OpenDialKG: Explainable Conversational Reasoning with Attention-based Walks over Knowledge Graphs

Association for Computational Linguistics (ACL)

Abstract

We study a conversational reasoning model that strategically traverses through a large-scale common fact knowledge graph (KG) to introduce engaging and contextually diverse entities and attributes. For this study, we collect a new Open-ended Dialog ↔ KG parallel corpus called OpenDialKG, where each utterance from 15K human-to-human role-playing dialogs is manually annotated with ground-truth reference to corresponding entities and paths from a large-scale KG with 1M+ facts. We then propose the DialKG Walker model that learns the symbolic transitions of dialog contexts as structured traversals over KG, and predicts natural entities to introduce given previous dialog contexts via a novel domain-agnostic, attention-based graph path decoder. Automatic and human evaluations show that our model can retrieve more natural and human-like responses than the state-of-the-art baselines or rule-based models, in both in-domain and cross-domain tasks. The proposed model also generates a KG walk path for each entity retrieved, providing a natural way to explain conversational reasoning.

Latest Publications

Log-structured Protocols in Delos

Mahesh Balakrishnan, Mahesh Balakrishnan, Mihir Dharamshi, Jason Flinn, David Geraghty, Santosh Ghosh, Filip Gruszczynski, Ahmed Jafri, Jun Li, Jingming Liu, Suyog Mapara, Rajeev Nagar, Ivailo Nedelchev, Francois Richard, Chen Shen, Yee Jiun Song, Rounak Tibrewal, Vidhya Venkat, Ahmed Yossef, Ali Zaveri

SOSP