Learning Filterbanks from Raw Speech for Phone Recognition

International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Abstract

We train a bank of complex filters that operates on the raw waveform and is fed into a convolutional neural network for end-to-end phone recognition. These time-domain filterbanks (TD-filterbanks) are initialized as an approximation of mel-filterbanks, and then fine-tuned jointly with the remaining convolutional architecture. We perform phone recognition experiments on TIMIT and show that for several architectures, models trained on TD-filterbanks consistently outperform their counterparts trained on comparable mel-filterbanks. We get our best performance by learning all front-end steps, from pre-emphasis up to averaging. Finally, we observe that the filters at convergence have an asymmetric impulse response, and that some of them remain almost analytic.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022