Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
ICLR workshop on Practical ML for Developing Countries
In order to contrast the explosion in size of state-of-the-art machine learning models that can be attributed to the empirical advantages of over-parametrization, and due to the necessity of deploying fast, sustainable, and private on-device models on resource-constrained devices, the community has focused on techniques such as pruning, quantization, and distillation as central strategies for model compression. Towards the goal of facilitating the adoption of a common interface for neural network pruning in PyTorch, this contribution describes the recent addition of the PyTorch torch.nn.utils.prune module, which provides shared, open-source pruning functionalities to lower the technical implementation barrier to reducing model size and capacity before, during, and/or after training. We present the module’s user interface, elucidate implementation details, illustrate example usage, and suggest ways to extend the contributed functionalities to new pruning methods.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih