Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, Isabelle Guyon
I do research in machine learning with a focus on scaling Bayesian optimization and Gaussian processes to complex high-dimensional problems. I was previously a Sr. Research Scientist at Uber AI Labs and before that I received my Ph.D. in Applied Mathematics from Cornell University.
Bayesian optimization, AutoML, Gaussian processes, scientific computing
Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, Isabelle Guyon
Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger
David Eriksson, Martin Jankowiak
Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner
David Eriksson, Matthias Poloczek
David Eriksson, Pierce I-Jen Chuang, Sam Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Max Balandat