ± 0.1 3.8 ± 0.8 2.4 ± 0.2 125 87%
Europe 41 4.33 ± 0.2 3.0 ± 0.3 1.9 ± 0.2 39 95%
Africa 363 4.34 ± 0.1 4.1 ± 0.2 2.6 ± 0.1 277 76%
Pacific 88 4.72 ± 0.2 3.4 ± 1.3 1.8 ± 0.2 79 90%

1,107 4.30 ± 0.0 3.5 ± 0.2 2.2 ± 0.1 945 85%

Table 11: TTS Evaluation on 1,107 Languages. The majority of MMS TTS models can synthesize
speech which preserves most of the content as per the ASR character error rates (TTS CER ≤ 5). We
report MCD and character error rate for the synthesized outputs (TTS) of the MMS-lab test sets as
well as the human references (ref). We also show the number of systems which achieve CER less
than five, indicating systems which on average produce no more than one incorrect character every
twenty characters. Results are shown with confidence interval 95%.

samples are nearly identical. We note that the in-domain and out-of-domain settings are measured
on different data which does not enable strong claims about identical performance. The systems
also retain much of the original content as the small difference in CER between TTS and human
utterances (ref) shows.

The MOS scores also indicate that our systems have lower sound quality compared to human
utterances but the difference is not very large on in-domain data (3.51 vs. 3.61). Unfortunately,
out-of-domain MOS scores for the references are affected by the noisy speech in the FLEURS audio
as noted earlier. We conclude that TTS models trained on MMS-lab data perform well out-of-domain.

7.6 Evaluation on 1,107 Languages

Finally, we train models for all languages of MMS-lab and focus on in-domain evaluation since
finding out-of-domain evaluation data for such a large number of languages is difficult. Specifically,
we measure MCD and ASR CER on the MMS-lab test sets. To be able to evaluate ASR quality on all
languages, we use ASR models trained on MMS-lab data which results in much lower error rates.
Similar to §5.5, we group results into six geographical regions covered by MMS-lab: Asia, North
America, South America, Europe, Africa and the Pacific region.

To get an overall sense of how many models are of good quality, we measure whether the model for a
particular language has ASR CER ≤ 5. This indicates the number of systems which make on average
no more than one error in twenty characters. While this measure is by far not perfect, it enables us to
get a broad sense of quality across a large number of languages.

Table 11 shows that about 85% of the 1,107 languages meet the CER quality threshold. South
American and European languages achieve the highest rate at 95% and African languages the lowest
rate of 76%. This is in part driven by different writing scripts. The ASR character error rates are
generally low because the error rates are based on ASR models trained on MMS-lab data.

8 Bias Analysis and Ethical Considerations

Training machine learning models on religious texts may introduce biases and requires ethical
considerations. In this section, we analyze whether our models are biased to perform better for
different genders (§8.1), if the language produced by our models is religiously biased (§8.2 and
finally, we discuss ethical considerations of using religious texts in research (§8.3).

8.1 Understanding Gender Bias

Most speakers in MMS-lab dataset appear to be male and this bears the risk of machine learning
models trained on this data performing better for male speakers. To understand whether the models
trained on our datasets (§3) exhibit gender bias, we perform the following experiment: we evaluate
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Figure 14: Analysis of Gender Bias. We compare the character error rate (CER) of automatic speech
recognition models trained on MMS-lab data and FLEURS data for male and female spakers. Results
are on the development sets of 27 languages of the FLEURS benchmark for which MMS-lab provides
data and for which there are at least 50 samples for each gender.

models on the development set of FLEURS which contains metadata indicating the gender of the
speaker and we use this information to report performance for each gender. Using this split, we
evaluate the accuracy of ASR models trained on MMS-lab on 27 languages of the FLEURS dataset
for which MMS-lab provides data (61 languages), and for which there are at least 50 samples for
each gender (27 out of these 61 languages).

Figure 14 shows that the average character error rate over these 27 languages is very similar, both for
the MMS model and the model trained on FLEURS data. There can be significant differences between
genders within a particular language, but both models appear to be equally affected (see Table A4).
On a per language basis, male speakers have a higher error rate for 14 languages while as female
speakers have a higher error rate for the remaining 13 languages. We conclude that our models exhibit
similar gender bias to models trained on FLEURS data which is general domain data.

8.2 Understanding Language Bias

The datasets created as part of this study are from a particular narrow domain and machine learning
models estimated on this data may exhibit certain biases. In this section, we examine the extent to
which automatic speech recognition models trained on MMS-lab data output biased language.

Methodology. The general methodology of our analysis is to identify a set of biased words in
each language and to measure the rate at which biased words are produced by ASR models. We
compare models trained on MMS-lab data and models trained on FLEURS, a corpus of people
reading Wikipedia articles in different languages. Both sets of models are tasked to transcribe the
FLEURS development set and we are interested in whether models trained on MMS-lab data are
more likely to use biased language compared to models trained on FLEURS data.

Identifying Biased Words. We were not able to find speakers for most of the considered languages
of this study and therefore use the following automatic procedure to determine religious words: for
each word that occurs in the training data of MMS-lab, we compare the relative token frequency, that
is, the rate at which the word type occurs in the MMS-lab data, to the relative token frequency in a
general domain corpus; we use Common Crawl [Conneau et al., 2020b] as a general domain corpus.
If the relative word frequency is at least twice as high in MMS-lab compared to Common Crawl, then
we add it to the subset of words we include in our study. This enables us to evaluate on 51 languages
of the FLEURS corpus since not all languages are covered by MMS-lab and we also need to find data
in Common Crawl for each language. The automatic procedure has the added benefit of avoiding any
potential biases introduced by human annotators.

Results. Figure 15 shows that the rate of biased words is much lower in the outputs of MMS models
compared to the training data (MMS-lab ASR output vs. MMS-lab train). For many languages, MMS
models generate these words at the same rate as the FLEURS models. On average the rate of biased
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Figure 15: Analysis of Language Produced by MMS ASR Models. MMS models generate biased
words at a slightly increased rate of 0.7% absolute compared to models trained on FLEURS data. We
focus on words that occur at least twice as often in the MMS-lab training data compared to Common
Crawl (in terms of relative frequency). We compare the cumulative relative frequency of these words
in the MMS model output and the output of ASR models trained on FLEURS data. ASR outputs are
based on transcribing the development sets of 51 languages.

words is 0.7% absolute higher for MMS compared to the FLEURS model. We interpret this as a
slight bias as the difference between MMS-lab ASR output and FLEURS ASR output in Figure 15
shows.

We consulted with native speakers for languages which showed the largest discrepancies: for Mongo-
lian (mon), a native speaker verified that most of the biased words in question are actually general
language with no particular bias. For Persian (fas), only two out of the words the procedure identified
were of religious nature and both were indeed over predicted: the Persian words for Jesus and
spirit/ghost were predicted in four instances (on the entire development set) while the FLEURS model
does not predict these words, however, the MMS model also predicts the word for hand 15 times
more often than the baseline FLEURS model.

In English, the procedure identifies words such as you, that, they but it also includes jesus, which
both models predict at the same rate. There is also christ, and lord, both of which are not predicted at
all, or men which is predicted six times by the MMS model compared to five times by the FLEURS
model. Our method of identifying biased words has low precision but it does capture words which
are likely more used in religious contexts than otherwise.

8.3 Ethical Considerations and use of Religious Texts in Research

Our consultations with Christian ethicists concluded that most Christians would not regard the New
Testament, and translations thereof, as too sacred to be used in machine learning. The same is not
true for all religious texts: for example, the Quran was originally not supposed to be translated. There
is also the risk of religious training data biasing the models with respect to a particular world view,
however, our analysis of the language generated by our models suggests that the language produced
by the resulting speech recognition models exhibit only little bias compared to baseline models
trained on other domains (§8.2).

This project follows a long line of research utilizing the New Testament to train and evaluate machine
learning models. The most related project is the CMU Wilderness effort [Black, 2019] which created
speech synthesis models for 699 languages using speech and text data from similar sources as
our datasets. For machine translation, researchers used data from the Bible both for training and
evaluation [Christodouloupoulos and Steedman, 2015, McCarthy et al., 2020, NLLB_Team et al.,
2022]. For speech processing, researchers trained speech synthesis models for ten African languages
based on readings of the bible [Meyer et al., 2022].
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9 Conclusions and Open Problems

We presented the first study which scaled speech technology to over one thousand languages. This
has been made possible by the rapid progress in self-supervised speech representation learning
which in turn enabled more sample efficient learning from labeled data. We presented how we
collected datasets, pretrained models and then built models for automatic speech recognition, language
identification and speech synthesis. This scaled the number of supported languages for several major
speech tasks by between 10-40x. Going forward, we see several avenues for future work:

Scaling to even more languages and dialects. Even though, we built speech systems supporting
between 1,100-4,000 languages, there are currently over 7,000 languages being spoken around the
world today. Moreover, there are many more dialects which are often not adequately represented in
the training data, even for high-resource languages such as English. This can lead to undesirable
biases in the performance of these models [Koenecke et al., 2020].

Multi-task models. Another avenue is to train single models for several downstream tasks such as
speech recognition, language identification etc. which can then all be performed by a single model.
There has been work on a moderate number of languages [Radford et al., 2022] but we hope that this
approach can be scaled to many more languages and with a smaller focus on head languages.

Tackling more speech tasks. While this study covered three different speech tasks, there are many
more tasks involving speech data, such as speech translation, both to text and to speech, or keyword
spotting, intent classification etc. We hope that future work will expand these tasks to many more
languages as well.
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Appendices

A Forced Alignment

Given an input audio sequence X = (x1, ..., xN ), where N is the number of frames, a CTC alignment
model produces an output sequence Y = (y1, ...,yT) of length T , where yt denotes the posterior
probability distribution over an alphabet A and blank token ⟨b⟩. Let B denote the collapsing function
of CTC which collapses all repeating symbols and which removes all blanks for a given sequence. An
alignment path π = π1, ..., πT in CTC for a given target label of length M , L = (l1, ..., lM ) where
πt ∈ A ∪ {⟨b⟩} and li ∈ A should satisfy B(π) = L.

Among the all the alignment paths which can be collapsed to the given target label L, forced alignment
computes the best alignment path π̂ which maximizes the probability under the posterior distribution
given by the acoustic model.

π̂ = argmax
π∈B−1(L)

P (π|X) (2)

CTC assumes every output is conditionally independent of the other outputs given the input. We have

P (π|X) =

T∏
t=1

P (πt|t,X) =

T∏
t=1

ytπt
(3)

Equation 2 can be computed efficiently using dynamic programming and backtracking. An efficient
version of this algorithm is implemented in flashlight [Kahn et al., 2022] on CPU. We implement
a parallel version on CUDA, incorporating memory optimizations that offload memory to CPU,
allowing it to process long audio files efficiently as shown in Algorithm 1.

Algorithm 1 Pseudo code of our CTC Forced Alignment algorithm on GPU

Input: Posterior probabilities y, target label L
Output: Alignment path π

1: S ← 2× |L|+ 1
2: Create GPU matrices αodd, αeven of size S each to store the maximum log probability of aligning

the target upto the given node
3: B← 100; # buffer size for data copy from GPU to CPU
4: Create CPU matrix β of size T × S for saving the label indices from previous time step used to

compute αodd/αeven
5: Create GPU matrix βbuffer of size B × S, where B is the buffer size, to store the values of β

temporarily in a buffer before being copied to CPU.
6: for t = 1, . . . , T do
7: for all l = 1, . . . , S do in parallel
8: If t is odd, update αodd[l] based on αeven, yt using dynamic programming and vice-versa
9: Store the index l′ from previous time step used to update αodd/αeven in βbuffer

10: end for
11: if t % B == 0 or t == T then
12: Copy βbuffer to CPU matrix β asynchronously
13: end if
14: end for
15: Backtrack and compute π from αodd, αeven and β

Relationship to Other Alignment Generation Approaches. For dealing with noisy transcripts,
a commonly used alternative to forced alignment is as follows [Povey et al., 2011]: first segment
the audio into shorter segments that can be input to an acoustic model composed with a language
model and generate a transcription for each segment.32 Then align the generated transcription with
the original text to determine the audio segment for each word. If the generated transcriptions cannot
be well aligned, then these segments are discarded.

32https://github.com/mozilla/DSAlign
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The advantage of this approach is that it enables alignment when the audio and the text do not
correspond entirely to each other. However, the alignments are performed on a segment per segment
basis, whereas our forced alignment process performs a global alignment taking the entire sequence
into account.

B n-gram Language Models

We train 5-gram language models on Common Crawl data using KenLM [Heafield, 2011] for each
language in FLEURS. For languages that do not use spaces to separate words, we train 20-gram
character-level language models. These languages are Mandarin Chinese (cmn), Cantonese Chinese
(yue), Japanese (jpn), Thai (tha), Lao (lao), Burmese (mya) and Khmer (khm). The text is pre-
processed following § 3.1.2 and we also remove emojis.33.

For word-level models, we limit the training data to 40GB and select the 250K most-frequent words
as the vocabulary. For character-level models, we limit the training data to 6GB. We provide example
commands used for training the LMs below:

# word-level LM
> kenlm/build/bin/lmplz –prune 1 2 3 4 5 -o 5 –limit_vocab_file vocab.txt -S 90% -T
/tmp/ < input.txt > output.arpa 34

# character-level LM
> kenlm/build/bin/lmplz –prune 0 0 0 0 0 1 1 1 2 3 -o 20 trie -S 90% -T /tmp/ <
input.txt > output.arpa

For n-gram models trained on the FLEURS training data transcriptions, we build 15-gram character
level language models without any pruning on all languages in FLEURS. For the comparison with
Whisper, we only use the Common Crawl language models.

We use the CTC beam-search decoder from the Flashlight [Kahn et al., 2022] library for decoding
our models. For decoding with word-level LMs, we use the lexicon-based decoder of Collobert et al.
[2016], Pratap et al. [2019] and for character-level LMs, we use the lexicon-free beam-search decoder
of Likhomanenko et al. [2019]. We tune the language model weight and word insertion penalty on
the validation set to select the best hyperparameters for decoding the test set.

33https://stackoverflow.com/a/33417311
34We use –prune 1 1 2 3 4 if data size < 5GB and additionally use –discount_fallback if data size <

1GB
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C Comparison to Whisper

Table A1 shows a breakdown of the results into individual languages and Table A2 shows results
with and without CC LM n-gram language models.

Whisper Whisper MMS MMS MMS MMS MMS MMS MMS MMS
medium large-v2 L-61 L-61 L-61 L-61 L-1107 L-1107 L-1107 L-1107

noLM CC LM noLM CC LM noLM CC LM noLM CC LM
LSAH LSAH LSAH LSAH

Amharic 229.3 140.3 48.7 30.7 52.4 32.5 52.9 30.1 53.3 31.1
Arabic 20.4 16.0 34.9 19.6 35.8 19.9 44.0 23.4 41.3 21.0
Assamese 102.3 106.2 29.5 18.8 28.4 18.6 37.6 21.2 30.5 19.2
Azerbaijani 33.1 23.4 40.7 21.3 38.3 19.8 45.0 21.2 40.1 19.1
Bengali 100.6 104.1 19.7 11.6 20.0 12.1 25.0 12.5 23.5 12.1
Bulgarian 21.4 14.6 23.4 13.1 23.9 13.3 27.9 12.9 25.5 13.5
Burmese 123.0 115.7 22.2 14.2 22.3 14.5 29.2 20.2 24.5 16.0
Catalan 9.6 7.3 18.1 11.0 18.1 11.0 25.9 11.5 20.1 10.8
Dutch 9.9 6.7 26.9 13.7 26.4 14.3 38.1 14.9 27.6 14.5
English 4.4 4.2 23.8 10.7 24.8 11.8 38.8 12.2 27.8 12.3
Filipino 19.1 13.8 19.3 11.9 19.4 12.2 26.2 13.5 20.2 12.4
Finnish 13.9 9.7 26.4 22.5 26.9 23.1 32.3 22.2 28.8 23.1
French 8.7 8.3 24.3 13.7 24.5 14.1 35.8 15.4 29.3 15.0
German 6.5 4.5 22.5 13.2 22.3 13.7 38.4 13.1 22.5 13.3
Greek 19.0 12.5 40.8 14.0 40.5 13.6 57.5 13.0 40.1 13.6
Gujarati 104.8 102.7 23.0 13.0 22.7 12.8 73.9 56.4 24.0 12.8
Hausa 106.6 88.9 35.9 26.7 36.3 27.3 40.4 26.7 38.3 26.4
Hebrew 33.1 27.1 68.5 44.8 66.6 41.5 78.7 50.9 67.1 40.0
Hindi 26.8 21.5 65.0 44.4 28.8 16.0 70.7 45.7 21.2 10.6
Hungarian 24.3 17.0 31.2 18.1 30.7 18.4 40.3 18.3 30.7 18.0
Icelandic 49.9 38.2 42.9 18.3 42.3 19.9 53.6 20.5 45.3 18.6
Indonesian 10.2 7.1 25.5 11.7 23.8 12.1 31.9 11.6 23.4 11.8
Javanese 67.9 68.5 32.8 19.6 32.8 20.0 58.8 27.2 34.2 19.5
Kannada 77.7 37.0 18.8 14.4 15.8 12.9 41.3 25.2 17.7 13.3
Kazakh 48.8 37.7 30.2 17.4 30.2 17.7 63.8 19.5 31.6 17.4
Khmer 103.8 128.9 26.0 19.9 25.7 19.8 70.7 52.4 26.7 19.7
Korean 16.4 14.3 58.7 37.5 59.9 37.3 82.1 58.2 68.3 40.1
Lao 101.4 101.5 48.9 45.4 24.2 22.8 62.1 56.6 22.6 16.9
Latvian 32.0 23.1 20.8 12.0 20.9 12.1 24.5 11.9 21.8 12.1
Malay 12.2 8.7 25.3 12.3 25.9 13.2 32.4 12.1 26.1 12.5
Malayalam 101.1 100.7 23.7 19.1 19.5 16.6 39.1 25.6 20.4 15.3
Marathi 63.2 38.3 32.5 19.0 19.2 13.5 28.0 14.9 20.9 13.4
Mongolian 103.7 110.5 55.7 29.3 54.9 32.9 67.7 28.7 55.3 32.3
Persian 41.0 32.9 39.7 22.9 39.9 22.5 44.4 21.3 42.9 22.0
Polish 8.0 5.4 21.5 11.4 20.8 11.6 33.0 11.0 25.1 11.3
Portuguese 5.0 4.3 16.1 10.8 16.3 10.8 19.3 10.2 17.7 10.5
Punjabi 102.0 102.4 41.4 29.9 30.4 20.7 99.0 91.0 31.0 19.8
Romanian 20.0 14.4 27.9 18.8 28.4 19.1 31.3 17.8 27.4 18.3
Russian 7.2 5.6 30.3 14.6 30.4 14.3 38.8 14.7 35.0 15.0
Shona 143.9 121.0 38.1 30.4 37.7 30.1 43.0 29.9 37.8 29.6
Somali 104.0 102.9 51.8 42.8 52.5 43.0 54.5 42.9 53.8 42.8
Spanish 3.6 3.0 12.2 7.8 12.4 8.2 14.0 7.8 14.0 8.7
Swahili 52.8 39.3 22.9 16.0 23.3 15.6 29.6 16.8 23.7 16.0
Swedish 11.2 8.5 29.9 17.4 30.5 17.5 38.2 17.2 33.5 17.4
Tajik 74.0 85.8 59.8 46.6 33.9 19.2 59.0 39.5 25.7 15.7
Tamil 23.1 17.5 24.2 18.3 21.9 16.3 25.3 17.3 23.9 16.3
Telugu 82.8 99.0 19.4 13.7 19.6 13.7 24.5 15.8 22.1 13.6
Thai 15.4 11.5 18.2 13.6 18.1 13.6 27.6 18.8 20.7 14.3
Turkish 10.4 8.4 28.6 17.3 28.7 17.5 31.2 16.1 30.9 16.9
Ukrainian 11.6 8.6 31.1 13.6 31.7 13.5 39.2 13.3 33.3 13.6
Urdu 28.2 22.6 42.3 22.7 33.1 20.1 46.4 25.1 36.9 20.5
Vietnamese 12.7 10.3 44.5 18.6 47.5 20.7 56.6 21.0 52.9 19.8
Welsh 40.8 33.0 48.9 20.8 49.0 20.8 54.9 21.4 51.4 20.9
Yoruba 105.1 94.8 61.2 49.7 61.9 49.4 62.7 50.2 64.2 49.4

50.1 44.3 33.3 20.7 31.0 19.1 44.2 24.8 32.5 18.7

Table A1: Comparison to Whisper on the FLEURS test set. We report WER for each of the 54
languages supported by both MMS and Whisper, except for Thai (tha), Lao (lao), Burmese (mya)
and Khmer (khm) where we report CER. We apply Whisper normalization for both reference and
hypothesis for measuring CER/WER.
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#lang lbld train FLEURS-54
data (h) (M) dev test

Prior Work
Whisper medium 99 680K 769M - 50.1
Whisper large-v2 99 1,550M - 44.3

This Work
MMS 61 3K 965M 33.6 33.3

+ CC LM 61 3K 965M 20.9 20.7
MMS (LSAH) 61 3K 1,096M 31.4 31.0

+ CC LM 61 3K 1,096M 19.1 19.0

MMS 1,107 45K 965M 44.7 44.2
+ CC LM 1,107 45K 965M 24.8 24.8

MMS (LSAH) 1,107 45K 3,346M 32.8 32.5
+ CC LM 1,107 45K 3,346M 18.7 18.7

Table A2: Comparison to Whisper. We report average WER on the 54 languages of the FLEURS
benchmark supported by both Whisper and MMS (FLEURS-54). MMS is a CTC-based model and to
enable a fairer comparison we use n-gram models trained on web data when comparing to Whisper
whose decoder is a neural sequence-model and serves as a language model that was trained on billions
of web tokens.
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D Comparison to USM

Dev Test LM
CER CER

Afrikaans 6.3 6.3 CC LM
Amharic 6.8 7.0 CC LM
Arabic 4.3 4.9 CC LM
Assamese 7.3 7.7 CC LM
Asturian 5.2 5.1 CC LM
Azerbaijani 4.2 3.9 CC LM
Belarusian 3.8 3.8 CC LM
Bengali 5.1 5.3 CC LM
Bosnian 3.8 3.4 FL LM
Bulgarian 3.0 3.2 CC LM
Catalan 2.8 2.9 CC LM
Cebuano 3.6 4.4 CC LM
Czech 3.3 3.0 CC LM
Sorani 6.5 7.4 FL LM
Mandarin 14.8 14.9 CC LM
Welsh 5.7 5.9 CC LM
Danish 5.5 5.7 CC LM
German 3.0 2.7 CC LM
Greek 4.0 3.7 CC LM
English 4.6 4.3 CC LM
Estonian 2.9 2.7 FL LM
Persian 4.0 4.1 FL LM
Finnish 2.6 2.4 FL LM
French 4.1 4.1 CC LM
Fula 13.9 13.8 FL LM
Irish 19.3 19.5 CC LM
Galician 2.8 2.7 CC LM
Gujarati 5.2 5.1 CC LM
Hausa 5.5 5.9 CC LM
Hebrew 15.5 12.9 CC LM
Hindi 5.4 4.7 CC LM
Croatian 3.5 3.2 CC LM
Hungarian 4.1 4.2 CC LM
Armenian 3.2 3.2 FL LM
Igbo 10.7 11.1 FL LM
Indonesian 2.3 2.1 CC LM
Icelandic 5.2 4.1 CC LM
Italian 1.5 1.4 CC LM
Javanese 4.3 3.8 CC LM
Japanese 14.5 14.6 CC LM
Kamba 12.5 11.3 FL LM
Kannada 4.6 4.4 FL LM
Georgian 3.4 3.6 CC LM
Kazakh 2.9 3.1 CC LM
Kabuverdianu 4.3 4.3 FL LM
Khmer 9.9 10.3 CC LM
Kyrgyz 4.1 3.6 FL LM
Korean 11.4 11.8 CC LM
Lao 26.5 24.1 CC LM
Latvian 2.8 2.2 CC LM
Lingala 4.0 4.3 FL LM
Lithuanian 4.3 3.7 CC LM

Dev Test LM
CER CER

Luxembourgish 8.0 7.5 CC LM
Ganda 8.0 8.4 FL LM
Luo 4.9 5.0 FL LM
Malayalam 4.4 4.2 FL LM
Marathi 7.2 6.6 CC LM
Macedonian 2.0 1.9 CC LM
Maltese 3.7 3.7 CC LM
Mongolian 5.6 5.9 CC LM
Maori 5.9 6.9 CC LM
Burmese 8.9 9.2 CC LM
Dutch 3.7 3.1 CC LM
Norwegian 3.7 4.1 CC LM
Nepali 8.3 7.7 CC LM
Northern 6.8 6.1 FL LM
Nyanja 6.3 6.7 CC LM
Occitan 7.8 8.2 CC LM
Oromo 15.7 16.2 CC LM
Oriya 6.3 7.1 CC LM
Punjabi 7.4 7.0 CC LM
Polish 2.6 2.7 CC LM
Portuguese 2.8 2.8 CC LM
Pashto 13.1 14.1 CC LM
Romanian 3.7 3.1 CC LM
Russian 3.1 3.0 CC LM
Slovak 2.7 2.5 CC LM
Slovenian 4.0 3.7 CC LM
Shona 3.8 4.1 FL LM
Sindhi 7.2 7.2 FL LM
Somali 12.8 13.0 CC LM
Spanish 1.8 2.1 CC LM
Serbian 10.3 12.7 FL LM
Swedish 4.7 4.6 CC LM
Swahili 3.3 3.4 CC LM
Tamil 8.2 9.0 FL LM
Telugu 6.6 6.9 CC LM
Tajik 4.0 4.5 CC LM
Filipino 3.1 3.1 CC LM
Thai 7.6 8.3 CC LM
Turkish 3.5 3.1 CC LM
Ukrainian 3.3 2.9 CC LM
Umbundu 10.7 10.2 FL LM
Urdu 9.8 8.1 CC LM
Uzbek 4.7 5.0 CC LM
Vietnamese 5.9 6.1 CC LM
Wolof 11.2 11.5 FL LM
Xhosa 6.0 6.1 FL LM
Yoruba 17.0 16.1 FL LM
Cantonese 12.9 12.4 CC LM
Malay 2.8 2.6 CC LM
Zulu 5.2 5.5 FL LM

Average 6.3 6.3

Table A3: Results on FLEURS-102. We show character error rate on the dev and test sets of
all 102 FLEURS languages for MMS when fine-tuned on the labeled data of FLEURS. We use
language-specific adapters and heads. For inference we choose between two n-gram language models
(LM) based on dev set accuracy: a word-based model trained on Common Crawl (CC LM) or a
character-based model trained on the FLEURS training transcriptions (FL LM).
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E Gender Bias Study

Num Samples MMS ASR CER ↓ FLEURS ASR CER ↓
Female Male Female Male Overall Female Male Overall

Assamese 139 279 15.3 15.1 15.4 8.6 8.0 8.9
Bulgarian 189 206 9.0 10.2 7.9 3.6 3.5 3.6
Welsh 150 296 15.8 19.4 14.1 8.4 11.5 6.9
Greek 125 146 11.4 9.3 13.1 5.4 4.0 6.6
English 245 149 10.8 10.7 10.9 6.0 5.5 6.8
Spanish 130 278 5.2 5.8 5.0 2.3 2.9 2.0
Fula 107 166 27.2 29.0 26.2 14.8 21.4 11.0
Finnish 352 63 7.6 7.1 10.2 2.7 2.6 3.8
French 62 227 9.1 10.0 8.8 5.4 6.4 5.2
Gujarati 149 283 13.3 12.7 13.7 6.2 6.2 6.2
Hindi 120 119 15.1 15.5 14.7 6.6 8.3 5.1
Kazakh 136 232 7.8 7.4 8.0 3.1 2.4 3.6
Khmer 98 228 26.1 22.8 27.6 14.1 11.2 15.4
Kannada 245 123 10.0 10.4 9.3 5.2 5.2 5.1
Korean 93 133 24.3 26.0 22.9 13.5 14.0 13.1
Kyrgyz 273 149 10.6 12.1 7.9 4.5 5.7 2.1
Ganda 228 78 13.4 13.3 13.6 8.2 7.9 9.0
Latvian 177 179 7.0 6.6 7.3 3.0 2.7 3.3
Marathi 148 295 13.2 9.3 15.0 8.2 4.8 9.9
Polish 95 243 6.6 7.2 6.3 3.3 3.8 3.1
Russian 203 153 8.0 7.4 8.9 4.0 3.7 4.6
Shona 118 275 10.5 8.6 11.4 4.1 2.2 5.1
Swedish 64 266 10.1 8.5 10.5 5.6 4.6 5.9
Swahili 59 152 7.7 11.1 6.5 3.7 3.9 3.6
Tamil 214 163 15.3 17.0 13.2 8.9 10.1 7.4
Telugu 76 235 12.7 11.3 13.1 7.9 8.2 7.8
Tajik 116 123 11.1 12.5 9.9 4.3 4.9 3.7

Average - - 12.4 12.3 12.4 6.5 6.2 6.4

Table A4: Analysis of Gender Bias. We compare ASR models trained on MMS-lab data and
FLEURS data. We report dev CER per gender of the speakers for 27 languages of FLEURS for which
MMS-lab provides data and for which there are at least 50 samples for each gender.
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