Destine: Dense Subgraph Detection on Multi-Layered Networks

Conference on Information and Knowledge Management (CIKM)


Dense subgraph detection is a fundamental building block for a variety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense subgraph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm DESTINE based on projected gradient descent with the following advantages. First, armed with the cross-layer dependencies, DESTINE is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the number of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed DESTINE algorithm in various cases.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022