Bandits with Knapsacks beyond the Worst Case

Conference on Neural Information Processing Systems (NeurIPS)

Abstract

Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider “simple regret” in BwK, which tracks algorithm’s performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general “reduction” from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from Agrawal and Devanur, providing new analyses thereof.

Latest Publications

Log-structured Protocols in Delos

Mahesh Balakrishnan, Mahesh Balakrishnan, Mihir Dharamshi, Jason Flinn, David Geraghty, Santosh Ghosh, Filip Gruszczynski, Ahmed Jafri, Jun Li, Jingming Liu, Suyog Mapara, Rajeev Nagar, Ivailo Nedelchev, Francois Richard, Chen Shen, Yee Jiun Song, Rounak Tibrewal, Vidhya Venkat, Ahmed Yossef, Ali Zaveri

SOSP