Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Optimal Transport and Machine Learning (OTML) Workshop at NeurIPS
The gradients of convex functions are expressive models of non-trivial vector fields. For example, the optimal transport map between any two measures on Euclidean spaces under the squared distance is realized as a convex gradients via Brenier’s theorem, which is a key insight used in recent machine learning flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to modeling the gradient by taking the derivative of an input-convex neural network, demonstrating that ICGNs can efficiently parameterize convex gradients.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih