Continuous decoding of cognitive load from electroencephalography reveals task-general and task-specific correlates

Journal of Neural Engineering


Objective. Algorithms to detect changes in cognitive load using non-invasive biosensors (e.g. electroencephalography (EEG)) have the potential to improve human–computer interactions by adapting systems to an individual’s current information processing capacity, which may enhance performance and mitigate costly errors. However, for algorithms to provide maximal utility, they must be able to detect load across a variety of tasks and contexts. The current study aimed to build models that capture task-general EEG correlates of cognitive load, which would allow for load detection across variable task contexts. Approach. Sliding-window support vector machines (SVM) were trained to predict periods of high versus low cognitive load across three cognitively and perceptually distinct tasks: n-back, mental arithmetic, and multi-object tracking. To determine how well these SVMs could generalize to novel tasks, they were trained on data from two of the three tasks and evaluated on the held-out task. Additionally, to better understand task-general and task-specific correlates of cognitive load, a set of models were trained on subsets of EEG frequency features. Main results. Models achieved reliable performance in classifying periods of high versus low cognitive load both within and across tasks, demonstrating their generalizability. Furthermore, continuous model outputs correlated with subtle differences in self-reported mental effort and they captured predicted changes in load within individual trials of each task. Additionally, alpha or beta frequency features achieved reliable within- and cross-task performance, suggesting that activity in these frequency bands capture task-general signatures of cognitive load. In contrast, delta and theta frequency features performed considerably worse than the full cross-task models, suggesting that delta and theta activity may be reflective of task-specific differences across cognitive load conditions. Significance. EEG data contains task-general signatures of cognitive load. Sliding-window SVMs can capture these signatures and continuously detect load across multiple task contexts.

Latest Publications