Strategies for Training Large Vocabulary Neural Language Models

Association for Computational Linguistics (ACL 2016)

Abstract

Training neural network language models over large vocabularies is computationally costly compared to count-based models such as Kneser-Ney. We present a systematic comparison of neural strategies to represent and train large vocabularies, including softmax, hierarchical softmax, target sampling, noise contrastive estimation and self normalization. We extend self normalization to be a proper estimator of likelihood and introduce an efficient variant of softmax. We evaluate each method on three popular benchmarks, examining performance on rare words, the speed/accuracy trade-off and complementarity to Kneser-Ney.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022