Online Learning for Measuring Incentive Compatibility in Ad Auctions

The Web Conference


In this paper we investigate the problem of measuring end-to-end Incentive Compatibility (IC) regret given black-box access to an auction mechanism. Our goal is to 1) compute an estimate for IC regret in an auction, 2) provide a measure of certainty around the estimate of IC regret, and 3) minimize the time it takes to arrive at an accurate estimate. We consider two main problems, with different informational assumptions: In the advertiser problem the goal is to measure IC regret for some known valuation v, while in the more general demand-side platform (DSP) problem we wish to determine the worst-case IC regret over all possible valuations. The problems are naturally phrased in an online learning model and we design Regret-UCB algorithms for both problems. (Download for full abstract.)

Featured Publications