Online Optical Marker-based Hand Tracking with Deep Labels

Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH)

Abstract

Optical marker-based motion capture is the dominant way for obtaining high-fidelity human body animation for special effects, movies, and video games. However, motion capture has seen limited application to the human hand due to the difficulty of automatically identifying (or labeling) identical markers on self-similar fingers. We propose a technique that frames the labeling problem as a keypoint regression problem conducive to a solution using convolutional neural networks. We demonstrate robustness of our labeling solution to occlusion, ghost markers, hand shape, and even motions involving two hands or handheld objects. Our technique is equally applicable to sparse or dense marker sets and can run in real-time to support interaction prototyping with high-fidelity hand tracking and hand presence in virtual reality.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022