Action Dynamics Task Graphs for Learning Plannable Representations of Procedural Tasks

AAAI Workshop Program on Artificial Intelligence


Given video demonstrations and paired narrations of an at-home procedural task such as changing a tire, we present an approach to extract the underlying task structure – relevant actions and their temporal dependencies – via action-centric task graphs. Learnt structured representations from our method, Action Dynamics Task Graphs (ADTG), can then be used for understanding such tasks in unseen videos of humans performing them. Furthermore, ADTG can enable providing user-centric guidance to humans in these tasks, either for performing them better or for learning new tasks. Specifically, we show how ADTG can be used for: (1) tracking an ongoing task, (2) recommending next actions, and (3) planning a sequence of actions to accomplish a procedural task. We compare against state-of-the-art Neural Task Graph method and demonstrate substantial gains on 18 procedural tasks from the CrossTask dataset, including 30.1% improvement in task tracking accuracy and 20.3% accuracy gain in next action prediction.

Supplementary Material

Latest Publications

A Practical Stereo Depth System for Smart Glasses

Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen Matthew Yu, Jonathan Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, Zijian He, Peter Vajda, Michael Cohen, Matt Uyttendaele

CVPR - 2023

Presto: A Decade of SQL Analytics at Meta

Yutian James Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti, Aditi Pandit, Biswapesh Chattopadhyay

SIGMOD - 2023