Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
ACM Conference on Supercomputing (ICS)
Large-scale datacenters consume megawatts in power and cost hundreds of millions of dollars to equip. Reducing the energy and cost footprint of servers can therefore have substantial impact.
Web, Grid, and cloud servers in particular can be hard to optimize, since they are expected to operate under a wide range of workloads. For our upcoming datacenter, we set out to significantly improve its power efficiency, cost, reliability, serviceability, and environmental footprint. To this end, we redesigned many dimensions of the datacenter and servers in conjunction.
This paper focuses on our new server design, combining aspects of power, motherboard, thermal, and mechanical design. We calculate and confirm experimentally that our custom-designed servers can reduce power consumption across the entire load spectrum while at the same time lower acquisition and maintenance costs.
Importantly, our design does not decrease the servers’ performance or portability, which would otherwise limit its applicability.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann