A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Conference on Neural Information Processing Systems (NeurIPS)
In the context of learning to map an input I to a function hI : X → R, two alternative methods are compared: (i) an embedding-based method, which learns a fixed function in which I is encoded as a conditioning signal e(I) and the learned function takes the form hI(x) = q(x, e(I)), and (ii) hypernetworks, in which the weights θI of the function hI(x) = g(x; θI) are given by a hypernetwork f as θI = f(I). In this paper, we define the property of modularity as the ability to effectively learn a different function for each input instance I. For this purpose, we adopt an expressivity perspective of this property and extend the theory of [6] and provide a lower bound on the complexity (number of trainable parameters) of neural networks as function approximators, by eliminating the requirements for the approximation method to be robust. Our results are then used to compare the complexities of q and g, showing that under certain conditions and when letting the functions e and f be as large as we wish, g can be smaller than q by orders of magnitude. This sheds light on the modularity of hypernetworks in comparison with the embedding-based method. Besides, we show that for a structured target function, the overall number of trainable parameters in a hypernetwork is smaller by orders of magnitude than the number of trainable parameters of a standard neural network and an embedding method.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré