Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
SIGGRAPH
High-quality motion capture datasets are now publicly available, and researchers have used them to create kinematics-based controllers that can generate plausible and diverse human motions without conditioning on specific goals (i.e., a task-agnostic generative model). In this paper, we present an algorithm to build such controllers for physically simulated characters having many degrees of freedom. Our physics-based controllers are learned by using conditional VAEs, which can perform a variety of behaviors that are similar to motions in the training dataset. The controllers are robust enough to generate more than a few minutes of motion without conditioning on specific goals and to allow many complex downstream tasks to be solved efficiently. To show the effectiveness of our method, we demonstrate controllers learned from several different motion capture databases and use them to solve a number of downstream tasks that are challenging to learn controllers that generate natural-looking motions from scratch. We also perform ablation studies to demonstrate the importance of the elements of the algorithm.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood
Igor L. Markov, Hanson Wang, Nitya Kasturi, Shaun Singh, Mia Garrard, Yin Huang, Sze Wai Yuen, Sarah Tran, Zehui Wang, Igor Glotov, Tanvi Gupta, Peng Chen, Boshuang Huang, Xiaowen Xie, Michael Belkin, Sal Uryasev, Sam Howie, Eytan Bakshy, Norm Zhou