Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
IEEE Haptics Symposium (HAPTICS)
Touch is an essential method for communicating emotions between individuals. Humans use a variety of different gestures to convey these emotions, including squeezes, pats, and strokes. This paper presents a device for creating a continuous lateral motion on the arm to mimic a subset of the gestures used in social touch. The device is composed of a linear array of voice coil actuators that is embedded in a fabric sleeve. The voice coils are controlled to sequentially press into the user’s arm to create the sensation of linear travel up the arm. We evaluate the device in a human-subject study to confirm that a linear lateral motion can be created using only normal force, and to determine the optimal actuation parameters for creating a continuous and pleasant sensation. The results of the study indicated that the voice coils should be controlled with a long duration for each indentation and a short delay between the onset of indentation between adjacent actuators to maximize both continuity and pleasantness.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel